Cobalt(co) Or Cobalt Base Alloy Patents (Class 148/674)
  • Patent number: 6391172
    Abstract: A high purity cobalt sputter target is disclosed which contains a face centered cubic (fcc) phase and a hexagonal close packed (hcp) phase, wherein the value of the ratio of X-ray diffraction peak intensity, Ifcc(200)/Ihcp(10 {overscore (1)}1), is smaller than the value of the same ratio in a high purity cobalt material obtained by cooling fcc cobalt to room temperature from the high temperature at which it is molten. High purity cobalt is defined as having an oxygen content of not more than 500 ppm, a Ni content of not more than 200 ppm, contents of Fe, Al and Cr of not more than 50 ppm each, and Na and K of less than 0.5 ppm. The disclosed sputter target is manufactured by subjecting the material to cold-working treatments (less than 422° C.). Annealing the material, at a temperature in the range 300-422° C. for several hours, between cold working treatments significantly increases the amount of cold work which could be imparted into the material.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: May 21, 2002
    Assignee: The Alta Group, Inc.
    Inventors: Robert S. Cole, Mathew S. Cooper, Stephen P. Turner, Yinshi Liu, Michael McCarty, Rodney L. Scagline
  • Patent number: 6372063
    Abstract: The process for manufacturing a metallic component, such as a wheel part for the rolling system of a vehicle, which includes, in an initial stage, forming the component of a metallic material in a semi-solid state and having a thixotropic structure, and in a subsequent cold-treatment stage, cold-treating at least part of said component by blasting it with projectiles with a view to plastic deformation thereof. A wheel in which a metallic disk is welded to a wheel rim and in which the metallic disk is obtained by the manufacturing process.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: April 16, 2002
    Assignee: Michelin Recherche et Technique, S.A.
    Inventor: Gilles Grillon
  • Patent number: 6361836
    Abstract: A method of making a spinner disc for a rotary fiberization process, such as but not limited to a glass fiberization process, includes: forming a spinner disc from an alloy that forms a protective oxide film on surfaces of the spinner disc exposed to the atmosphere; forming fiberizing holes in an annular peripheral sidewall of the spinner disc; and applying a plasma to a surface of the spinner disc to remove hydrocarbons and sulfurous compounds from the surface of the spinner disc which would otherwise reduce and/or react with and degrade the protective oxide film forming on the surface of the spinner disc when the spinner disc is exposed to the atmosphere.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: March 26, 2002
    Assignee: Johns Manville International, Inc.
    Inventor: Walter A. Johnson
  • Patent number: 6346337
    Abstract: A bulk amorphous metal magnetic component has a plurality of layers of amorphous metal strips laminated together to form a generally three-dimensional part having the shape of a polyhedron. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite each other. The magnetic component is operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it exhibits a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: February 12, 2002
    Assignee: Honeywell International Inc.
    Inventors: Nicholas John DeCristofaro, Peter Joseph Stamatis, Gordon Edward Fish
  • Publication number: 20020003009
    Abstract: An ingot of material which is normally too brittle to allow successful rolling and wrought processing is formed so as to have a thickness-to-width ratio of less than about 0.5 and is annealed in a temperature range of 1000° F. to 2500° F. for a preselected time. The ingot is then rolled in a temperature range of 1500° F. to 2500° F. Additional/optional annealing of the resulting rolled plate in a temperature range of 500° F. to 2000° F., or between room temperature and 1500° F., and/or a final annealing between 500° F. and 1500° F., is possible. Sputtering targets are cut out of the rolled plate and used for the manufacture of storage disks.
    Type: Application
    Filed: October 1, 1999
    Publication date: January 10, 2002
    Inventors: MICHAEL BARTHOLOMEUSZ, MICHAEL TSAI, ANAND DEODUTT
  • Patent number: 6277305
    Abstract: The present invention relates to cobalt(II) oxide containing metallic cobalt, to a process for the production thereof and to the use thereof.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: August 21, 2001
    Assignee: H. C. Starck GmbH & Co. KG
    Inventors: Astrid Görge, Juliane Meese-Marktscheffel, Dirk Naumann, Armin Olbrich, Frank Schrumpf
  • Patent number: 6176944
    Abstract: The present invention provides a high purity cobalt sputter target having a single phase h.c.p. structure and a magnetic permeability less than the intrinsic magnetic permeability of the material. Substantially pure cobalt is cast and slowly cooled, such as at a rate of 15° C./min. Or less, to form a cast target of single phase h.c.p. crystallographic structure. This cast target is hot worked at a temperature of at least about 1000° C. to impart a strain of about 65% or greater into the cobalt material, followed by a slow, controlled cooling to room temperature, such as at a rate of 15° C./min. or less, to maintain the single phase h.c.p. crystallographic structure. The cooled target is then cold worked at substantially room temperature to impart a strain of about 5-20%. The sputter target of the present invention processed by this method has a magnetic permeability of less than about 9, grain sizes in the size range of about 70-160 &mgr;m, and average grain size of about 130 &mgr;m.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: January 23, 2001
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Alfred Snowman, Holger Koenigsmann, Andre Desert, Thomas J. Hunt
  • Patent number: 6126760
    Abstract: An evaporation material is used in manufacturing a VTR tape, a vertical magnetic recording thin film or the like. The evaporation material is a wire comprising a cobalt metal a cobalt--nickel alloy containing not more than 30 weight % of nickel, or a cobalt--chromium alloy containing not more than 30 weight % of chromium. This wire has a diameter of at least 1.0 mm and not more than 10 mm, a tensile strength of at least 400 MPa and not more than 1500 MPa, and an elongation and a reduction of area of at least 5%. The evaporation material has a prescribed crystal structure, with a face centered cubic lattice ratio of at least 0.1 and not more than 1. It is possible to obtain a wire having the above properties by heating the metal material to at least Tu.degree. C. and thereafter performing plastic working of reduction in area of at least 10% in a single pass at a temperature of at least Td.degree. C. and not more than (Tu+200).degree. C.
    Type: Grant
    Filed: May 22, 1997
    Date of Patent: October 3, 2000
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yukihiro Oishi, Susumu Yamamoto, Teruyuki Murai, Nozomu Kawabe
  • Patent number: 5922150
    Abstract: An improved method is described for repairing Co-base superalloy gas turbine engine components by applying a mixture of base alloy powder and base alloy powder with a melting point depressant to the surface of the component and heating at 2250-2300.degree. F. to diffuse the melting point depressant isothermally into the base alloy. A protective coating is then applied, during which a heating cycle which ages the base material is used. The resultant component has high temperature creep properties which are significantly better than achieved using the prior art process. The same temperature cycle is also useful in the initial heat treatment of Co-base superalloys, and can also be used for rejuvenation of components which have experienced extensive exposure to engine operating conditions.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: July 13, 1999
    Assignee: United Technologies Corporation
    Inventors: Norman Pietruska, S. Michael Kurpaska
  • Patent number: 5882445
    Abstract: A method for producing metallic semifinished products such as strip or wire rom metallic work materials which have a high melting point and are difficult to shape, comprising the steps of a) first, alloying at least one element for lowering the melting point with a material that has a high melting point and is difficult to shape; b) then, producing the semifinished product from the alloy with the reduced melting point in the form of strip or wire directly from the melt by quick solidification; and c) finally extracting the elements alloyed with the material in method step a) from the semifinished product by heat treatment in a reactive atmosphere.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: March 16, 1999
    Assignee: Institut fuer Festkoerper-und Werkstofforschung Dresden e.V.
    Inventor: Stefan Roth
  • Patent number: 5807613
    Abstract: There is disclosed a process for forming aluminide diffusion coatings containing reactive elements on metal substrates such as iron, nickel or cobalt based alloys for protection against high temperature oxidation or corrosive environments. The process includes depositing a mixed metal coating containing aluminum and at least one reactive element onto the metal substrate and heat treating the coated substrate to induce interdiffusion of elements between the substrate and the deposited metal coating. In one aspect of the invention, the reactive element is yttrium and the metal coating is deposited by ion plating yttrium-aluminum by thermal evaporation from a yttrium-aluminum source. The coated substrate is heat treated between 500.degree.-1200.degree. C. to form a reactive element modified-aluminide diffusion coating having a thin outer Al.sub.2 O.sub.3 coating formed thereon.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: September 15, 1998
    Assignee: Cametoid Advanced Technologies, Inc.
    Inventors: Alina C. Aguero, Maria N. Korotkin
  • Patent number: 5741378
    Abstract: An improved method is described for restoring the mechanical properties to carbide-containing Co-based superalloy gas turbine components which have been exposed to high temperatures and pressures for extended periods of time. The method includes solution heat treating to 2250.degree.-2300.degree. F. for one to twelve hours to dissolve complex carbides, and aging at approximately 1965.degree.-1975.degree. F. for two to twenty four hours. The rejuvenated components exhibit excellent high temperature creep properties.
    Type: Grant
    Filed: January 30, 1996
    Date of Patent: April 21, 1998
    Assignee: United Technologies Corporation
    Inventors: Norman Pietruska, S. Michael Kurpaska
  • Patent number: 5728475
    Abstract: A piston shoe (10) of an axial piston pump or motor is crimped to an annular piston head (42) and has a flat shoe wear surface (12) that contacts a cam plate (22). A back flange (14) of the shoe (10) also wears against an auxilliary cam plate (24). In order for the piston shoe (10) to operate within a fuel environment, the piston shoe (10) must be corrosion resistant, compatible with fuel, and provide the desired wear resistance. The piston shoe (10) is made of a cold workable cobalt based alloy which is compatible with fuel and provides corrosion resistance. The wear surface (12) which bears against the cam plate (22) and the back flange (14) which bears against the auxilliary cam plate (24) are provided with a thermal diffusion boride treatment which provides the desired wear resistance. In order to restore sufficient ductility to flange (16) of the shoe (10) that will be cold worked, a solution treatment is performed at a temperature range of 2050.degree. to 2250.degree. F. in a non-oxidizing environment.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: March 17, 1998
    Assignee: AlliedSignal Inc.
    Inventor: Richard George Rateick, Jr.
  • Patent number: 5468305
    Abstract: Disclosed is a method of lowering the permeability of a difficult-to-work Co alloy by introducing high working strain. It includes the steps of: making a Co alloy by melting, the Co alloy containing 0.1 to 40 atomic % of Ni and/or 0.1 to 40 atomic % of Pt, and 0.5 to 10 atomic % of one or more kinds of elements selected from a group consisting of Ta, Mo, W, V, Nb, Hf, Zr, Ti and B (the upper limit of B: 5 atomic %), the balance being 50 atomic % or more of Co and inevitable impurities; preparing a sheet like ingot having a thickness of 30 mm or less using the Co alloy; and covering the surface of the ingot with a metal capsule or coating it with a glass lubricant, and hot-rolling the treated ingot in such a manner that the reduction is performed in two stages accompanied by re-heating and the whole reduction is 30% or more.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: November 21, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Hiroyuki Uchida, Kazuo Yoshikawa, Seiji Nishi
  • Patent number: 5360496
    Abstract: Disclosed is a large alloy forging and method for making it. The forging having an alloy composition selected from one of a nickel base alloy, a cobalt-chromium-nickel base alloy, a nickel-cobalt base alloy and an iron-nickel-chromium-molybdenum alloy and having a grain size of ASTM grain size 4 or finer, as measured by ASTM method E112 and having a tensile strength in the range of 135 to 175 KSI. The process includes: (1) four upset forgings, (2) a rapid cooling after the final upset cooling, (3) a first and second upset forging with a reduction greater than 50%, (4) a third upset forging with a reduction greater than 25.%, and (5) a forging process with a fourth upset forging with a reduction greater than 50%.
    Type: Grant
    Filed: April 7, 1993
    Date of Patent: November 1, 1994
    Assignee: Aluminum Company of America
    Inventors: G. William Kuhlman, Richard A. Beaumont, Daniel F. Carbaugh, David Anderson, Amiya K. Chakrabarti, Kenneth P. Kinnear
  • Patent number: 5334267
    Abstract: A sputtering target preferably having an average crystal-grain diameter of 300 .mu.m or less and a maximum magnetic permeability of 100 or less is formed of an alloy consisting essentially of, by atom, 5- 30% Ni, 5- 14% Cr, not more than 6% V, and balance of Co and unavoidable impurities. It is preferable for the target to keep a working-strain remaining therein to reduce the maximum magnetic permeability. A method of producing a sputtering target for magnetic recording and reproducing, in which warm working or cold working is applied to the alloy.
    Type: Grant
    Filed: July 30, 1993
    Date of Patent: August 2, 1994
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shigeru Taniguchi, Akira Kawakami, Hideo Murata
  • Patent number: 5320690
    Abstract: A cobalt base, high temperature brazing alloy having a composition, by weight of:______________________________________ Nickel from about 8.5% to about 12.5% Chromium from about 24% to about 40% Tungsten from about 0% to about 9% Carbon from about 0.03% to about 0.6% Boron from about 0.01% to about 3.5% Silicon from about 1.0% to about 11% Manganese up to about 2% Cobalt Balance ______________________________________is provided for use in the repair of Co-base turbine component superalloys.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: June 14, 1994
    Assignee: General Electric Company
    Inventors: Adrian M. Beltran, Charles H. Kreischer
  • Patent number: 5302217
    Abstract: Superalloy castings having large variations in section thickness are heat treated using a cyclic stress relief procedure, with the temperature being cycled between about 50.degree. F. (28.degree. C.) and 150.degree. F. (83.degree. C.) below the second phase particle solvus temperature, to relieve the residual stresses incurred during cooling within the mold following casting, followed by a solution cycle at a temperature about 25.degree. F. (14.degree. C.) below the second phase particle solvus temperature to dissolve some or all of the second phase particles.
    Type: Grant
    Filed: December 23, 1992
    Date of Patent: April 12, 1994
    Assignee: United Technologies Corporation
    Inventors: William J. Gostic, Charles M. Biondo, Timothy P. Fuesting
  • Patent number: 5282946
    Abstract: A sputtering target of platinum-cobalt alloy is disclosed which contains 10 to 55% by weight of platinum; 1 to 15% by weight of a first additional element selected from the group consisting of nickel and tantalum; no more than 1.5% by weight of a second additional element selected from the group consisting of boron, titanium, lanthanum, cerium, neodymium, beryllium, calcium, zirconium, and silicon; no more than 20% by weight of chromium; and balance cobalt. A method for manufacturing the sputtering target is also disclosed. In the method, a platinum-cobalt alloy containing specific ingredients in predetermined amounts is first prepared. Then, the platinum-cobalt alloy is subjected to hot plastic working with a thickness reduction of no less than 30%. Subsequently, the alloy thus hot worked is subjected to a cold plastic working with a thickness reduction of no less than 5% at a temperature less than the recrystallization temperature of the alloy.
    Type: Grant
    Filed: June 25, 1992
    Date of Patent: February 1, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Makoto Kinoshita, Jun Tamura, Masaki Morikawa, Kunio Kishida, Toshinori Ishii, Akifumi Mishima