Electric Heating With Work As Conductor (e.g., Alternating Current, Induction, Etc.) Patents (Class 148/566)
  • Patent number: 11473163
    Abstract: The invention relates to a method and a device for the heat treatment of a metal component. The method comprises at least the following steps: a) heating the component, in a first furnace, b) setting a temperature difference between at least a first sub-region and a second sub-region of the component in a first temperature-adjusting station, c) heating at least the first sub-region or the second sub-region of the component in a second furnace, d) thermally treating at least a sub-region of the component in a second temperature-adjusting station, e) at least partly forming and/or cooling the component in a press-hardening tool.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 18, 2022
    Assignee: SCHWARTZ GmbH
    Inventors: Frank Wilden, Jörg Winkel, Andreas Reinartz
  • Patent number: 10920296
    Abstract: A method for producing an alloy steel composition includes the following steps: performing a first heat treatment on an alloy steel composition and maintaining for a first time period to soften the alloy steel composition; performing a first cooling treatment on the softened alloy steel composition; performing a treatment on the softened the alloy steel composition to form a workpiece; performing a second heat treatment on the workpiece and maintaining for a second time period; and performing a second cooling treatment on the workpiece to make the workpiece become to be a Bainite structure, and a cooling rate of the second cooling treatment is high than the cooling rate of the first cooling treatment.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: February 16, 2021
    Assignee: ASUSTeK COMPUTER INC.
    Inventor: Shih-Wei Chiu
  • Patent number: 10662588
    Abstract: A friction apparatus is provided. The friction apparatus includes: a first member having a first surface; and a second member having a second surface that contacts the first surface, and moving while in contact with the first member, wherein at least one of the first surface and the second surface is hardened.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: May 26, 2020
    Assignee: KOREA RAILROAD RESEARCH INSTITUTE
    Inventors: Yong Hyeon Cho, Jin Yu Choi, Yun Suk Kang, Joo Uk Kim
  • Patent number: 10246758
    Abstract: The invention relates to a method for producing a component from transformable steel by hot forming, in which a plate first is cut out of a strip or sheet as the pre-material, and is then heated to forming temperature and pre-formed, having an at least partially martensitic transformation structure after forming. Instead of a press mold hardening, the at least partially martensitic transformation structure is created in the pre-material, or in the plate to be formed, by austenitization and quenching already before forming, and then the thus-conditioned plate is reheated after forming, while maintaining the at least partially martensitic transformation structure, to a temperature below the Ac1 transformation temperature, and formed at this temperature.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 2, 2019
    Assignee: SALZGITTER FLACHSTAHL GMBH
    Inventors: Friedrich Luther, Thomas Evertz, Stefan Muetze, Michael Braun
  • Patent number: 9993892
    Abstract: A method and an apparatus for joining first and second sheet metal parts includes a support where the first and second parts are positioned with an edge of the second part surrounded by a beading flange of the first part. A joining electrode is positioned adjacent to the beading flange and a counter-electrode is positioned adjacent to the second part. An abutment of a tong-type welding apparatus in placed in contact with the support, and the joining electrode and the abutment are urged toward one another to press or clamp the beading flange between the joining electrode and the support. An electric current is applied to the beading flange using the joining electrode and the counter-electrode to weld the parts together.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: June 12, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Dietmar Rotheut, Guido H. Mueller
  • Patent number: 9662765
    Abstract: A device for electromechanically assisted roller burnishing (EMRB) may comprise: a roller burnishing tool with exactly one current-leading roller burnishing element for burnishing a workpiece, wherein the roller burnishing element represents a first electrical contact element for electrically contacting first location of the workpiece, and a second electrical contact element for electrically contacting second location of the workpiece; wherein the first and the second electrical contact elements can be positioned at a settable spatial distance to one another, so that on moving the roller burnishing element on the workpiece, a current path in the workpiece between the first and the second contact elements is always a constant length.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: May 30, 2017
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Technische Universität Berlin
    Inventors: Holger Hüning, Jens König, Eckart Uhlmann, Christoph König
  • Patent number: 9005379
    Abstract: The present invention relates to a process for producing a pipe, particularly for supplying fuel to an engine, comprising the steps of: prearranging a pipe made of stainless steel (1), executing a hot-pressing operation at at least one end (3) of the pipe (1); and subjecting the at least one end (3) of the pipe (1) to heat treatment, followed by cooling.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: April 14, 2015
    Assignee: Chesini Meccanica S.R.L.
    Inventor: Natale Chesini
  • Publication number: 20150047753
    Abstract: The invention relates to a method for producing a component from transformable steel by hot forming, in which a plate first is cut out of a strip or sheet as the pre-material, and is then heated to forming temperature and pre-formed, having an at least partially martensitic transformation structure after forming. Instead of a press mould hardening, the at least partially martensitic transformation structure is created in the pre-material, or in the plate to be formed, by austenitisation and quenching already before forming, and then the thus-conditioned plate is reheated after forming, while maintaining the at least partially martensitic transformation structure, to a temperature below the Ac1 transformation temperature, and formed at this temperature.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 19, 2015
    Inventors: Friedrich Luther, Thomas Evertz, Stefan Muetze, Michael Braun
  • Publication number: 20140191539
    Abstract: A method of forming a header extension coupling a front header and a roof side inner includes: electrically heating a part of a material to a temperature of not less than a hardening temperature such that a front header side is heated to the temperature of not less than the hardening temperature and a roof side inner side is heated to a temperature of less than the hardening temperature; and press-forming the material after the electrical heating into the shape of the header extension; and hardening the material by quenching. In this way, a vehicle structure can be provided such that the bending mode under application of a load to the roof can be appropriately controlled, and productivity can be improved.
    Type: Application
    Filed: May 26, 2011
    Publication date: July 10, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroshi Sato
  • Patent number: 8741079
    Abstract: A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: June 3, 2014
    Assignees: The Penn State Research Foundation, Northwestern University
    Inventors: John Roth, Jian Cao
  • Publication number: 20140137992
    Abstract: A heavy wall and high strength seamless steel pipe having high sour resistance is provided. In particular, a quenching and tempering treatment is conducted to adjust the yield strength to be higher than 450 MPa and adjust the Vickers hardness HV5 that can be measured at an outermost side or an innermost side of the pipe under a 5 kgf load (test load: 49 N) to be 250 HV5 or less.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 22, 2014
    Applicant: JFE Steel Corporation
    Inventors: Yasuhide Ishiguro, Mitsuo Kimura, Kenichiro Eguchi, Hiroshi Yokogawa, Tadao Katagiri, Masahito Tanaka
  • Publication number: 20140124104
    Abstract: A hot forming line for producing hot formed and press hardened steel sheet products, includes: a forming device; a heating device having a temperature treatment station, wherein the temperature treatment station includes an upper tool and a lower tool, and at least one temperature treatment source; and exchangeable temperature treatment plates for conductive temperature treatment of a blank or part inserted into the temperature treatment station, wherein the exchangeable temperature treatment plates are constructed for arrangement on the upper tool and/or the lower tool, and the temperature treatment source is constructed for heating or cooling the temperature treatment plates. The temperature treatment station is constructed for treating different regions of the blank or part with different temperatures by conductive contact of the temperature treatment plates with the blank of part.
    Type: Application
    Filed: September 18, 2013
    Publication date: May 8, 2014
    Applicant: Benteler Automobiltechnik GmbH
    Inventors: CARSTEN TRIPPE, DIETER WULFES, STEFAN ADELBERT, ELISABETH DANGER
  • Patent number: 8616878
    Abstract: A heat-sensitive adhesive label manufacturing device has a thermal head for heating and thermally activating the heat-sensitive adhesive layer of a heat-sensitive adhesive sheet, and a platen roller for conveying the heat-sensitive adhesive sheet between the platen roller and the thermal head to transport the heat-sensitive adhesive sheet in a transport direction. At least one discharge roller is disposed on a downstream side of the thermal activation section and is configured to undergo rotation at a peripheral speed different from a peripheral speed of the platen roller to convey the heat-sensitive adhesive sheet in the transport direction. A guide member is disposed opposite and spaced apart from the at least one discharge roller to provide a space therebetween along which the heat-sensitive adhesive sheet is conveyed by the at least one discharge roller without being sandwiched between the at least one discharge roller and the guide member.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: December 31, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Yoshinori Sato, Norimitsu Sanbongi, Minoru Hoshino, Shuji Tozaki
  • Patent number: 8506732
    Abstract: Apparatus and method are provided for metallurgical heat treatment of coil springs, or similarly shaped workpieces and articles of manufacture, by electric resistance heating along the entire length of the workpiece so that the ends of the workpiece can be heat treated to the same degree and quality as the section of the workpiece between its two ends.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 13, 2013
    Assignee: Radyne Corporation
    Inventor: Jerry G. Warner
  • Patent number: 8460483
    Abstract: A method for heat treatment of a coiled spring includes cold forming a coiled spring, annealing the coiled spring after the cold forming, thereby removing of residual stress generated in the cold forming, in which the annealing is performed by electric resistance heating.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: June 11, 2013
    Assignee: NHK Spring Co., Ltd.
    Inventors: Takashi Yajima, Hideki Okada, Katsuyuki Nishioka, Takeshi Furuse
  • Patent number: 8454768
    Abstract: A high strength near-beta titanium alloy including, in weight %, 5.3 to 5.7% aluminum, 4.8 to 5.2% vanadium, 0.7 to 0.9% iron, 4.6 to 5.3% molybdenum, 2.0 to 2.5% chromium, and 0.12 to 0.16% oxygen with balance titanium and incidental impurities is provided. An aviation system component comprising the high strength near-beta titanium alloy, and a method for the manufacture of a titanium alloy for use in high strength, deep hardenability, and excellent ductility applications are also provided.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: June 4, 2013
    Assignee: Titanium Metals Corporation
    Inventor: John Fanning
  • Publication number: 20130019998
    Abstract: A method of cold forming titanium alloy sheet metal, the titanium alloy consisting of 5.5 to 6.75 wt % aluminium, 3.5 to 4.5 wt % vanadium and the balance titanium plus incidental impurities, the method comprising the steps of (a) heat treating at 700° C. for at least 30 minutes and (b) cold forming at room temperature. Step (b) may comprise bending the titanium alloy sheet metal using a press brake. Step (b) may comprise placing a neoprene rubber film or a rubber film between the titanium alloy sheet metal and a lower V of the press brake. Step (b) may comprise placing the titanium alloy sheet metal into the press brake such that the grain of the titanium alloy sheet metal is arranged at an angle to the bend axis of the press brake. The method reduces and preferably overcomes cracking of the titanium alloy sheet metal during cold forming.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 24, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventor: Antony J. MORTON
  • Publication number: 20120042994
    Abstract: To provide a technique suitable for elevating strength and toughness of a thin low-carbon steel. By performing rapid heating and rapid cooling to a thin low-carbon steel which is an ordinary steel with a thickness of 1.2 mm or less, a steel where a microstructure becomes a duplex grain size structure mixed with crystal grains having different grain diameters, which is not homogeneous, preferably, hard phase structures are contained in addition to the duplex grain size structure is obtained, and a high-strength and high-toughness thin low-carbon steel is obtained. Further, by performing a heat treatment process involving rapid heating and rapid cooling multiple times, a duplex grain size structure of crystal grains with smaller grain diameters or a hard phase structure contained therein is obtained, so that a thin low-carbon steel with higher strength and higher toughness is obtained.
    Type: Application
    Filed: February 22, 2010
    Publication date: February 23, 2012
    Applicant: Delta Tooling Co., Ltd.
    Inventors: Etsunori Fujita, Yumi Ogura, Seiji Kawasaki, Shigeyuki Kojima, Soichi Makita, Shigeru Maeda, Hideyuki Yamane, Seiya Yoshida
  • Patent number: 8114224
    Abstract: An articulated structural part includes a peripheral zone. The peripheral zone includes a surface, an outermost layer situated immediately adjacent the surface, a further layer situated adjacent the outermost layer and a core situated adjacent the further layer, wherein the outermost layer is substantially martensite. The further layer includes a varying mixture of martensite and of ferrite or perlite. The core is substantially ferrite or perlite. A process for producing an articulated structural part is also provided.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: February 14, 2012
    Assignee: GKN Driveline International GmbH
    Inventors: Hans-Heinrich Welschof, Wolfgang Hildebrandt, Frank Reher
  • Publication number: 20110290382
    Abstract: According to one embodiment, a high-strength stabilizer steel for vehicles having excellent corrosion resistance and low-temperature toughness, containing 0.07 to 0.20% C, more than 0.6% and 1.5% or less Si, 1 to 3% Mn, 0.1 to 1.0% Cr, 0.005 to 0.080% sAl, 0.005 to 0.060% Ti, 0.005 to 0.060% Nb, 0.070% or less Ti+Nb, 150 ppm or less N, 0.035% or less P, 0.035% or less S, 0.01 to 1.00% Cu, 0.01 to 1.00% Ni, the remainder being Fe, and unavoidable impurities, wherein a structure before molding a stabilizer is any one of a bainite, a martensite, and a mixed structure of bainite/martensite and an original austenitic crystal grain size number after a heat treatment of the stabilizer is Gh 9 or more.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicants: JFE BARS & SHAPES CORPORATION, NHK SPRING CO., LTD.
    Inventors: Katsuhiko KIKUCHI, Kunikazu Tomita, Yutaka Tamai, Kazuaki Hattori, Kanji Inoue, Akira Tange, Norihiko Mori, Yurika Goto, Kiyoshi Kurimoto
  • Publication number: 20110232808
    Abstract: A method for producing a structural and/or safety-related motor vehicle component having at least one hot-formed and press-hardened part constructed from high-strength steel includes the steps of partially heat-treating a region of the motor vehicle component by heating the region to a heat-up temperature in a temperature range between 500° C. and 900° C.; maintaining the heat-up temperature for a duration of a holding time; and cooling down from the heat-up temperature in one or more phases. A body component constructed as a structural and/or safety-related motor vehicle component from a steel sheet blank that has been hot-formed and press-hardened includes joining flanges and/or coupling locations and/or safety-related parts, wherein the joining flanges, coupling locations and/or safety-related parts are partially heat-treated in several steps with the disclosed method.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 29, 2011
    Applicant: Benteler Automobiltechnik GmbH
    Inventors: Markus Pellmann, Martin Pohl, Martin Schroeter, Stefan Adelbert, Otto Buschsieweke, Christian Handing
  • Publication number: 20110226392
    Abstract: A lens barrel, an image pickup apparatus, a lens drive method and a method of producing a shape memory alloy used for the drive device are disclosed. A drive device includes: a lens group for guiding light from a subject; a shape memory alloy adopted to be deformed by an electricity supplied to the shape memory alloy, for moving the lens group in a direction of an optical axis; and electricity-supply controlling means for controlling an amount of the electricity supplied to the shape memory alloy; and a detecting means for detecting whether a movement of the lens group starts or not. In the drive device, a movement amount of the lens group in the direction of the optical axis is controlled based on the amount of electricity supplied when the detecting means detects the movement of the lens group.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Applicant: Konica Minolta Opto, Inc.
    Inventors: Saori HIRATA, Katsumi Ohtsuka, Chie Nemoto, Kenpo Tsuchiya
  • Patent number: 8021501
    Abstract: A method for forming a sheet metal component using an electric current passing through the component is provided. The method can include providing a single point incremental forming, the machine operable to perform a plurality of single point incremental deformations on the sheet metal component and also apply an electric direct current to the sheet a metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped and can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: September 20, 2011
    Assignee: The Penn State Research Foundation
    Inventor: John Roth
  • Publication number: 20110017368
    Abstract: According to one aspect of the present invention, there is provided a process of fabricating a steel material by performing a heat treatment to a steel material having high strength, in order to reduce hardness at one part of the steel material to less than hardness at other parts of the steel material, wherein the heat treatment comprises a heating step in which a portion having a certain depth from a surface of the steel material is rapidly heated by induction heating or direct energization heating, and a cooling step in which the steel material, which has been subject to the heating step, is rapidly cooled a predetermined time after the heating step, and a heating temperature in the heating step is Ac1 transforming point or more.
    Type: Application
    Filed: September 30, 2010
    Publication date: January 27, 2011
    Applicants: NETUREN CO., LTD., NIPPON STEEL CORPORATION
    Inventors: Tsukasa Okamura, Kengo Iwanaga, Osamu Watanabe, Jun-ichi Kodama, Daisuke Hirakami, Mikiyuki Ichiba, Yoshiharu Ueki
  • Publication number: 20100320317
    Abstract: A high strength near-beta titanium alloy including, in weight %, 5.3 to 5.7% aluminum, 4.8 to 5.2% vanadium, 0.7 to 0.9% iron, 4.6 to 5.3% molybdenum, 2.0 to 2.5% chromium, and 0.12 to 0.16% oxygen with balance titanium and incidental impurities is provided. An aviation system component comprising the high strength near-beta titanium alloy, and a method for the manufacture of a titanium alloy for use in high strength, deep hardenability, and excellent ductility applications are also provided.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 23, 2010
    Applicant: TITANIUM METALS CORPORATION
    Inventor: John Fanning
  • Publication number: 20100263770
    Abstract: A method for tempering a workpiece is provided. The method includes providing a ferrous alloy workpiece having a martensite and/or bainite phase therein, heating at least a portion of the workpiece to a preselected temperature and then cooling the workpiece to a lower temperature. The preselected temperature is below the austensizing temperature of the alloy and the heating is accomplished in no more than 60 seconds. One embodiment of the present invention heats the workpiece using resistance heating.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 21, 2010
    Inventor: Tad Machrowicz
  • Publication number: 20100200127
    Abstract: The object of the invention is increasing the service life or service performance of railway wheelsets. Said technical effect is achieved by the means that, in the method for increasing the service life or service performance of railway wheelsets, in which each wheel is implemented in the form of a cylindrical working part having a running or rolling surface and a rim connected thereto by a radius transition, the metal hardening of the wheelset or of a wheel is carried out by conduction of current through rotating contact rollers, which are pressed under pressure onto the surface to be treated, wherein the heating and hardening of the surface is performed in the form of one or more strips.
    Type: Application
    Filed: August 8, 2008
    Publication date: August 12, 2010
    Inventors: Vladimir A. Sokolov, Valeri Wladimirowitsch Evseenko, Ruslan Valerijewitsch Matjuschin
  • Publication number: 20100170596
    Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 8, 2010
    Applicants: Boehler Edelstahl GmbH & Co KG, Schoeller-Bleckmann Oilfield Technology GmbH
    Inventors: Gabriele Saller, Herbert Aigner, Josef Bernauer, Raimund Huber
  • Publication number: 20100132854
    Abstract: Iron-based alloys and articles in strips, sheets, workpieces and the like are converted into high strength steel with a minimum of cost, time and effort, including producing dual phase materials. This is achievable by extremely rapid micro-treating of low, medium, and high carbon iron-based alloys and articles by rapid heating and rapid cooling at least a portion of the alloy/article. This heating step involves nearly immediately heating the iron-based alloy to a selected temperature above its austenite conversion temperature. Then, the alloy is immediately quenched, also at an extremely fast rate, on at least a portion of the iron-based alloy in a quenching unit adjacent the heating unit. This procedure forms high strength alloy in a desired area, depending upon where the treatment was performed.
    Type: Application
    Filed: October 3, 2007
    Publication date: June 3, 2010
    Inventor: Gary M. Cola, JR.
  • Patent number: 7728259
    Abstract: A brake lining comprises a lining support plate, an underlayer material and a friction lining. The brake lining is clamped between a pressure plate and a holding fixture, which forms a hole matrix and inside of which electrodes are accommodated. A power supply is connected to the electrodes. The adjacent electrodes have different polarities. A current flow is produced between adjacent electrodes as a result of the different polarities. The field lines extend in the shape of an arch. An arrangement of this type permits the friction lining to be scorched. For hardening, a potential gradient can also be applied between the electrodes and the support plate. The current then flows and the entire friction lining is permeated. This results in a homogenous heating of the friction lining. The invention enables an efficient hardening of the friction lining. It is also possible to conduct a hardening and scorching simultaneously. The invention also enables the friction lining to be pressed during the heat treatment.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: June 1, 2010
    Assignee: TMD Friction GmbH
    Inventor: Wolfgang Hogenkamp
  • Publication number: 20100126642
    Abstract: The invention relates to the hardening of the surface layer of parts of machines, plants and apparatuses and also tools. Objects for which the application is possible and advantageous are components which are subjected to severe fatigue or wear stresses and are composed of hardenable steels and have a complicated shape and whose surface has to be hardened selectively on the functional surfaces or whose functional surface has a multidimensional shape. The process for hardening the surface layer of components having a complicated shape is carried out by means of a plurality of energy input zones.
    Type: Application
    Filed: October 10, 2007
    Publication date: May 27, 2010
    Inventors: Berndt Brenner, Steffen Bonss, Frank Tietz, Marko Seifert, Jan Hannweber, Stefan Kuehn, Udo Karsunke
  • Publication number: 20100050726
    Abstract: A method of forming titanium structures, and more specifically, a method of superplastically continuous roll forming titanium structures are disclosed herein. In one embodiment, a method of forming a shape in an article comprising titanium, the method including, among other things, providing first and second rolling members, the first rolling members being conductive and the second rolling members being continuous roll shaping members; contacting the article with the first rolling members to transfer a current to the article to heat the article to a temperature suitable for superplastic forming; and with the article being in a superplastic state, contacting the article with the second rolling members to form the shape in the article.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Applicant: The Boeing Company
    Inventors: Allen Fischer, Bryan G. Dods
  • Patent number: 7456134
    Abstract: The present invention provides a simple, energy efficient and cost effective process for continuous production of high quality MgB2 based superconducting wires, tapes, bulk bodies and powders with better phase purity, microstructure and superconducting properties by introducing some innovative steps namely processing the reactants in evacuated and sealed metal tubes by electrical self-heating cum hot rolling followed by annealing under electrical self-heating, thereby overcoming various deficiencies and shortcomings associated with the prior art.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: November 25, 2008
    Assignee: Council of Scientific and Industrial Research
    Inventors: Syamaprasad Upendran, Abhilash Kumar Raveendran Nair Girijakumari Amma, Vinod Krishnan Kutty, Aloysius Rajappan Padmavathy, Sarun Pallian Murikoli, Thennavarajan Subramanian, Guruswamy Perumal
  • Publication number: 20080277034
    Abstract: A method for controlling the work hardening of a metal component during cold forming by using an electric current passing through the component is provided. The method can include providing a cold forming machine with at least a pair of dies, the machine operable to perform a cold forming operation and apply an electric direct current to a metal component placed in contact with the dies. In addition, the method includes providing a metal component and placing the metal component between the at least a pair of dies. Thereafter, cold forming of the metal component is performed with an electric direct current applied to the component during at least part of the time the component is being cold formed. In some instances, the cold forming is compressive cold forming. The direct current can be applied before or after the cold forming has started and/or be terminated before or after the cold forming has stopped.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 13, 2008
    Applicant: The Penn State Research Foundation
    Inventor: John T. Roth
  • Patent number: 7220327
    Abstract: Disclosed is a material of a kick-down drum comprising fine ferrite and microdispersion spheroidized cementite for an automobile also disclosed is a method for manufacturing the kick-down drum material. The kick-down drum of this invention can greatly improve hardenability and durability of the spline member and also has advantages of reducing production costs due to a simplified process of adding only a heating process.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: May 22, 2007
    Assignee: Hyundai Motor Company
    Inventors: Ji Hong Yoo, Doo Hwan Lee
  • Patent number: 7090733
    Abstract: Metallic glasses of superior mechanical and magnetic properties are manufactured by annealing the glasses under the influence of an electric current to convert the glass to a composite that includes crystallites, preferably nanocrystallites, dispersed through an amorphous matrix.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: August 15, 2006
    Assignee: The Regents of the University of California
    Inventors: Zuhair A. Munir, Troy B. Holland, Jörg F. Löffler
  • Patent number: 6903296
    Abstract: A metallic component is made by heating with subsequent hardening by rapid cooling. In the component unhardened regions remain, in that the component is electrically resistant heated and defined regions, either by partial resistance heating of the other regions, by overbridging or by cooling are excluded from heating above the austenitization temperature so that after a subsequent hardening process, they will remain with a ductile structure.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: June 7, 2005
    Assignee: Benteler Automobiltechnik GmbH
    Inventor: Rafael Garcia Gomez
  • Patent number: 6855217
    Abstract: The present invention relates to a method of baking treatment of steel product parts using a high frequency or ultra-high frequency for preventing delayed fracture from occurring due to diffusive hydrogen occluded in steel parts, for example, screws, bolts and the like, or for heating surface layers of the steel parts to generate a difference in temperature between the surface layers and interiors of the steel parts, thereby causing distortion in lattices, wherein the surface layers of the steel parts are rapidly heated to 100 to 300° C. with a high frequency or ultra-high frequency at 10 KHz or higher to remove the diffusive hydrogen which is involved in hydrogen embrittlement, or to transfer an existing state to non-diffusive hydrogen which is not involved in the hydrogen embrittlement.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: February 15, 2005
    Assignee: Aoyama Seisakusho Co., Ltd.
    Inventor: Takamasa Suzuki
  • Patent number: 6576068
    Abstract: A method for producing a stainless steel with improved corrosion resistance includes homogenizing at least a portion of an article of a stainless steel including chromium, nickel, and molybdenum and having a PREN of at least 50, as calculated by the equation: PREN=Cr+(3.3×Mo)+(30×N), where Cr is weight percent chromium, Mo is weight percent molybdenum, and N is weight percent nitrogen in the steel. In one form of the method, at least a portion of the article is remelted to homogenize the portion. In another form of the method, the article is annealed under conditions sufficient to homogenize at least a surface region of the article. The method of the invention enhances corrosion resistance of the stainless steel as reflected by the steel's critical crevice corrosion temperature.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: June 10, 2003
    Assignee: ATI Properties, Inc.
    Inventors: John F. Grubb, James D. Fritz
  • Publication number: 20020104598
    Abstract: Method of reducing the wrinkles formed in heating zones, by radiant tubes, of continuous heat treatment lines for metal strip, such as annealing or galvanizing lines, the said strip passing over transporting and/or return rollers in the said furnaces, the said method, which consists in modifying the thermal state of the rollers, being characterized in that the said modification is made directly by varying the heating by the said radiant tubes located near the rollers, thereby directly controlling the heat flux emitted by the radiant tubes towards the rollers.
    Type: Application
    Filed: January 30, 2002
    Publication date: August 8, 2002
    Applicant: STEIN HEURTEY
    Inventors: Francois Mignard, Patrick Dubois
  • Patent number: 6398881
    Abstract: The invention concerns a wear-resistant camshaft and a method of producing the same. Objects in which the application of the invention is possible and useful are all cast-iron parts which are subject to wear as a result of lubricated friction. The wear-resistant camshaft consists of cast-iron and it has a surface layer consisting of a ledeburitic remelted layer with a high cementite portion, and, lying thereunder, a martensitic hardening zone, whereby according to the invention. a. the remelted layer consists of finely dispersed ledeburitic cementite with thicknesses of ≦1 &mgr;m and a metallic matrix of a phase mixture of martensite and/or bainite, residual austenite, as well as less than 20% finely laminated pearlite with a distance of ≦0.1 &mgr;m between the lamelias, and b. the hardening layer is formed from a phase mixture of martensite and/or bainite, partially dissolved pearlite, and residual austenite.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: June 4, 2002
    Assignee: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V.
    Inventors: Berndt Brenner, Carsten Duschek, Andreas Wetzig, Dietmar Naunapper
  • Patent number: 6398885
    Abstract: A method and apparatus for tempering the shank portion only of die blocks which comprises subjecting the shank portion of a die block or other large metal part to electrical energy derived from induction heating or infrared heating to a controlled depth, preferably just sufficiently deep to temper the shank portion but not sufficiently deep to temper the hardened working portion of the part.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: June 4, 2002
    Assignee: A. Finkl & Sons Co.
    Inventors: Charles W. Finkl, Algirdas A. Underys
  • Publication number: 20020017343
    Abstract: The power transmission shaft 12 is made by applying induction hardening to carbon steel with hardening ratio in a range from 0.25 to 0.50. For the carbon steel, one containing 0.39 to 0.49% of C, 0.4 to 1.5% of Si, 0.4 to 1.0% of Mn, 0.025% or less S, 0.02% or less P and 0.01 to 0.1% of Al by weight as the basic components, with the rest comprising Fe and inevitable impurities is used. This makes it possible to achieve higher strength and lighter weight of the power transmission shaft.
    Type: Application
    Filed: October 10, 2001
    Publication date: February 14, 2002
    Applicant: NTN Corporation
    Inventors: Kazuhiko Yoshida, Hiroaki Makino, Akira Wakita
  • Patent number: 6284068
    Abstract: When an electrical potential is applied to a metal or a metallic solution or a metal that is close to the melting point or a metal that is molten the electric charges are either drawn off and the metal has a high positive potential or a surfeit of electric charges are added and the metal has a high negative potential. When the metal is heated and then cooled, under said potential, the internal structure of the metal is changed. The crystal structure can become nano crystaline and or amorphous dependent upon the alloying elements, the potential and the temperature. This process has applications in inductive electrical parts as well as metalic structual materials.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: September 4, 2001
    Inventor: Clarence W. McQueen
  • Publication number: 20010015243
    Abstract: Provided is a rare earth element-containing hydrogen storage alloy which fulfills at least one requirement selected from the requirements that (1) the total content of nonmetal elements present as impurities in the alloy matrix is not higher than 1,200 ppm by weight, (2) the total content of alkaline earth metal elements present as impurities in the alloy matrix is not higher than 100 ppm by weight, (3) the content of Mg present as an impurity in the alloy matrix is not higher than 80 ppm by weight, (4) the content of Cl present as an impurity in the alloy matrix is not higher than 10 ppm by weight, (5) the content of Pb present as an impurity in the alloy matrix is not higher than 100 ppm by weight, (6) the alloy has, in a surface layer covering from the alloy surface to a depth of 20 nm, an oxygen concentration that decreases sharply in the depth direction and is not higher than 10 weight % on the average in the surface layer defined above, (7) the alloy comprises Ni as a constituent element and contains,
    Type: Application
    Filed: May 18, 1999
    Publication date: August 23, 2001
    Inventors: SATOSHI SHIMA, HIROTO SUGAHARA, JUNJI MADONO, HIDENAO YAMAGUCHI
  • Patent number: 6235131
    Abstract: Steel springs are cold coiled, then hardened by electrical resistance heating, and then quenched. The invention may be used to produce hardened springs with uniform mechanical and physical characteristics, fine grain microstructures, and high fatigue resistance. The heat hardening process may be individually controlled for each spring, and it may be performed in a very short period of time. The process time may be so short as to preclude decarburization, making it unnecessary to use a controlled endothermic atmosphere. The free lengths of the finished springs may be controlled by applying axial forces during heat hardening. According to one aspect of the invention, the coiled central section of the spring is made harder than its ends. The equipment for practicing the invention may have a compact, uncomplicated construction.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: May 22, 2001
    Assignee: Mathew Warren Industries, Inc.
    Inventors: Scott C. Keihle, Ronald D. Orr, Daniel R. Sebastian, Kenneth J. Schnettler
  • Patent number: 6166360
    Abstract: This invention provides methods for rapidly heating a metal part of varying thickness. In general, the invention provides methods comprising heating the thicker section(s) of the part by induction heating and the thinner section(s) by resistance heating. Induction and resistance heating both quickly heat metals and because each is easily controlled individually, the part can be uniformly heated for hardening and tempering.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: December 26, 2000
    Assignee: Fluxtrol Manufacturing, Inc.
    Inventors: Robert S. Ruffini, Sr., Valentin Nemkov
  • Patent number: 5859404
    Abstract: A plasma heating apparatus for heating a workpiece includes a chamber of sufficient size to receive a workpiece therein and a source of a reduced gas pressure within the chamber of from about 0.01 to about 100 millitorr. The plasma heating apparatus further includes a plasma source of an enveloping plasma. Optionally, a workpiece voltage may be applied between the workpiece and the wall of the chamber, and a source of a reactive gas can be provided to backfill the chamber, and radiant heaters can be provided to independently heat portions of the workpiece. In operation, the plasma source produces a plasma that surrounds and heats the workpiece. The plasma and the heating of the workpiece are tailored to achieve controllably uniform or nonuniform heat treatment and/or surface treatment of the workpiece.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: January 12, 1999
    Assignees: Hughes Electronics Corporation, General Motors Corporation
    Inventors: Ronghua R. Wei, Jesse N. Matossian, Peter Mikula, Deborah Clark
  • Patent number: 5776270
    Abstract: A method for reforming the generally cylindrical sidewalls of aluminum containers is disclosed. The method produces highly expanded and/or contoured container sidewalls which provide a distinctive appearance in comparison with cylindrical containers having straight sidewalls. Multiple expansion steps are used to expand the sidewall to a diameter substantially greater than the initial diameter of the cylindrical starting container. The sidewalls are thermally treated prior to expansion, for example, by annealing to reduce or eliminate residual stresses and work hardening. The sidewall thickness of the cylindrical starting container is preferably selected in order to maximize the total amount of sidewall expansion that can be achieved.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: July 7, 1998
    Assignee: Aluminum Company of America
    Inventor: Scott C. Biondich
  • Patent number: 5700335
    Abstract: A process and device are disclosed for regulating the annealing power in at least one annealing section of a continuous annealing and processing line for continuously cast metal products. The speed of the cast products (D) passing through the continuous annealing device is detected, as well as the voltage currently applied to the annealing section, which is converted into an effective value (U.sub.c) by means of a control device (50). The voltage supplied to the annealing section is modified by a control signal derived from the determined effective value of the voltage, in order to achieve a predetermined annealing power value dependent on the measured speed. At least the current flowing in one annealing section is also detected and converted into an effective value. The annealing power actually supplied to the annealing section is calculated from said effective values. The voltage value is modified by a control device until a predetermined value of the annealing power is reached.
    Type: Grant
    Filed: April 5, 1995
    Date of Patent: December 23, 1997
    Assignee: Maschinenfabrik Niehoff GmbH & Co. KG
    Inventor: Gunther Phillip