With Working Above 400c Or Nonspecified Hot Working Patents (Class 148/691)
  • Patent number: 10589335
    Abstract: A method for shaping a blank comprising a metal includes a step of loading the blank onto a first die, a step of bringing the first die and a second die together, a step of forming a seal around the blank, and a step of injecting a pressurized molten salt into a space in the blank to supply a hydraulic pressure to the blank.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: March 17, 2020
    Assignee: Capital One Services, LLC
    Inventor: David Kelly Wurmfeld
  • Patent number: 9947917
    Abstract: An aluminum alloy foil for a current collector of an electrode is provided which has not only high electric conductivity but also high strength before and after a drying step, and is low in manufacturing cost. Provided is an aluminum alloy foil for a current collector of an electrode, containing 1.0 to 2.0 mass % (hereafter, simply referred to as “%”) of Fe, 0.01 to 0.2% of Si, 0.0001 to 0.2% of Cu, and 0.005 to 0.3% of Ti, the remainder being Al and inevitable impurities, wherein an amount of Fe contained as a solid solution is 300 ppm or more, and particles of intermetallic compounds having an equivalent circle diameter of 0.1 to 1.0 ?m exist at 1.0×105 particles/mm2 or more.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: April 17, 2018
    Assignees: UACJ Corporation, UACJ Foil Corporation
    Inventors: Masakazu Seki, Satoshi Suzuki, Tomohiko Furutani
  • Patent number: 8828157
    Abstract: A method for producing an aluminum-alloy shaped product, includes a step of forging a continuously cast rod of aluminum alloy serving as a forging material, in which the aluminum alloy contains Si in an amount of 10.5 to 13.5 mass %, Fe in an amount of 0.15 to 0.65 mass %, Cu in an amount of 2.5 to 5.5 mass % and Mg in an amount of 0.3 to 1.5 mass %, and heat treatment and heating steps including a step of subjecting the forging material to pre-heat treatment, a step of heating the forging material during a course of forging of the forging material and a step of subjecting a shaped product to post-heat treatment, the pre-heat treatment including treatment of maintaining the forging material at a temperature of ?10 to 480° C. for two to six hours.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: September 9, 2014
    Assignee: Showa Denko K.K.
    Inventor: Yasuo Okamoto
  • Patent number: 8764920
    Abstract: New 2xxx aluminum alloys containing vanadium are disclosed. In one embodiment, the aluminum alloy includes 3.3-4.1 wt. % Cu, 0.7-1.3 wt. % Mg, 0.01-0.16 wt. % V, 0.05-0.6 wt. % Mn, 0.01 to 0.4 wt. % of at least one grain structure control element, the balance being aluminum, incidental elements and impurities. The new alloys may realize an improved combination of properties, such as in the T39 or T89 tempers.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 1, 2014
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, Ralph R. Sawtell, Gary H. Bray, Cindie Giummarra, Andre Wilson, Gregory B. Venema
  • Publication number: 20130302676
    Abstract: It is an object to provide an aluminum alloy foil for an electrode current collector, the foil having a high post-drying strength after application of an active material while keeping a high electrical conductivity. Disclosed is an aluminum alloy foil for an electrode current collector, comprising 0.1 to 1.0 mass % (hereinafter, “mass %” is simply referred to as “%”) of Fe, 0.01 to 0.5% of Si, and 0.01 to 0.2% of Cu, with the rest consisting of Al and unavoidable impurities, wherein the aluminum alloy foil after final cold rolling has a tensile strength of 220 MPa or higher, a 0.2% yield strength of 180 MPa or higher, and an electrical conductivity of 58% IACS or higher; and the aluminum ally foil has a tensile strength of 190 MPa or higher and a 0.2% yield strength of 160 MPa or higher even after the aluminum alloy foil is subjected to heat treatment at any of 120° C. for 24 hours, 140° C. for 3 hours, and 160° C. for 15 minutes.
    Type: Application
    Filed: December 12, 2011
    Publication date: November 14, 2013
    Applicants: NIPPON FOIL MFG. CO., LTD., FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Masakazu Seki, Satoshi Suzuki, Tomohiko Furutani, Kenji Yamamoto, Koichi Ashizawa
  • Publication number: 20130269842
    Abstract: It is an object to provide an aluminum alloy foil for an electrode current collector, the foil having a high post-drying strength after application of an active material while keeping a high electrical conductivity. Disclosed is an aluminum alloy foil for an electrode current collector, comprising 0.03 to 0.1 mass % (hereinafter, “mass %” is simply referred to as “%”) of Fe, 0.01 to 0.1% of Si, and 0.0001 to 0.01% of Cu, with the rest consisting of Al and unavoidable impurities, wherein the aluminum alloy foil after final cold rolling has a tensile strength of 180 MPa or higher, a 0.2% yield strength of 160 MPa or higher, and an electrical conductivity of 60% IACS or higher; and the aluminum alloy foil has a tensile strength of 170 MPa or higher and a 0.2% yield strength of 150 MPa or higher even after the aluminum alloy foil is subjected to heat treatment at any of 120° C. for 24 hours, 140° C. for 3 hours, and 160° C. for 15 minutes.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 17, 2013
    Applicants: NIPPON FOIL MFG. CO., LTD., FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Masakazu Seki, Satoshi Suzuki, Tomohiko Furutani, Kenji Yamamoto, Koichi Ashizawa
  • Patent number: 8480823
    Abstract: A metal induction forming method includes providing a metal sheet, cold forming the metal sheet by applying shaping pressure to the metal sheet, heating the metal sheet while applying shaping pressure to the metal sheet and quenching the metal sheet.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: July 9, 2013
    Assignee: The Boeing Company
    Inventors: Marc R. Matsen, William Dykstra
  • Patent number: 8323428
    Abstract: Dispersion strengthened aluminum base alloys are shaped into metal parts by high strain rate forging compacts or extruded billets composed thereof. The number of process steps required to produce the forged part are decreased and strength and toughness of the parts are increased. The dispersion strengthened alloy may have the formula Albal,Fea,SibXc, wherein X is at least one element selected from Mn, V, Cr, Mo, W, Nb, and Ta, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “c” ranges from 0.05 to 3.5 weight-%, and the balance is aluminum plus incidental impurities. Alternatively, the dispersion strengthened alloy may be described by the formula Albal,Fea,SibVdXc, wherein X is at least one element selected from Mn, Mo, W, Cr, Ta, Zr, Ce, Er, Sc, Nd, Yb, and Y, “a” ranges from 2.0 to 7.5 weight-%, “b” ranges from 0.5 to 3.0 weight-%, “d” ranges from 0.05 to 3.5 weight-%, “c” ranges from 0.02 to 1.50 weight-%, and the balance is aluminum plus incidental impurities.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: December 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Paul Chipko, Derek Raybould
  • Publication number: 20110017359
    Abstract: High strength heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
    Type: Application
    Filed: October 7, 2010
    Publication date: January 27, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: Awadh B. Pandey
  • Patent number: 7871478
    Abstract: A method of casting a metal ingot with a microstructure that facilitates further working, such as hot and cold rolling. The metal is cast in a direct chill casting mold, or the equivalent, that directs a spray of coolant liquid onto the outer surface of the ingot to achieve rapid cooling. The coolant is removed from the surface at a location where the emerging embryonic ingot is still not completely solid, such that the latent heat of solidification and the sensible heat of the molten core raises the temperature of the adjacent solid shell to a convergence temperature that is above a transition temperature for in-situ homogenization of the metal. A further conventional homogenization step is then not required. The invention also relates to the heat-treatment of such ingots prior to hot working.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: January 18, 2011
    Assignee: Novelis Inc.
    Inventors: Robert Bruce Wagstaff, Wayne J. Fenton
  • Publication number: 20100006192
    Abstract: The present invention are to provide a method for producing an aluminum-alloy shaped product that exhibits high-temperature mechanical strength superior to that of a conventional aluminum-alloy forged product. The present invention provides a method for producing an aluminum-alloy shaped product, comprising a step of forging a continuously cast rod of aluminum-alloy serving as a forging material, in which the aluminum-alloy contains Si in an amount of 10.5 to 13.5 mass %, Cu in an amount of 2.5 to 6 mass %, Mg in an amount of 0.3 to 1.5 mass % and Ni in an amount of 0.8 to 4%, and satisfies a relational expression of “Ni(% bymass)?(?0.68×Cu(% by mass)+4.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 14, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Yasuo Okamoto
  • Publication number: 20080257462
    Abstract: An aluminum alloy material for high-temperature/high-speed molding containing 2.0 to 8.0 mass % of Mg, 0.05 to 1.0 mass % of Mn, 0.01 to 0.3 mass % of Zr, 0.06 to 0.4 mass % of Si and 0.06 to 0.4 mass % of Fe, with the balance being made of aluminum and inevitable impurities; an aluminum alloy material for high-temperature/high-speed molding containing 2.0 to 8.0% of Mg, 0.05 to 1.5% of Mn and 0.05 to 0.4% of Cr, Fe being restricted to 0.4% or less and Si being restricted to 0.4% or less, the grain diameter of a Cr-base intermetallic compound formed by melt-casting being 20 ?m or less, and grains of intermetallic compounds with a grain diameter in the range from 50 to 1,000 nm as Mn-base and Cr-base precipitates being present in a distribution density of 350,000 grains/mm2 or more, the aluminum alloy material being used for high-temperature/high-speed molding by subjecting the alloy material to cooling at a cooling rate of 20° C./min or more immediately after molding at a temperature range from 200 to 550° C.
    Type: Application
    Filed: July 11, 2008
    Publication date: October 23, 2008
    Applicants: FURUKAWA-SKY ALUMINUM CORP., NIPPON STEEL CORPORATION
    Inventors: Koji ICHITANI, Tsutomu TAGATA, Toshio KOMATSUBARA, Ken TAKATA
  • Patent number: 7182825
    Abstract: A method of making aluminum alloy sheet in a continuous in-line process is provided. A continuously-cast aluminum alloy strip is optionally quenched, hot or warm rolled, annealed or heat-treated in-line, optionally quenched, and preferably coiled, with additional hot, warm or cold rolling steps as needed to reach the desired gauge. The process can be used to make aluminum alloy sheet of T or O temper having the desired properties, in a much shorter processing time.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: February 27, 2007
    Assignee: Alcoa Inc.
    Inventors: Ali Ünal, Gavin Federick Wyatt-Mair, David Allen Tomes, Jr., David Wayne Timmons
  • Patent number: 7048816
    Abstract: A magnesium, manganese and copper-containing aluminum alloy sheet material suitable for use in high elongation forming processes is produced according to an improved thermomechanical process. The sheet material is produced by continuous casting with an as-cast gage of 5 to 35 millimeters and immediately hot rolling with a final strip exit temperature between 200° C. and 350° C. and then coiling. The hot rolled coil is annealed at 450–560° C. to homogenize the microstructure. After cooling to ambient temperature, the coil is cold rolled to desired sheet thickness with a net gage reduction of 50–90 %. After suitable recrystallization of the cold worked microstructure the sheet is ready for hot, high elongation forming.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: May 23, 2006
    Assignee: General Motors Corporation
    Inventors: Ravi Verma, Sooho Kim
  • Patent number: 6923934
    Abstract: TiAl alloy includes 46 to 50 at % of Al, 5 at % or less of combination of Mo, V and Si, provided that Si content is 0.7 at % or less, and Mo content satisfies an equation of ?0.3x +17.5 at % or less where x represents Al (at %), and the remainder being Ti and inevitable impurities. Mo may be replaced by Fe or combination of Mo and Fe. TiAl alloy is heated to a melt, poured into a mold, and cooled at a rate of 150 to 250° C./min within a temperature range of 1500 to 1100° C. The resulting product can be used as cast. If desired, however, heat treatment such as HIP or homogenization may be performed within a temperature range of 1100 to 800° C. After the heat treatment, the melt is cooled at a rate of 100° C./min or more until room temperature.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: August 2, 2005
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventor: Sadao Nishikiori
  • Patent number: 6875290
    Abstract: An aluminum bearing-alloy containing 1.5 to 8 mass % of Si is provided, in which there can be observed Si grains on the sliding surface of the aluminum bearing-alloy. A fractional area of the observed Si grains having a grain size of less than 4 ?m is 20 to 60% of a total area of all the observed Si grains. Another fractional area of the observed Si grains having a grain size of from 4 to 20 ?m is not less than 40% of the total area of all the observed Si grains.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: April 5, 2005
    Assignee: Daido Metal Company Ltd.
    Inventors: Yukihiko Kagohara, Takeshi Hoshina, Hideo Ishikawa, Masaaki Sakamoto
  • Patent number: 6835254
    Abstract: A method is disclosed for heating a cold worked sheet of superplastically formable metal composition to recrystallize its microstructure to a suitably formable condition and further to heat the sheet to a temperature for an immediate forming operation. The method utilizes a combination of hot air convection heating and infrared radiation to rapidly accomplish the heating. High temperature infrared heating elements provide most of the energy during an initial high heating rate phase and then those elements are shut off and heating is completed with controlled temperature hot air to prevent overheating of the sheet metal.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: December 28, 2004
    Assignee: General Motors Corporation
    Inventors: Richard Harry Hammar, John E. Carsley, John Robert Bradley
  • Publication number: 20040221931
    Abstract: This invention is directed to a method for manufacturing an aluminum cast-forged product by forging a preform made of a material for forging obtained by casting a material for forging of an aluminum alloy, and an aluminum cast-forged product produced thereby. Forming is performed by heating the preform made of a material for forging at a temperature of from approximately 450° C. to a melting point of the alloy. In this method, a recycled material may be used as a starting material, and some omission of the steps may be possible. There is provided a method for manufacturing an aluminum cast-forged product having excellent mechanical properties, such as, a higher tensile strength, higher proof stress, higher elongation, and the like with a lower production cost.
    Type: Application
    Filed: September 9, 2002
    Publication date: November 11, 2004
    Applicants: Asahi Tec Corporation, Hoei Industries Co., Ltd.
    Inventors: Koji Kotani, Masatoshi Watanabe, Daisuke Machino
  • Patent number: 6811625
    Abstract: A method is disclosed for making relatively low cost sheet material of magnesium- and manganese-containing aluminum alloy for high elongation forming of articles of complex configuration. The alloy is continuously cast with an as-cast gage of 6-30 mm and immediately hot rolled with final strip exit temperature between 200 C. and 350 C., and net rolled gage reduction of 30-80% to 3-12 mm, and coiled. The hot rolled coil is annealed at 470-560° C. to homogenize the microstructure. After cooling to ambient, the coil is cold rolled to desired sheet thickness, but with a net gage reduction of 50-90%. After suitable recrystallization of the cold worked microstructure the sheet is ready for hot, high elongation forming.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: November 2, 2004
    Assignee: General Motors Corporation
    Inventor: Ravi Verma
  • Patent number: 6780375
    Abstract: An aluminum alloy with good cuttability, containing 3 to 6 mass % of Cu, 0.2 to 1.2 mass % of Sn, 0.3 to 1.5 mass % of Bi, and 0.5 to 1.0 mass % of Zn, with the balance being aluminum and inevitable impurities. A method for producing a forged article, in which the aluminum alloy is utilized. A forged article obtained by the method.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: August 24, 2004
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yoji Hirano, Ryo Shoji
  • Patent number: 6746553
    Abstract: The invention includes methods of reducing grain sizes of materials, and methods of forming sputtering targets. The invention includes a method for producing a sputtering target material in which a metallic material is subjected to plastic working at a processing percentage of at least 5% and a processing rate of at least 100%/second. In particular applications the metallic material comprises one or more of aluminum, copper and titanium.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: June 8, 2004
    Assignee: Honeywell International Inc.
    Inventors: Lijun Yao, Tadao Ueda
  • Patent number: 6696175
    Abstract: The present invention provides aluminum alloys and layers formed in aluminum alloys as well as methods for their manufacture. Aluminum alloys of the present invention are provided with at least one discrete layer of uncrystallized grains formed therein. Alloys of the present invention can be formed, for example, by a process that includes a final partial anneal that permits softening of the material to essentially an O-temper condition. Processes of the present invention recrystallized substantially the entire material by leave a discrete layer of preferably less than 50 microns of the material unrecrystallized. In preferred embodiments, the aluminum material is a core material that is clad on one or both sides and the discrete unrecrystallized layer forms at the boundary between the clad and the core.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: February 24, 2004
    Assignee: Pechiney Rolled Products
    Inventors: Scott L. Palmer, Zayna Connor, H. Scott Goodrich
  • Patent number: 6692589
    Abstract: A process for forming a structure element, particularly an lower wing element of an aircraft, manufactured from a rolled, extruded or forged product made of an alloy of composition (% by weight) Cu=4.6-5.3, Mg=0.10-0.50, Mn=0.15-0.45, Si<0.10, Fe<0.15, Zn<0.20, Cr<0.10, other elements <0.05 each and <0.15 total, remainder Al. The product is treated by solution heat treating, quenching, controlled tension to more than 1.5% permanent deformation and aging.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: February 17, 2004
    Assignee: Pechiney Rhenalu
    Inventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
  • Patent number: 6666933
    Abstract: A can end is manufactured by forming an end shell comprising a radially outer seaming flange, a chuck wall adjacent the seaming flange, a center panel, and an axially downward countersink joining the center panel to the chuck wall below the level of the seaming flange. The end shell is converted to an easy-open can end by forming a score on a portion of the center panel, raising a rivet on the center pane, and forming a tab and attaching the tab to the rivet. The end is subsequently formed by moving the center panel and the seaming flange one with respect to the other to raise the center panel above the level of the seaming flange.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: December 23, 2003
    Assignee: Crown Cork & Seal Technologies Corporation
    Inventors: David Andrew Roberts, Andrew Osborne Blow, John Alfred Perigo
  • Patent number: 6652678
    Abstract: A method of converting an ingot of a 6000 series aluminium alloy to self-annealing sheet, comprises subjecting the ingot to a two-stage homogenisation treatment, first at at least 560° C. and then at 450° C. to 480° C., then hot rolling the homogenised ingot at a starting hot roll temperature of 450° C. to 480° C. and a finishing hot roll temperature of 320° C. to 360° C. The resulting hot rolled sheet has an unusually low Cube recrystallisation component.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: November 25, 2003
    Assignee: Alcan International Limited
    Inventors: Graeme John Marshall, Karl Albert Herbst, Martin Heinze, Richard Hamerton
  • Patent number: 6630037
    Abstract: High strength and high toughness aluminum alloy forgings having, as a whole, a strength at &sgr;0.2 of 315 N/mm2 or more and an impact shock value of 20 J/cm2 or more, wherein the aluminum alloy material contains Mg: 0.6-1.6%, Si: 0.8-1.8%, Cu: 0.1-1.0%, Fe: 0.30% or less, one or more of Mn: 0.15-0.6%, Cr: 0.1-0.2% and Zr: 0.1-0.2%, and the balance of Al and inevitable impurities, wherein the volume fraction of total constituents phase particles (Mg2Si and Al—Fe—Si—(Mn, Cr, Zr) series intermetallic compounds) in the aluminum alloy structure in the forgings is 1.5% or less per unit area.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: October 7, 2003
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroki Sawada, Takayuki Kitano, Manabu Nakai
  • Patent number: 6609286
    Abstract: A part is manufactured from a composite material containing an aluminum alloy as a metal matrix. Blanks are prepared from a billet of the composite material, and worked on in a press, while they are held at a temperature ranging from the solidus temperature, Ta, of the aluminum alloy minus 50 (Ta−50) deg. C. to Ta deg. C. At a temperature below (Ta−50), the blanks have too high a resistance to plastic deformation to be easily worked on. At a temperature over Ta, a liquid phase is produced and makes the blanks likely to crack easily during plastic deformation.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: August 26, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yasuhiro Nakao, Hiroto Shoji, Kunitoshi Sugaya, Takashi Kato, Takaharu Echigo
  • Patent number: 6528183
    Abstract: Clad sheet made up of a core sheet and a cladding layer on one or two core sheet surfaces. The core sheet is formed of an alloy having the composition (% by weight) Si: 0.7-1.3, Mg: 0.6-1.2, Cu: 0.5-1.1, Mn: 0.15-1.0, Zn<0.5, Fe<0.5, Zr<0.2, Cr<0.25, other elements <0.05 each and <0.15 total, the remainder aluminum. The cladding is formed of an AlZn alloy having a thickness of between 1 and 15% of the clad sheet thickness, having the composition (% by weight) Zn: 0.25-0.7, Fe<0.40, Si<0.40, Cu, Mn, Mg, V or Ti <0.10, other elements <0.05 each and 0.15 total.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: March 4, 2003
    Assignee: Pechiney Rhenalu
    Inventors: Ronan Dif, Bernard Bes, Philippe Lassince, Herve Ribes
  • Patent number: 6485583
    Abstract: A dispersion strengthened mechanically alloyed aluminium based alloy is provided which is prepared by mechanical alloying and is characterized by improved isotropic strength, fracture toughness and corrosion resistance. The alloy system contains by weight 1.2 to 1.6% lithium, 4.0 to 6.0% magnesium, 0.15 to 0.7% carbon, up to 1% oxygen and up to 2.0% in total of one or more grain controlling elements to provide microstructural optimization and control, the balance aluminium save for incidental impurities.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: November 26, 2002
    Assignee: Qinetiq Limited
    Inventors: Wendy J Vine, Andrew D Tarrant
  • Patent number: 6428638
    Abstract: The invention includes methods of reducing grain sizes of materials, and methods of forming sputtering targets. The invention includes a method for producing a sputtering target material in which a metallic material is subjected to plastic working at a processing percentage of at least 5% and a processing rate of at least 100%/second. In particular applications the metallic material comprises one or more of aluminum, copper and titanium.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: August 6, 2002
    Assignee: Honeywell International Inc.
    Inventors: Lijun Yao, Tadao Ueda
  • Patent number: 6352789
    Abstract: The invention relates to a brazing sheet with a two-layer structure or a three-layer structure, having a core sheet made of an aluminium alloy core material and on one side or both sides thereof a brazing layer of an aluminium alloy containing silicon as main alloying element, wherein the aluminium alloy of the core sheet has the composition (in weight %) Mn 0.5 to 1.5 Cu 0.5 to 2.0 Si 0.3 to 1.5 Mg <0.05 Fe <0.4 Ti <0.15 Cr <0.35 Zr and/or V <0.35 in total Zn <0.25 balance aluminium and unavoidable impurities, and wherein said brazing sheet has a post-braze 0.2% yield strength of at least 50 MPa and having a corrosion life of more than 12 days in a SWAAT test without perforations in accordance with ASTM G-85, and further to a method of its manufacture.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: March 5, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Timothy John Hurd, Nicolaas Dirk Adrianus Kooij, Achim Bürger, Klaus Vieregge
  • Publication number: 20020012606
    Abstract: The invention offers an aluminum alloy that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The invention also offers a method for manufacturing an aluminum-alloy member that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The aluminum alloy comprises (1) not less than 0.1 wt. % and not more than 8 wt. % Constituent A comprising one or more kinds of elements selected from the group consisting of titanium, vanadium, hafnium, and zirconium, (2) not less than 0.1 wt. % and not more than 20 wt. % Constituent B comprising one or more kinds of elements selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, mischmetal, calcium, strontium, and barium, and (3) not less than 0.1 wt. % and not more than 20 wt. % Constituent C comprising one or more kinds of elements selected from the group consisting of magnesium and lithium.
    Type: Application
    Filed: October 28, 1999
    Publication date: January 31, 2002
    Inventors: MANABU HASHIKURA, HISAO HATTORI, TOSHIHIKO KAJI, YOSHINOBU TAKEDA
  • Publication number: 20010020502
    Abstract: The present invention provides a superplastic aluminum alloy in which fine particles not substantially dispersion hardening are dispersed in a sufficient amount to effect grain boundary pinning to suppress crystal grain growth during hot working thereby ensuring manifestation of superplasticity over wide ranges of working temperature and strain rate.
    Type: Application
    Filed: May 3, 2001
    Publication date: September 13, 2001
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiharu Miyake, Yoshihisa Serizawa, Yukio Okochi
  • Patent number: 6261391
    Abstract: The present invention disclosed is an aluminum alloy plate for super plastic molding capable of cold pre-molding before super plastic molding. The alloy plate comprises Mg at from 2.0 to 8.0% (weight %, the same shall apply hereinafter) Be at from 0.0001 to 0.01%, at least one of Mn at from 0.3 to 2.5%, Cr at from 0.1 to 0.5%, Zr at from 0.1 to 0.5% and V at from 0.1 to 0.5%. Additionally, the alloy plate may comprise an Fe amount and an Si amount each within a range of 0.0 to 0.2%; amounts of Na and Ca within ranges of 3 ppm or less and 5 ppm or less, respectively; while the remainder of the alloy plate consists of Al and inevitable impurities. The resulting alloy plate a crystalline structure is a non-recrystallized crystal structure; the 90° critical bending radius is 7.5 times the plate thickness or less; and the yield strength ratio before and after the final annealing is 70% or more. The invention also discloses production methods for the alloy plate.
    Type: Grant
    Filed: March 10, 1995
    Date of Patent: July 17, 2001
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Sky Aluminum Co., Ltd.
    Inventors: Hideaki Ikeda, Masanori Kosugi, Shizuo Kimura, Mamoru Matsuo, Tsutomu Tagata, Nobuyuki Matsumoto
  • Patent number: 6221515
    Abstract: A bimetallic strip for a sliding bearing having a sliding strip of an aluminum alloy which is adhered to a steel supporting strip and method of manufacture. The composition of the sliding strip is from 3 to 30% of tin; from 1 to 6% of silicon and the remainder being of aluminum and impurities, and the sliding strip has at least 95% of the silicon hard particles smaller than 3.5 microns and an aluminum grain average size of about 6 microns. The sliding strip is produced by roll casting the alloy and attaching the sliding strip to the steel supporting strip to form the bimetallic strip which is heat treated between 200° and 380° C. to obtain a metallurgical bonding between the strips; subjecting the bimetallic strip to a solubilizing process of the intermetallic compounds of the aluminum alloy by heating at 380-500° C., followed by cooling; and subjecting the bimetallic strip to a precipitation treatment at a temperature from 150° to 250° C.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: April 24, 2001
    Assignee: Metal Leve S/A Industria E Comercio
    Inventors: Joaquim de Oliveira Ramos Júnior, Denys da Cuhna Flores, Carlos Henrique Gaspar dos Santos
  • Patent number: 6136106
    Abstract: The invention relates to a method for manufacturing thin-walled pipes, which are made of a heat-resistant and wear-resistant aluminum-based material. The method comprises the spray-compacting of a thick-walled pipe made of a hypereutectic aluminum-silicon AlSi material, possibly a subsequent overaging annealing, and the hot deformation to a thin-walled pipe. Such a method is in particular united for the production of cylinder liners of internal combustion engines, since the produced liners exhibit the required properties in regard to wear resistance, heat resistance and reduction of pollutant emission.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: October 24, 2000
    Assignee: Erbsloh Aktiengesellschaft
    Inventors: Bernhard Commandeur, Rolf Schattevoy, Klaus Hummert
  • Patent number: 6033499
    Abstract: In the stretch forming of aluminum alloys using a punch and a mating die cavity, the stretch formability of a sheet of age-hardened aluminum alloy is increased by selectively heat treating the sheet to soften at least a portion of the sheet that will underlie a punch surface but not be drawn over a radius of the punch.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: March 7, 2000
    Assignee: General Motors Corporation
    Inventor: Rana Mitra
  • Patent number: 5948185
    Abstract: An improved method of forming a severe bend or a hem in a sheet of wrought aluminum age-hardened and age-hardenable alloy includes heating the region to be bent or hemmed to a temperature above about 250.degree. C. for a period of seconds and then quenching the heated region to remove the age-hardening effect and thereafter accomplishing the bend or hem before age hardening of the heated region occurs.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: September 7, 1999
    Assignee: General Motors Corporation
    Inventors: Paul Edward Krajewski, Edward Frank Ryntz
  • Patent number: 5916390
    Abstract: The invention relates to a cylinder liner sealed into a reciprocating piston engine comprising a supereutectic aluminum/silicon alloy which is free of mixed-in particles of hard material and which is composed in such a way that fine silicon primary crystals and intermetallic particles automatically form from the melt as hard particles. A blank is allowed to grow from finely sprayed melt droplets by spray compaction, with a fine distribution of hard particles being produced by setting the spray for small melt droplets. The blank can then be formed by cold extrusion to create a shape approximating the cylinder lining. After premachining, the surface is fine machined, honed in at least one stage and then the hard particles lying at the surface are mechanically exposed, is forming plateau areas of hard particles which project above the remaining surface of the base microstructure of the alloy.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: June 29, 1999
    Assignee: Mercedes-Benz AG
    Inventors: Franz Ruckert, Peter Stocker, Roland Biedermann
  • Patent number: 5902546
    Abstract: There is disclosed a high heat resistant aluminum alloy impeller, which is suitably used as an impeller, especially for a centrifugal compressor, and for the rotor and the blade of a turbo molecular pump or the scroll of a scroll compressor. Also, a method for manufacturing this aluminum alloy impeller is disclosed. The impeller is composed of an Al--Fe rapid solidification aluminum alloy, which is produced by a spray forming process for spraying a molten metal with inert gas and rapidly solidifying the metal at a cooling speed of 10.sup.2 .degree. C./sec. or higher while simultaneously deposing the metal. The rapid solidification aluminum alloy is subjected to hot extrusion processing within a temperature range of 200.degree. C. to 600.degree. C. and further subjected to hot forging.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: May 11, 1999
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Nozomu Kawasetsu, Masatomo Shinohara, Kouichiro Imakiire, Masanori Kimura, Keiichi Shiraishi, Masayuki Hayakawa, Kazuhisa Shibue, Yoshimasa Okubo, Naoki Tokizane
  • Patent number: 5876525
    Abstract: In order to simplify the production of a nigh-resistance bobbin body made of an aluminum alloy, the following process steps are performed: (a) extruding or flow extruding an essentially cylindrical bobbin blank; (b) cutting the bobbin blank to a length including the desired bobbin body length plus an overlength sufficient to form end flanges on the bobbin body; (c) shaping end flanges at both ends of the bobbin body from the overlength portion; hardening the bobbin body; and age-hardening (aging) the bobbin body. Various process parameters are described.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: March 2, 1999
    Assignee: Hilebrandt-Spolen-Bobbins GmbH
    Inventors: Michael Prechtel, Davorin Lenarcic
  • Patent number: 5865914
    Abstract: There is claimed a lower wing structure for a commercial jet aircraft which includes a substantially unrecrystallized rolled plate member made from an aluminum alloy consisting essentially of about 3.6 to 4.0 wt. % copper, about 1.0 to 1.6 wt. % magnesium, about 0.3 to 0.7 wt. % manganese, about 0.05 to 0.25 wt. % zirconium, the balance aluminum and incidental elements and impurities. On a preferred basis, the alloy products of this invention include very low levels of both iron and silicon, typically on the order of less than 0.1 wt. % each, and more preferably about 0.05 wt. % or less iron and about 0.03 wt. % or less silicon. This alloy composition may be rolled to form lower wing skin plates and extruded or rolled to form wing box stringers therefrom.
    Type: Grant
    Filed: August 11, 1997
    Date of Patent: February 2, 1999
    Assignee: Aluminum Company of America
    Inventors: Lynette M. Karabin, John Liu, Allison S. Warren, Gary H. Bray
  • Patent number: 5803997
    Abstract: Process for manufacturing thick aluminum alloy plate having improved properties comprising the hot deformation of an ingot, wherein the hot deformation comprises the combination ofat least one hot rolling operation, andat least one forging operation,in which at least one of the hot rolling and forging operations is at least partly executed in the width direction.
    Type: Grant
    Filed: January 17, 1996
    Date of Patent: September 8, 1998
    Assignee: Hoogovens Aluminium Walzprodukte GmbH
    Inventors: Alfred J. P. Haszler, Alfred L. Heinz, Otmar M. Muller
  • Patent number: 5785776
    Abstract: A method of improving the corrosion properties of an aluminum alloy product containing solid solution alloying elements includes the step of rapidly quenching the alloy product after it has been heated or hot deformed so as to maintain the alloying elements in solid solution to avoid microsegregation of the solid solution alloying elements and minimize preferential sites for corrosion onset.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: July 28, 1998
    Assignee: Reynolds Metals Company
    Inventor: Subhasish Sircar
  • Patent number: 5772804
    Abstract: A method of producing an aluminum alloy having superplastic properties, including the steps of: heating the aluminum alloy; hot rolling to an exit temperature ranging from about 650.degree. to 70.degree. F.; and cold rolling to a gauge corresponding to a percentage of cold work selected from among those falling within the zone defined by the lines joining the points of A (475.degree. F., 10%), B (650.degree. F., 99%), C (70.degree. F., 99%) and D (70.degree. F., 10%), shown in FIG. 2, showing the relationship between the temperature range of the hot rolling exit temperature and the percent of cold work.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: June 30, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventor: Kevin R. Brown
  • Patent number: 5772800
    Abstract: An aluminium alloy plate is provided with a thickness of more than 2 inches, e.g. 6, 7 or 8 inches, and having an average logarithmic fatigue life of more than 100,000 cycles determined in accordance with ASTM test method E 466. The density of micropores with a size larger than 80 .mu.m in all locations in the midplane (T/2) midwidth position at head and tail ends of the finished plate as measured by Optical Microscopy of samples in any plane perpendicular to the midplane is less than 0.025 micropores per cm.sup.2. The plate may be formed by degassing of a melt to give a specified porosity of the cast ingot, and by hot rolling with at least one specified high reduction ratio pass.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 30, 1998
    Assignee: Hoogovens Aluminium Walzprodukte GmbH
    Inventors: Alfred L. Heinz, Werner A. Schelb, Alfred J. P. Haszler, Otmar M. Muller
  • Patent number: 5725683
    Abstract: A process for making an aluminum alloy lighting sheet product having a reflective surface protected by a UV-stable polymer coating. An aluminum alloy sheet is chemically brightened in an aqueous acidic solution, conversion coated, and then coated with a UV-stable polymer. Alternatively, an aluminum alloy sheet is chemically etched in an aqueous alkaline solution, conversion coated, and then coated with a UV-stable polymer. Preferably, the UV-stable polymer contains about 0.5-10 wt. % amorphous silica particles. In another embodiment, an aluminum alloy sheet surface is cleaned, chemically conversion coated and then coated with a coating composition containing a UV-stable polymer and 0.5-10 wt. % of about 0.5-5 microns.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: March 10, 1998
    Assignee: Aluminum Company of America
    Inventors: Daniel L. Serafin, Paul B. Schultz, Albert L. Askin, Paula Hinds, David A. Linde, Robert E. Bombalski
  • Patent number: 5618358
    Abstract: A new aluminum based alloy having properties which mimic homogenized DC cast 3003 alloy and a low-cost method for manufacturing it are described. The alloy contains 0.40% to 0.70% Fe, 0.10% to less than 0.30% Mn, more than 0.10% to 0.25% Cu, less than 0.10% Si, optionally up to 0.10% Ti and the balance Al and incidental impurities. The alloy achieves properties similar to homogenized DC cast 3003 when continuously cast followed by cold rolling and if desired annealing at final gauge. Suprisingly no other heat treatments are required.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: April 8, 1997
    Inventors: Thomas Davisson, Sadashiv Nadkarni, Douglas Reesor
  • Patent number: 5605586
    Abstract: A method for manufacturing an aluminum alloy sheet suitable for high-speed forming includes subjecting the alloy to a homogenization treatment, hot rolling and cold rolling the homogenization treated alloy, thereby obtaining a cold-rolled sheet, and annealing the cold-rolled sheet. The aluminum alloy contains 4.0 to 10.0 wt. % of Mg, 0.2 wt. % of inevitable impurities of Fe and Si, 0.05 wt. % of other impurity elements, and the balance of Al. Another embodiment includes deep drawing the aluminum alloy sheet.
    Type: Grant
    Filed: March 15, 1995
    Date of Patent: February 25, 1997
    Assignees: The Furukawa Electric Co., Ltd., Kawasaki Steel Corporation
    Inventors: Yoichiro Bekki, Minoru Hayashi, Ryo Syoji
  • Patent number: 5582659
    Abstract: An aluminum alloy for forging comprising from 2.0 to 3.3% by weight of Si, from 0.2 to 0.6% by weight of Mg, from 0.01 to 0.1% by weight of Ti, from 0.0001 to 0.01% by weight of B, up to 0.15% by weight of Fe, one element or at least two elements selected from the group consisting of 0.001 to 0.01% by weight of Na, 0.001 to 0.05% by weight of Sr, 0.05 to 0.15% by weight of Sb and 0.0005 to 0.01% by weight of Ca, up to 0.001% by weight of P, the P/Ca weight ratio being up to 1.0, and the remainder Al, eutectic Si contained in the cast structure of said aluminum alloy having an average particle size of up to 20 .mu.m.
    Type: Grant
    Filed: September 29, 1994
    Date of Patent: December 10, 1996
    Assignees: Nippon Light Metal Co., Ltd., Nissan Motor Co., Ltd.
    Inventors: Akio Hashimoto, Sanji Kitaoka, Yoji Namekawa, Kiyoshi Takagi, Hideo Yoshioka, Ken Kanasashi