Passing Through An Amorphous State Or Treating Or Producing An Amorphous Metal Or Alloy Patents (Class 148/561)
  • Publication number: 20030217790
    Abstract: An amorphous alloy having a composition consisting essentially of about 45 to about 65 atomic % Zr and/or Hf, about 4 to about 7.5 atomic % Ti and/or Nb, about 5 to about 15 atomic % Al and/or Zn, and the balance comprising a metal selected from the group consisting of Cu, Co, Ni, up to about 10 atomic % Fe, and Y intentionally present in the alloy composition in an amount not exceeding about 0.5 atomic %, such as about 0.2 to about 0.4 atomic % Y, with an alloy bulk oxygen concentration of at least about 1000 ppm on atomic basis.
    Type: Application
    Filed: May 22, 2002
    Publication date: November 27, 2003
    Inventor: George W. Wolter
  • Patent number: 6652679
    Abstract: The present invention intends to provide a production method for a highly reliable bulk metallic glass of a high cold draft of 70% or more, and better post-cold working mechanical properties than those of the metallic glass being cast. The bulk metallic glass is obtained by pressing and expanding an alloy melt of composition capable of being glassified between the cooled upper and lower molds, which are highly heat-conductive water-cooled molds, so as to apply pressure to the melt while it is solidified. Nano-particles are thus dispersed in the amorphous phase of the metallic glass, thereby obtaining a metallic glass with nano-particles dispersed in its amorphous phase. The metallic glass with nano-particles of such a high ductility is further cold worked, for example by rolling to make the final product.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: November 25, 2003
    Assignee: Japan Science and Technology Corporation
    Inventors: Akihisa Inoue, Tao Zhang
  • Patent number: 6652673
    Abstract: A zirconium system amorphous alloy having a composition expressed by a general formula Zr100-X-Y-a-b Tix Aly Cua Nib wherein a, b, X, and Y in the formula represent atomic percentage, and fulfill X<10, Y>5, Y<−(1/2)X+35/2, 15≦a≦25, and 5≦b≦15, the zirconium system amorphous alloy has an amorphous phase of more than 50 volume % of the alloy.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: November 25, 2003
    Assignees: Sumitomo Rubber Industries, Ltd., YKK Corporation
    Inventors: Akihisa Inoue, Tao Zhang, Masahide Onuki, Tetsuo Yamaguchi
  • Patent number: 6648994
    Abstract: The present invention provides a method for producing a Fe-based amorphous alloy ribbon comprising the steps of: ejecting a molten Fe-based alloy containing 10 atomic % or less of B onto a cooling roll to solidify the molten Fe-based alloy; and peeling the solidified Fe-based alloy from the cooling roll when the solidified Fe-based alloy has a temperature of 100 to 300° C. A Fe-based amorphous alloy ribbon having no crystalline phase is stably, continuously produced without breakage by this method.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: November 18, 2003
    Assignee: Hitachi Metals, Ltd.
    Inventors: Jun Sunakawa, Yoshio Bizen, Shunsuke Arakawa
  • Publication number: 20030183310
    Abstract: A method of making a sheet of amorphous metallic material wherein molten metallic material capable of rapidly solidifying to an amorphous microstructure is discharged onto a flat, quiescent surface of a liquid cooling pool. The liquid cooling pool comprises a thermally conductive liquid material, such as a molten metal or alloy, having a lower temperature than that of the amorphous metallic material discharged thereon. The molten metallic material is discharged onto the pool and assumes the width dimension of the pool. The solidified amorphous sheet is continuously removed from the pool surface at a location remote from where the molten material is discharged onto the pool.
    Type: Application
    Filed: March 29, 2002
    Publication date: October 2, 2003
    Inventor: Michael M. McRae
  • Publication number: 20030178109
    Abstract: To provide a very tough material at a low manufacturing cost, the present invention provides an alloy-based nano-crystal texture in which, in an alloy system having a composition deviating from the stoichiometric composition, and capable of forming an amorphous state, nano-scale crystals are arranged in an identical crystal orientation.
    Type: Application
    Filed: April 21, 2003
    Publication date: September 25, 2003
    Inventors: Setsuo Kajiwara, Takehiro Kikuchi, Kazuyuki Ogawa, Shuichi Miyazaki, Takeshi Matsunaga
  • Patent number: 6620264
    Abstract: A manufacturing process for casting amorphous metallic parts separates the filling and quenching steps of the casting process in time. The mold is heated to an elevated casting temperature at which the metallic alloy has high fluidity. The alloy fills the mold at the casting temperature, thereby enabling the alloy to effectively fill the spaces of the mold. The mold and the alloy are then quenched together, the quenching occurring before the onset of crystallization in the alloy. With this process, compared to conventional techniques, amorphous metallic parts with higher aspect ratios can be prepared.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: September 16, 2003
    Assignee: California Institute of Technology
    Inventors: Andreas A. Kündig, William L. Johnson, Alex Dommann
  • Publication number: 20030164209
    Abstract: Iron based amorphous steel alloy having a high Manganese content and being non-ferromagnetic at ambient temperature. The bulk-solidifying ferrous-based amorphous alloys are multicomponent systems that contain about 50atomic percent iron as the major component. The remaining composition combines suitable mixtures of metalloids (Group b elements) and other elements selected mainly from manganese, chromium, and refractory metals. Various classes of non-ferromagnetic ferrous-based bulk amorphous metal alloys are obtained. One class is a high-manganese class that contains manganese and boron as the principal alloying components. Another class is a high manganese-high molybdenum class that contains manganese, molybdenum, and carbon as the principal alloying components. These bulk-solidifying amorphous alloys can be obtained in various forms and shape for various applications and utlizations. The good processability of these alloys can be attributed to the high reduced glass temperature Trg (e.g., about 0.6 to 0.
    Type: Application
    Filed: February 11, 2003
    Publication date: September 4, 2003
    Inventors: S. Joseph Poon, Gary J. Shiflet, Vijayabarathi Ponnambalam
  • Publication number: 20030136481
    Abstract: To remarkably improve shape-memory properties without the need for strictly controlling the composition, the present invention provides a Ti—Ni-based shape-memory alloy having a titanium content within a range of from 50 to 55 atomic %, which comprises an amorphous alloy heat-treated at a temperature of from 600 to 800 K, in which subnanometric precipitates generating coherent elastic strains are formed and distributed in the bcc parent phase(B2).
    Type: Application
    Filed: October 28, 2002
    Publication date: July 24, 2003
    Inventors: Setsuo Kajiwara, Takehiko Kikuchi, Kazuyuki Ogawa, Shuichi Miyazaki, Takeshi Matsunaga
  • Patent number: 6596102
    Abstract: A method of treating a shape memory alloy to improve its various characteristics and to cause it to exhibit a two-way shape memory effect. A raw shape memory alloy having a substantially uniformly fine-grained crystal structure is prepared and then its crystal orientations are arranged substantially in a direction suitable for an expected operational direction, such as tensile or twisting direction or the like, in which the shape memory alloy is expected to move when used in an actuator after the completion of the treatment.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 22, 2003
    Assignee: Toki Corporation Kabushiki Kaisha
    Inventor: Dai Homma
  • Patent number: 6592689
    Abstract: Changing characteristics of relationships between components of a bulk metallic glass to stabilize one phase relative to another. A specific Zr58.47Nb2.76Cu15.4Ni12.6Al10.37alloy is disclosed.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: July 15, 2003
    Assignee: California Institute of Technology
    Inventor: Charles C. Hays
  • Patent number: 6582538
    Abstract: A molten alloy having an amorphous forming ability is pressure-solidified at a pressure exceeding one atmospheric pressure to eliminate casting defects. The cooling rate during the solidification is adjusted to disperse fine crystals having a mean crystal grain diameter of 1 nm to 50 &mgr;m and a volume percentage of 5 to 40% in an amorphous alloy ingot. In this way, a uniform residual compressive stress is imparted in the amorphous alloy ingot. Furthermore, the amorphous ingot produced by this method can be strengthened by heating it at a constant temperature rising rate to infiltrate at least one of boron, carbon, oxygen, nitrogen and fluorine from the surface of the amorphous alloy ingot in a supercooled liquid state before crystallization, to thereby precipitate a high melting point compound thereof with an element forming the amorphous alloy within the alloy ingot so as to strength the alloy.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: June 24, 2003
    Assignee: Japan Science and Technology Corporation
    Inventors: Akihisa Inoue, Tao Zhang, Nobuyuki Nishiyama
  • Publication number: 20030111142
    Abstract: MRI-compatible medical instruments and appliances are made using bulk metallic glass alloys. MRI-guided methods include the use of articles that include bulk metallic glass alloys.
    Type: Application
    Filed: September 27, 2002
    Publication date: June 19, 2003
    Inventors: Joseph A. Horton, Douglas E. Parsell
  • Patent number: 6562156
    Abstract: A method of making a bulk metallic glass composition includes the steps of: a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: May 13, 2003
    Assignee: UT-Battelle, LLC
    Inventor: Chain T. Liu
  • Publication number: 20030079813
    Abstract: A Zr-based bulk metallic glass formed using low purity materials at a low vacuum with a small amount of yttrium addition is provided. A method of improving the glass forming ability, crystallization and melting process without reducing the mechanical and elastic properties, such as hardness and Young's Modulus, of Zr-based alloys by yttrium addition, is also provided.
    Type: Application
    Filed: October 30, 2001
    Publication date: May 1, 2003
    Inventors: Yong Zhang, Ming Xiang Pan, De Qian Zhao, Wei Hua Wang
  • Publication number: 20030051781
    Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.
    Type: Application
    Filed: June 13, 2002
    Publication date: March 20, 2003
    Inventor: Daniel J. Branagan
  • Publication number: 20030041931
    Abstract: An amorphous alloy ribbon free from embrittlement and crystallization and having excellent surface conditions and shape in edge portions is produced by (a) preparing an alloy melt having a composition comprising 13 atomic % or less of B and 15 atomic % or less of at least one selected from the group consisting of transition elements of Groups 4A, 5A and 6A, the balance being substantially Fe; (b) ejecting the alloy melt at a temperature from the melting point of the alloy +50° C. to the melting point of the alloy +250° C. through a nozzle onto the cooling roll rotating at a peripheral speed of 35 m/second or less, a distance between a tip end of the nozzle and the cooling roll being 200 &mgr;m or less; (c) starting to supply a gas based on CO2 to the alloy melt after the surface temperature of the cooling roll has become substantially constant; and (d) grinding the cooling roll while supplying the gas based on CO2.
    Type: Application
    Filed: February 13, 2002
    Publication date: March 6, 2003
    Applicant: HITACHI METALS, LTD.
    Inventors: Jun Sunakawa, Yoshio Bizen, Michihiro Nagao
  • Publication number: 20030034099
    Abstract: A method of making a bulk metallic glass composition includes the steps of:
    Type: Application
    Filed: August 2, 2001
    Publication date: February 20, 2003
    Inventor: Chain T. Liu
  • Publication number: 20030024616
    Abstract: The present invention is directed to a method of joining an amorphous material to a non-amorphous material including, forming a cast mechanical joint between the bulk solidifying amorphous alloy and the non-amorphous material.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 6, 2003
    Inventors: Choongnyun Paul Kim, Atakan Peker
  • Patent number: 6506268
    Abstract: A process of producing a high toughness iron-based amorphous alloy strip, using a single roll liquid quenching method, the strip having a thickness of more than 55 &mgr;m up to 100 &mgr;m and a width of 20 mm or more and having a fracture strain &egr;f satisfying the relationship &egr;f>0.1 where &egr;f=t/(D-t), t=thickness of the strip, and D=bent diameter upon fracture, &egr;f being determined by bending the strip with a free cooling surface thereof facing outward, the process comprising the steps of: ejecting a molten metal alloy through a nozzle; applying the ejected molten metal alloy to a surface of a rotating roll; allowing the applied molten metal alloy to be quenched by the roll surface to form an amorphous strip of the metal alloy, the strip being quenched at a cooling rate, determined at a free surface thereof, of 103° C./sec or more in a temperature range of from 500° C. to 200° C.; and continuously coiling the quenched strip at a temperature of 200° C.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: January 14, 2003
    Assignee: Nippon Steel Corporation
    Inventors: Hiroaki Sakamoto, Toshio Yamada, Takashi Sato
  • Publication number: 20020195179
    Abstract: The invention relates to a shaving article formed of geometrically articulated amorphous metal alloy articles and processes for their production.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 26, 2002
    Inventors: Glennis J. Orloff, Howard H. Lieberman, Nicholas J. Decristofaro
  • Publication number: 20020195178
    Abstract: The invention relates to a geometrically articulated amorphous metal alloy articles and processes for their production.
    Type: Application
    Filed: June 25, 2001
    Publication date: December 26, 2002
    Inventors: Howard H. Liebermann, Nicholas J. Decristofaro, Glennis J. Orloff
  • Publication number: 20020053375
    Abstract: Changing characteristics of relationships between components of a bulk metallic glass to stabilize one phase relative to another. A specific Zr58.47Nb2.76Cu15.4Ni12.6Al10.37alloy is disclosed.
    Type: Application
    Filed: May 3, 2001
    Publication date: May 9, 2002
    Inventor: Charles C. Hays
  • Publication number: 20020050310
    Abstract: A manufacturing process for casting amorphous metallic parts separates the filling and quenching steps of the casting process in time. The mold is heated to an elevated casting temperature at which the metallic alloy has high fluidity. The alloy fills the mold at the casting temperature, thereby enabling the alloy to effectively fill the spaces of the mold. The mold and the alloy are then quenched together, the quenching occurring before the onset of crystallization in the alloy. With this process, compared to conventional techniques, amorphous metallic parts with higher aspect ratios can be prepared.
    Type: Application
    Filed: June 11, 2001
    Publication date: May 2, 2002
    Inventors: Andreas A. Kundig, William L. Johnson, Alex Dommann
  • Patent number: 6368996
    Abstract: An amorphous alloy catalyst for hydrogenation and its preparation method are disclosed herein. The catalyst essentially consists of nickel ranging between 60 and 98 wt %, iron ranging between 0 and 20 wt %, one doping metal element selected from the group consisting of chromium, cobalt, molybdenum, manganese and tungsten ranging between 0 and 20 wt %, and aluminum ranging between 0.5 and 30 wt % based on the weight of said catalyst, wherein the weight percentages of iron and the doping metal element component may not be zero at the same time; and just one broad diffusion peak appears at about 2 &thgr;=45±1° on the XRD patterns of the catalyst within 2 &thgr; range from 20 to 80°. The catalyst herein can be used in processes for hydrogenation of unsaturated compounds such as olefin, alkyne, aromatics, nitro, carbonyl groups, nitrile and soon, and for hydrorefining of caprolactam in particular.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 9, 2002
    Assignees: China Petroleum Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Xuhong Mu, Baoning Zong, Enze Min, Xuan Wang, Ying Wang, Xiaoxin Zhang, Xingtian Shu
  • Publication number: 20020036034
    Abstract: An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf)a TabTicCudNieAlf, where the composition ranges (in atomic percent) are 45≦a≦70, 3≦b≦7.5, 0≦c≦4, 3≦b+c≦10, 10≦d≦30, 0≦e≦20, 10≦d+e≦35, and 5≦f≦15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 28, 2002
    Inventors: Li-Qian Xing, Todd C. Hufnagel, Kaliat T. Ramesh
  • Publication number: 20020003013
    Abstract: A new metallic glass is formed by adding special additives to a metallic glass matrix; the additives having ductile properties to form as dendrites in the metallic glass. The additives distribute the shear lines in the metallic glass, allowing it to plastically deform more than previous materials.
    Type: Application
    Filed: April 24, 2001
    Publication date: January 10, 2002
    Inventor: Charles C. Hays
  • Patent number: 6331218
    Abstract: An aluminum-based alloy having the general formula Al100−(a+b)QaMb (wherein Q is V, Mo, Fe, W, Nb, and/or Pd; M is Mn, Fe, Co, Ni, and/or Cu; and a and b, representing a composition ratio in atomic percentages, satisfy the relationships 1≦a≦8, 0<b<5, and 3≦a+b≦8) having a metallographic structure comprising a quasi-crystalline phase, wherein the difference in the atomic radii between Q and M exceeds 0.01 Å, and said alloy does not contain rare earths, possesses high strength and high rigidity. The aluminum-based alloy is useful as a structural material for aircraft, vehicles and ships, and for engine parts; as material for sashes, roofing materials, and exterior materials for use in construction; or as materials for use in marine equipment, nuclear reactors, and the like.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: December 18, 2001
    Inventors: Akihisa Inoue, Hisamichi Kimura, Yuma Horio
  • Patent number: 6306228
    Abstract: A molten alloy was pressure-solidified under a pressure exceeding one atmospheric pressure to eliminate casting defects. The molten alloy was solidified by applying a cooling rate difference to the surface and the interior of the molten alloy to allow a compressive stress layer to remain on the surface of the amorphous alloy ingot and a tensile stress layer in the interior portion. Thus, a amorphous alloy sheet having a thickness of 1 mm or more and excellent in bending strength and impact strength is obtained.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: October 23, 2001
    Assignee: Japan Science and Technology Corporation
    Inventors: Akihisa Inoue, Tao Zhang, Nobuyuki Nishiyama
  • Publication number: 20010022208
    Abstract: Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.
    Type: Application
    Filed: February 27, 2001
    Publication date: September 20, 2001
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: John H. Perepezko, Donald R. Allen, James C. Foley
  • Patent number: 6260266
    Abstract: A silicon substrate on which a silicon dioxide film having a groove is formed is placed on a sample stage disposed in a vacuum chamber. Subsequently, a titanium film and a tungsten film are deposited sequentially on the silicon dioxide film. The surface of the tungsten film is nitrided by using a plasma under the pressure maintained at 10 Pa or higher inside the vacuum chamber, so as to form a tungsten nitride film. After a copper film is deposited on the tungsten nitride film, the portions of the titanium film, tungsten film, tungsten nitride film, and copper film located outside the groove are removed, thus forming a buried interconnecting wire made of copper.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: July 17, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Tokuhiko Tamaki
  • Patent number: 6258183
    Abstract: A metal material is placed on a lower mold of a press metal mold which has an upper mold and the lower mold not having engagement portions. The metal material is fused by a high energy heat source, and obtained molten metal over a melting point is pressed with the press metal mold and transformed into a predetermined configuration. The molten metal is cooled at a rate over a critical cooling rate simultaneously with or after the transformation, and the molded product of amorphous metal in predetermined configuration is obtained.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: July 10, 2001
    Assignees: Sumitomo Rubber Industries, Ltd.
    Inventors: Masahide Onuki, Jun Nishibayashi, Tetsuo Yamaguchi, Haruyoshi Minamiguchi, Akihisa Inoue
  • Patent number: 6258185
    Abstract: In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: July 10, 2001
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: Daniel J. Branagan, Joseph V. Burch
  • Patent number: 6231697
    Abstract: A high-strength amorphous alloy represented by the general formula: XaMbAlcTd (wherein X is at least one element selected between Zr and Hf; M is at least one element selected from the group consisting of Ni, Cu, Fe, Co and Mn; T is at least one element having a positive enthalpy of mixing with at least one of the above-mentioned X, M and Al; and a, b, c and d are atomic percentages, provided that 25≦a≦85, 5≦b ≦70, 0<c≦35 and 0<d≦15) and having a structure comprising at least having an amorphous phase. The amorphous alloy is produced by preparing an amorphous alloy having the above-mentioned composition and containing at least an amorphous phase, and heat-treating the alloy in the temperature range from the first exothermic reaction-starting temperature (Tx1: crystallization temperature) thereof to the second exothermic reaction-starting temperature (Tx2) thereof to decompose the amorphous phase into a mixed phase structure consisting of an amorphous phase and a microcrystalline phase.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: May 15, 2001
    Assignees: Ykk Corporation
    Inventors: Akihisa Inoue, Tao Zhang, Hidenobu Nagahama
  • Patent number: 6077367
    Abstract: The present invention provides a method of producing a glassy alloy which has soft magnetism at room temperature and high resistivity and which can be easily obtained in a bulk shape thicker than an amorphous alloy ribbon obtained by a conventional melt quenching method. In this method, a melted metal having a supercooled liquid temperature width .DELTA.T.sub.x of 35.degree. C. or more, which is expressed by the equation .DELTA.T.sub.x =T.sub.x -T.sub.g (wherein T.sub.x indicates the crystallization temperature, and T.sub.g indicates the glass transition temperature), is sprayed on a cooling body under movement to form a ribbon-shaped glassy alloy material; and the glassy alloy is then heat-treated by heating at a heating rate of 0.15 to 3.degree. C./sec and then cooling.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: June 20, 2000
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue
    Inventors: Takao Mizushima, Akihiro Makino, Akihisa Inoue
  • Patent number: 6053995
    Abstract: A method of producing an age precipitation-containing rare earth metal-nickel alloy of AB.sub.5 type having a composition represented by a formula (1)R(ni.sub.1-x M.sub.x).sub.5+y (1)wherein R stands for a rare earth element including Y or mixtures thereof, M stands for Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, W, B, or mixtures thereof, x satisfies the relation of 0.05.ltoreq.x.ltoreq.0.5, and y satisfies the relation of -0.45.ltoreq.y.ltoreq.0.45, the alloy containing a precipitated phase having an average size of 0.1 to 20 .mu.m as measured along the longitudinal axis is disclosed. The method includes the steps of subjecting a raw alloy material having a composition represented by the formula (1) to a solid solution treatment at a temperature of not less than 1000.degree. C. and ageing the alloy material subjected to said solution heat treatment at a temperature T (.degree. C) of not less than 700.degree. C. and less than 1000.degree. C.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: April 25, 2000
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventors: Yuji Tanibuchi, Kazuhiko Yamamoto, Chikara Okada
  • Patent number: 6027586
    Abstract: Disclosed herein is a process for forming an amorphous alloy material capable of showing glass transition, which comprises holding the material between frames arranged in combination; and heating the material at a temperature between its glass transition temperature (Tg) and its crystallization temperature (Tx) and, at the same time, producing a pressure difference between opposite sides of the material, whereby the material is brought into close contact against a forming mold disposed on one side of the material. As an alternative, the forming mold is brought into close contact against the amorphous material in a direction opposite to the pressing direction for the amorphous material. By the above processes, precision-formed products of amorphous alloys can be manufactured and supplied at low cost.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: February 22, 2000
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Nobuyuki Nishiyama, Hiroyuki Horimura, Toshisuke Shibata
  • Patent number: 5900210
    Abstract: A high-strength and high-ductility aluminum-base alloy consisting of a composition of general formula: Al.sub.ba1 Mn.sub.a Si.sub.b or Al.sub.ba1 Mn.sub.a Si.sub.b TM.sub.c (wherein TM is one or more elements selected from the group consisting of Ti, V, Cr, Fe, Co, Ni, Cu, Y, Zr, La, Ce and Mm; and a, b and c are, in atomic percentages, 2.ltoreq.a.ltoreq.8, 0.5.ltoreq.b.ltoreq.6, 0<c.ltoreq.4, and a.gtoreq.b), wherein the alloy contains quasi-crystals. The an aluminum-base alloy have superior mechanical properties such as high hardness, high strength and high ductility.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: May 4, 1999
    Assignee: YKK Corporation
    Inventors: Erik Buchler, Kazuhiko Kita
  • Patent number: 5896642
    Abstract: A metallic article is fabricated by providing a die and a piece of a bulk-solidifying amorphous metallic alloy having a glass transition temperature. The bulk-solidifying amorphous metallic alloy is heated to a forming temperature of from about 0.75 T.sub.g to about 1.2 T.sub.g and forced into the die cavity at the forming temperature under an external pressure of from about 260 to about 40,000 pounds per square inch, thereby deforming the piece of the bulk-solidifying amorphous metallic alloy to a formed shape that fills the die cavity. Preferably, a pressure is applied to the piece of the bulk-solidifying amorphous metallic alloy as it is heated, and the heating rate is at least about 0.1.degree. C. per second. The die may be a male die or a female die. When the die has a re-entrant comer therein, the formed shape of the bulk-solidifying amorphous metallic alloy is mechanically locked to the die.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: April 27, 1999
    Assignees: Amorphous Technologies International, California Institute of Technology
    Inventors: Atakan Peker, Eric Bakke, William L. Johnson
  • Patent number: 5870021
    Abstract: A control element for a magnetomechanical EAS marker is formed of an amorphous metalloid that has been annealed so as to be at least partially crystallized while remaining substantially flat. The annealing is preferably a two-stage process applied to induce semi-hard magnetic characteristics in an amorphous metallic material that is magnetically soft as cast. The two stages include a first stage in which the material is annealed for at least one hour at a temperature that is below a crystallization temperature of the material. The first stage results in a reduction in the volume of the material. The second stage is carried out at a temperature that is above the crystallization temperature and for a time sufficient to crystallize the bulk of the material and give it semi-hard magnetic properties. The two-stage annealing process prevents deformation of the material which has resulted from conventional crystallization processes.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: February 9, 1999
    Assignee: Sensormatic Electronics Corporation
    Inventor: Dennis Michael Gadonniex
  • Patent number: 5863360
    Abstract: A method of treatment of a shape memory alloy involves shot peening of the alloy sample, thereby causing a crystal to amorphous transition of a surface layer of the sample without substantially affecting bulk characteristics of the material, particularly its shape memory behavior and biocompatibility. The method may be used for surface hardening and to reduce coefficients of friction. The method may be advantageously used for treating tissue sutures and orthodontic devices such as dental archwires.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: January 26, 1999
    Assignees: The University of Dundee, The University Nottingham
    Inventors: John Vivian Wood, David Malcolm Grant, Sarah Margaret Green
  • Patent number: 5862303
    Abstract: A heating pipe including a substantially tubular, electrically insulative inner element configured to allow flow of a liquid therethrough. An electric heating element in the form of a substantially flat ribbon of overheated amorphous metallic alloy is wound in a substantially helical pattern around the inner element. The helical pattern defines adjacent, electrically insulated windings. The inner element electrically insulates the heating element from liquid in the inner element. An electrically insulative outer element is provided for electrically and thermally insulating the heating element from the surrounding ambient environment.
    Type: Grant
    Filed: May 17, 1996
    Date of Patent: January 19, 1999
    Assignee: Advanced Metal Technologies, Ltd.
    Inventors: Eli Adar, Vladimir Manov, Mark Geller, Evgeni Sorkine, Iosef Margolin
  • Patent number: 5827378
    Abstract: Metal workpieces are subjected to laser treatment in a liquefied gas, by passing the laser beam through a layer of liquid nitrogen in direct contact with the metal surface to be treated, thereby creating an amorphous state.
    Type: Grant
    Filed: June 24, 1996
    Date of Patent: October 27, 1998
    Assignee: ACDS Technologies, Ltd.
    Inventor: Gennadiy Belenkiy
  • Patent number: 5817222
    Abstract: A rare earth metal-nickel hydrogen storage alloy having a composition represented by the formula (1)RNi.sub.x-y M.sub.y (1)(wherein R stands for La, Ce, Pr, Nd, or mixtures thereof, M stands for Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, Si, V, Cr, Nb, Hf, Ta, W, B, C, or mixtures thereof, x satisfies the formula of 3.5.ltoreq.x<5, and y satisfies the formula of 0<y.ltoreq.2, crystals in the alloy having a LaNi.sub.5 type single phase structure, the alloy including in an amount of not less than 5 volume % and less than 95 volume % thereof crystals each containing not less than 2 and less than 17 antiphase boundaries extending perpendicular to C-axis of a grain of the crystal in the alloy per 20 nm along the C-axis, a method of producing the same, and an anode for a nickel hydrogen rechargeable battery containing as an anode material the above rare earth metal-nickel hydrogen storage alloy and an electrically conductive material.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: October 6, 1998
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventor: Akihito Kaneko
  • Patent number: 5776264
    Abstract: Amorphous tungsten, cobalt, nickel, molybdenum, iron and alloys thereof can be formed by reducing metal-containing compositions to form the elemental metal wherein the particle size of the elemental metal is less than about 80 microns. This is oxidized in an oxygen-starved environment containing less than 3% oxygen and an inert gas to slowly oxidize the elemental metal. By oxidizing the metal under these conditions, the normal exotherm occurring during oxidation is avoided. The slow oxidation of the metal continues forming an amorphous metal oxide. The amorphous metal oxide can then be reacted in a reducing environment such as hydrogen to form the amorphous elemental metal. This amorphous elemental metal can then be reacted with a carburizing gas to form the carbide or ammonia gas to form the nitride or hexamethylsilane to form the silicide. This permits gas/solid reactions. The amorphous metal can also be used in a variety of different applications.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: July 7, 1998
    Assignee: Rutgers University
    Inventors: Larry E. McCandlish, Bernard Kear, Nicos C. Angastiniotis
  • Patent number: 5772803
    Abstract: A torsionally reacting spring, such as a helical spring, a torsion bar, or a torsion tube, requires the ability to torsionally deform elastically during service and return to its original, undeformed shape. The torsionally reacting spring is made of a bulk-deforming amorphous alloy which may be cooled from the melt at a cooling rate of less than about 500.degree. C. per second, yet retain an amorphous structure. A preferred bulk-solidifying amorphous alloy has a composition, in atomic percent, of from about 45 to about 67 percent total of zirconium plus titanium, from about 10 to about 35 percent beryllium, and from about 10 to about 38 percent total of copper plus nickel, plus incidental impurities, the total of the percentages being 100 atomic percent.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: June 30, 1998
    Assignee: Amorphous Technologies International
    Inventors: Atakan Peker, William L. Johnson, David M. Scruggs
  • Patent number: 5767770
    Abstract: A semi-hard magnetic element is formed by at least partially crystallizing an amorphous soft iron-metalloid material. The heating process used to achieve crystallization includes a controlled oxidation stage to increase the level of remanent flux that is provided when the processed magnetic element is placed in a fully magnetized state.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: June 16, 1998
    Assignee: Sensormatic Electronics Corporation
    Inventor: Dennis Michael Gadonniex
  • Patent number: 5647921
    Abstract: A process for producing an amorphous alloy ribbon by the single roll method is disclosed, which comprises injecting through a slot disposed at a nozzle tip a molten alloy having the composition represented by the general formula:(Fe.sub.1-a M.sub.a).sub.100-x-y-z-b Cu.sub.x Si.sub.y B.sub.z M'.sub.bwherein M is Co and/or Ni, M' is at least one element selected from the group consisting of Nb, Mo, W and Ta, and a, x, y, z and b satisfy the relationships: 0.ltoreq.a.ltoreq.0.1, 0.5.ltoreq.x.ltoreq.2 (atomic %), 5.ltoreq.y.ltoreq.20 (atomic %), 5.ltoreq.z.ltoreq.11 (atomic %), 14.ltoreq.y+z.ltoreq.25 (atomic %) and 2.ltoreq.b.ltoreq.5 (atomic %), provided that the ratio of y to z (y/z) is in the range of 0.5.ltoreq.y/z.ltoreq.3, onto a cooling wheel comprising a Cu alloy containing Be in an amount of 0.05 to 3.0% by weight. This process is advantageous in that the position of peel of the amorphous alloy ribbon formed on the cooling wheel can be controlled.
    Type: Grant
    Filed: April 23, 1996
    Date of Patent: July 15, 1997
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Kenji Odagawa, Hiroshi Watanabe
  • Patent number: 5641421
    Abstract: An electrical heating system uses heating elements made of ribbons of amorphous metallic alloys. The heating elements have a large area using long and wide ribbons, to achieve good heat transfer to the surroundings, that is low thermal resistance. The area of the heating elements and thus the thermal resistance is determined according to the desired thermal power, under the constraint of a low operating temperature, that is a temperature well below the embrittlement temperature of the amorphous alloy used in the heating elements. The operating temperature is preferably kept low enough so as not to generate benzopyrene or other unhealthy or ecologically unfavorable fumes or gases. The thin ribbons with low thermal resistance also have a fast heating constant, that is the heater reaches its steady state temperature in a short time. The electrical heating system uses low cost insulation and support materials, that is materials intended for use at low temperatures only.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: June 24, 1997
    Inventors: Vladimir Manov, Eliezer Adar, Mark Geller, Evgeni Sorkine, Iosef Margolin
  • Patent number: 5618359
    Abstract: At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula(ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.cwherein x is from 0.1 to 0.3, y.cndot.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: April 8, 1997
    Assignee: California Institute of Technology
    Inventors: Xianghong Lin, Atakan Peker, William L. Johnson