With Working Patents (Class 148/695)
  • Patent number: 6129792
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.15 to about 0.65 wt. % magnesium, about 0.00 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.3 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 460.degree. C. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: October 10, 2000
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 6113850
    Abstract: An A-rated, aluminum alloy suitable for machining, said alloy consisting essentially of: about 4-5.75 wt. % copper, about 0.2-0.9 wt. % bismuth, about 0.12-1.0 wt. % tin, the ratio of bismuth to tin ranging from about 0.8:1 to 5:1, up to about 0.7 wt. % iron, up to about 0.4 wt. % silicon, up to about 0.3 wt. % zinc, the balance aluminum, incidental elements and impurities. On a preferred basis, this alloy contains about 4.4-5.0 wt. % copper, about 0.4-0.75 wt. % bismuth, about 0.2-0.5 wt. % tin, the ratio of bismuth to tin ranging from about 1:1 to 3:1, about 0.2 wt. % or less iron and about 0.2 wt. % or less silicon. The alloy is substantially lead-free, cadmium-free and thallium-free. There is further disclosed an improved method for making screw machine stock or wire, rod and bar product from this alloy by casting, preheating, extruding, solution heat treating, cold finishing and aging the same.
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: September 5, 2000
    Assignee: Aluminum Company of America
    Inventors: Charles W. Bartges, Gerald D. Scott, Thomas J. Klemp, M. Elise Hyland, James A. Brock, Colleen Spillard
  • Patent number: 6074498
    Abstract: A dual aging treatment of aluminum-copper-lithium-scandium alloys allows preparation of alloys exhibiting superior physical properties as compared to the same alloys subjected to only a single aging. In particular, the difference between yield strength and ultimate tensile strength is markedly increased. The alloys are characterized by an array of fine T1 phase precipitates within the aluminum grain, leaving a substantially T1 phase precipitate-free zone along the grain boundaries, and an array of coarse .theta.' and .delta.' phase precipitates throughout the grains with little or no .theta.' and .delta.' phase-free zones.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: June 13, 2000
    Assignee: McDonnell Douglas Corporation
    Inventors: Douglas J. Waldron, William F. Bozich
  • Patent number: 6056836
    Abstract: Sheet for welded constructions having an ultimate tensile strength R.sub.m >275 MPa, elongation A>22% and a product A.times.R.sub.m >7000, having the composition, in % by weight:______________________________________ Mg: 4.2-4.7; Mn: 0.20-0.40; Zn: <0.20; Fe: 0.20-0.45; Si <0.25; Cr <0.15; Cu <0.25; Ti <0.10; Zr <0.10; ______________________________________other elements <0.05 each and <0.20 in total,balance Al.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: May 2, 2000
    Assignee: Pechiney Rhenalu
    Inventors: Jean-Luc Hoffman, Guy-Michel Raynaud, Martin-Peter Schmidt, Herve Ribes
  • Patent number: 6045632
    Abstract: End or tab stock and a method for its manufacture in which a low alloy content aluminum alloy is continuously cast to form a hot feedstock, the hot feedstock is rapidly quenched rapidly to prevent substantial precipitation of alloying elements, annealed, quenched, and coiled. The can end and tab stock of the invention has strength and formability equal to higher alloy content aluminum alloy.
    Type: Grant
    Filed: January 29, 1998
    Date of Patent: April 4, 2000
    Assignee: Alcoa, Inc.
    Inventors: Tyzh-Chiang Sun, William M. Betts
  • Patent number: 6033499
    Abstract: In the stretch forming of aluminum alloys using a punch and a mating die cavity, the stretch formability of a sheet of age-hardened aluminum alloy is increased by selectively heat treating the sheet to soften at least a portion of the sheet that will underlie a punch surface but not be drawn over a radius of the punch.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: March 7, 2000
    Assignee: General Motors Corporation
    Inventor: Rana Mitra
  • Patent number: 5951794
    Abstract: Methods for making an aluminum drive shaft for automobiles or trucks or other drive shaft applications from aluminum alloy tube and methods for making drive shafts. The method includes providing an aluminum tube member is joined to drive shaft end members. The method includes the steps of (a) providing a 6000 series type alloy; (b) extruding the alloy within about 500.degree. to 800.degree. F. into a hollow elongate tube; (c) drawing the tube to a reduction of at least 15% in metal cross-sectional area; (d) solution heat treating the alloy at a temperature of at least about 990.degree. F. and then quenching; and (e) reducing the diameter of the tube and increasing the tube wall thickness to provide a relatively short tube length of reduced diameter, a transition section and thicker wall thickness at one or both ends of a drive shaft suitable length of said tube. The transition section has a non-linear wall. In a preferred embodiment, the transition section has central circumferential stiffener section.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: September 14, 1999
    Assignee: Aluminum Company of America
    Inventor: John A. Dickson, Jr.
  • Patent number: 5948185
    Abstract: An improved method of forming a severe bend or a hem in a sheet of wrought aluminum age-hardened and age-hardenable alloy includes heating the region to be bent or hemmed to a temperature above about 250.degree. C. for a period of seconds and then quenching the heated region to remove the age-hardening effect and thereafter accomplishing the bend or hem before age hardening of the heated region occurs.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: September 7, 1999
    Assignee: General Motors Corporation
    Inventors: Paul Edward Krajewski, Edward Frank Ryntz
  • Patent number: 5925314
    Abstract: It is an object of the invention to provide high-ductility alloy which is improved both in casting characteristics and elongation without lowering strength by selecting a good combination of ingredients and a proportion thereof. It is another object of the invention to provide a casting which has an good elongation without being heat-treated. It is a further object of the invention to provide a method of manufacturing integral parts having some portions with specific construction which make it impossible for a set of molding dies to be separated after finishing casting by means of in-one-piece molding. Those objects can be accomplished bay providing an high ductility aluminum alloy which contains manganese ingredient, iron ingredient, magnesium ingredient and slice of unavoidable impurity, wherein a content of the iron usually regarded as impurity is set within specified limits, magnesium content is relatively less and manganese content is relatively more than that in a conventional aluminum alloy.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: July 20, 1999
    Assignee: Mazda Motor Corporation
    Inventors: Katsuya Nishiguchi, Yukio Yamamoto, Yukihiro Sugimoto
  • Patent number: 5919323
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.15 to about 0.65 wt. % magnesium, about 0.00 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.3 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 460.degree. C. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: July 6, 1999
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 5916385
    Abstract: An essentially lead-free aluminum alloy is provided for extruded screw machine stock. The alloy consists essentially of from about 4.5% to about 6% copper, a maximum of about 0.4% silicon, a maximum of about 0.7% iron, not more than about 0.3% zinc, from about 0.1% to about 1% bismuth, from about 0.1% to about 0.5% tin, balance aluminum and unavoidable impurities. The screw machine stock is prepared by extruding a homogenized billet to the desired shape, then the shape is subjected to a thermomechanical treatment involving at least one heat-treatment and cold working.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: June 29, 1999
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Norman Leroy Coats, II, Larry Eugene Farrar, Jr.
  • Patent number: 5911844
    Abstract: A method for drawing a portion of metallic material having a known hardness. The method includes the step of applying a localized heat treatment to predetermined portions of the metallic material. Additionally, the method comprises forming the localized heat treated regions into a desired drawn or stamped configuration, wherein the configuration is substantially devoid of cracks.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: June 15, 1999
    Assignee: Alumax Extrusions Inc.
    Inventor: Joseph C. Benedyk
  • Patent number: 5891273
    Abstract: The invention relates to a cylinder liner, cast into a reciprocating piston engine, of a highly hypereutectic aluminum/silicon alloy which is free of hard material particles independent of the melt and has such a composition that fine primary silicon crystals and intermetallic phases automatically form from the melt as hard particles. By spray-compacting, a blank of finely sprayed melt droplets is caused to grow, a fine distribution of the hard particles being produced by controlled introduction of small melt droplets. The blank can be transformed by an extrusion step into a form approximating the cylinder liner. After subsequent premachining with chip removal, the running surface is precision-machined and subsequently honed in at least one stage, after which the hard particles located in the running surface are exposed, plateau faces of the particles being formed, which faces protrude from the remaining surface of the matrix structure of the alloy.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: April 6, 1999
    Assignee: Mercedes-Benz AG
    Inventors: Franz Ruckert, Peter Stocker, Roland Rieger
  • Patent number: 5776270
    Abstract: A method for reforming the generally cylindrical sidewalls of aluminum containers is disclosed. The method produces highly expanded and/or contoured container sidewalls which provide a distinctive appearance in comparison with cylindrical containers having straight sidewalls. Multiple expansion steps are used to expand the sidewall to a diameter substantially greater than the initial diameter of the cylindrical starting container. The sidewalls are thermally treated prior to expansion, for example, by annealing to reduce or eliminate residual stresses and work hardening. The sidewall thickness of the cylindrical starting container is preferably selected in order to maximize the total amount of sidewall expansion that can be achieved.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: July 7, 1998
    Assignee: Aluminum Company of America
    Inventor: Scott C. Biondich
  • Patent number: 5772802
    Abstract: Can or lid stock and a method for its manufacture in which a low alloy content aluminum alloy is strip cast to form a hot strip cast feedstock, the hot feedstock is rapidly quenched to prevent substantial precipitation, annealed and quenched rapidly to prevent substantial precipitation of alloying elements and then cold rolled. The can end and tab stock of the invention has strength and formability equal to higher alloy content aluminum alloy.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: June 30, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: T. C. Sun, William Betts
  • Patent number: 5772804
    Abstract: A method of producing an aluminum alloy having superplastic properties, including the steps of: heating the aluminum alloy; hot rolling to an exit temperature ranging from about 650.degree. to 70.degree. F.; and cold rolling to a gauge corresponding to a percentage of cold work selected from among those falling within the zone defined by the lines joining the points of A (475.degree. F., 10%), B (650.degree. F., 99%), C (70.degree. F., 99%) and D (70.degree. F., 10%), shown in FIG. 2, showing the relationship between the temperature range of the hot rolling exit temperature and the percent of cold work.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: June 30, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventor: Kevin R. Brown
  • Patent number: 5766546
    Abstract: An alloy suitable for manufacturing components out of a hollow body by high internal pressure forming contains, in wt. %,______________________________________ Silicon 0.3 to 1.6 Magnesium 0.3 to 1.3 Iron max. 0.5 Copper max. 0.9 Manganese max. 0.5 Vanadium 0.05 to 0.3 Cobalt max. 0.3 Chromium max. 0.3 Nickel max.0.8 Zirconium max. 0.3 ______________________________________and other alloying elements, individually at most 0.05, in total at most 0.15, the remainder aluminum.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: June 16, 1998
    Assignee: Alusuisse Technology & Management Ltd.
    Inventor: Pius Schwellinger
  • Patent number: 5725695
    Abstract: A method of making an aluminum foil product from an aluminum-silicon-iron aluminum alloy comprises casting the alloy into a slab, preferably by twin roll casting, cold rolling the alloy to an intermediate gauge and reroll annealing the intermediate gauge material. The reroll annealed material is then cold rolled to a final foil gauge followed by a final recrystallizing annealing. The aluminum alloy has a controlled amount of silicon and iron such that the silicon is equal to or greater than the iron amount and the reroll anneal temperature is 800.degree. F. (427.degree. C.) or less. The combination of the controlled amounts of silicon and iron and the lower reroll anneal temperature results in an improved foil product in terms of finer grain size and higher elongation which is also less costly to produce.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: March 10, 1998
    Assignee: Reynolds Metals Company
    Inventors: Bennie R. Ward, Richard E. Hughes, James P. Martin
  • Patent number: 5725698
    Abstract: A friction boring process creates a corrosion resistant fine grain microstructure in the wall surfaces of holes bored in aluminum alloy materials. A rotating tool is inserted directly into the aluminum material, or into a pre-drilled pilot hole, at a sufficient rotational velocity and feed rate to cause working that extends beyond the diameter of the tool, frictional heating, and extraction of aluminum material by metal deformation rather than cutting action as with a conventional drill bit. Burring, smoothing, and otherwise removing aluminum material extracted from the hole may be performed by a finishing segment that limits insertion depth of the tool. Frictional heating generates a temperature sufficient for rapid recrystallization of the remaining worked metal to form a fine grain microstructure to a depth of about 2.5 mm in the hole surfaces. Corrosion protection is retained even if some fine grain material is removed during a subsequent reaming operation.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: March 10, 1998
    Assignee: Boeing North American, Inc.
    Inventor: Murray W. Mahoney
  • Patent number: 5711827
    Abstract: There are disclosed a support for a planographic printing plate, which decreases dispersion in a material quality of an aluminum alloy support and improves a yield of an electrolytic graining treatment and which can produce the planographic printing plate having a small heat softening property after a burning treatment and providing a low cost, and a method for producing the same. The support for the planographic printing plate is an aluminum alloy plate comprising 0<Fe.ltoreq.0.20 weight %, 0.ltoreq.Si.ltoreq.0.13 weight %, 99.7 weight %.ltoreq.Al and the balance of inevitable impurity elements, wherein a solid solution amount of Fe is 10 ppm to 800 ppm, and the support has a tensile strength of 14 kg/mm.sup.2 or more and an offset stress of 10 kg/mm.sup.2 or more when it is subjected to a heat treatment by holding at 300.degree. C. for 7 minutes.
    Type: Grant
    Filed: March 6, 1995
    Date of Patent: January 27, 1998
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi, Tsutomu Kakei
  • Patent number: 5618358
    Abstract: A new aluminum based alloy having properties which mimic homogenized DC cast 3003 alloy and a low-cost method for manufacturing it are described. The alloy contains 0.40% to 0.70% Fe, 0.10% to less than 0.30% Mn, more than 0.10% to 0.25% Cu, less than 0.10% Si, optionally up to 0.10% Ti and the balance Al and incidental impurities. The alloy achieves properties similar to homogenized DC cast 3003 when continuously cast followed by cold rolling and if desired annealing at final gauge. Suprisingly no other heat treatments are required.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: April 8, 1997
    Inventors: Thomas Davisson, Sadashiv Nadkarni, Douglas Reesor
  • Patent number: 5616190
    Abstract: The invention relates to a process for producing, by casting between rolls, an aluminum alloy sheet suitable for making up constituent elements of cans for food use, the aluminum alloy containing (by weight) between 1 and 4% of Mg and between 0 and 1.6% of Mn, the process being characterized in that said sheet is obtained by casting of said alloy in the liquid state between two rolls in the form of a strip having a thickness of at most 4 mm followed by at least one heat treatment at a temperature between 400.degree. and 580.degree. C. so that the sheet is at least partially recrystallized and cold-rolling to a final thickness of less than 0.3 mm.The sheet obtained has a yield stress, a formability index and a resistance of the coating to delamination which are improved and make it suitable for application to can manufacture and, in particular, to can lids.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: April 1, 1997
    Assignee: Pechiney Rhenalu
    Inventors: Jean-Marc Legresy, Guy-Michel Raynaud
  • Patent number: 5607524
    Abstract: Methods for making an aluminum drive shaft for automobiles or trucks or other drive shaft applications from aluminum alloy tube and methods for making said tube including using an aluminum alloy containing about 0.5 to 1.3% magnesium, about 0.4 to 1.2% silicon, and about 0.6 to 1.2% copper and preferred practices for making the tube. The preferred practices include extrusion temperature and other aspects of extrusion, along with cold drawing. One preferred practice includes reducing tube diameter and increasing wall thickness at one or both ends of the drive shaft tube shortly after solution heating and quenching and applies to various 6000 Series type aluminum alloys.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: March 4, 1997
    Assignee: Aluminum Company of America
    Inventors: Thomas J. Klemp, John A. Dickson, Jr., Darwin O. Collins
  • Patent number: 5605586
    Abstract: A method for manufacturing an aluminum alloy sheet suitable for high-speed forming includes subjecting the alloy to a homogenization treatment, hot rolling and cold rolling the homogenization treated alloy, thereby obtaining a cold-rolled sheet, and annealing the cold-rolled sheet. The aluminum alloy contains 4.0 to 10.0 wt. % of Mg, 0.2 wt. % of inevitable impurities of Fe and Si, 0.05 wt. % of other impurity elements, and the balance of Al. Another embodiment includes deep drawing the aluminum alloy sheet.
    Type: Grant
    Filed: March 15, 1995
    Date of Patent: February 25, 1997
    Assignees: The Furukawa Electric Co., Ltd., Kawasaki Steel Corporation
    Inventors: Yoichiro Bekki, Minoru Hayashi, Ryo Syoji
  • Patent number: 5571347
    Abstract: Disclosed is an improved aluminum base alloy comprising an improved aluminum base alloy comprising 0.2 to 2 wt. % Si, 0.3 to 1.7 wt. % Mg, 0 to 1.2 wt. % Cu, 0 to 1.1 wt. % Mn, 0.01 to 0.4 wt. % Cr, and at least one of the elements selected from the group consisting of 0.01 to 0.3 wt. % V, 0.001 to 0.1 wt. % Be and 0.01 to 0.1 wt. % Sr, the remainder comprising aluminum, incidental elements and impurities. Also disclosed are methods of casting and thermomechanical processing of the alloy.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: November 5, 1996
    Assignee: Northwest Aluminum Company
    Inventor: S. Craig Bergsma
  • Patent number: 5562784
    Abstract: An aluminum alloy substrate for an electrolytically grainable lithographic printing plate, consisting of an aluminum alloy cold-rolled sheet, produced by a continuous casting and rolling process, comprising 0.20 to 0.80 wt % of Fe with the balance consisting of aluminum, grain refining elements, and unavoidable impurities including 0.3 wt % or less of Si and 0.05 wt % or less of Cu, grains in a surface layer portion having a width of not more than 150 .mu.m in a direction parallel to the sheet surface and normal to the direction of cold rolling and a length, in a direction parallel to the direction of cold rolling, of not more than 8 times the width.
    Type: Grant
    Filed: December 7, 1994
    Date of Patent: October 8, 1996
    Assignees: Nippon Light Metal Company, Ltd., Fuji Photo Film Company, Ltd.
    Inventors: Yasuhisa Nishikawa, Hideki Suzuki, Hirokazu Sakaki, Yoshinori Hotta
  • Patent number: 5549768
    Abstract: A process of cold working followed by rapid recrystallization imparts a localized fine grain morphology in and around surfaces of fastener holes and edges in aluminum materials. A peening tool that may be employed for surface cold working includes a hollow housing with openings for retaining a plurality of ball peens that may be driven by rotating cams or an oscillating tapered piston operating within the housing to force the ball peens to impact the surfaces of an edge, cavity, or fastener hole to which the tool is applied. The tool may be shaped to accommodate straight bored, counter bored, countersunk, and/or edge surfaces and may be applied manually or automatically for cold working over substantially the entire surface area of the edge or cavity. The peening tool effects localized cold working to a predetermined and controlled depth to break up the existing large pancake-shaped grain structure in the surface of the aluminum alloy.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: August 27, 1996
    Assignee: Rockwell International Corporation
    Inventor: Murray W. Mahoney
  • Patent number: 5531840
    Abstract: A method of producing a support for a planographic printing plate, which comprises after continuous casting an aluminum plate having a thickness of not more than 3 mm from molten aluminum by a twin roller continuous casting method, heat-treating the aluminum plate and then reducing the thickness of the plate to 0.5 mm or less by cold rolling.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: July 2, 1996
    Assignee: Fuji Photo Film Co., LTD.
    Inventors: Akio Uesugi, Tsutomu Kakei
  • Patent number: 5527404
    Abstract: An improved elongate aluminum alloy product, and a method of producing such a product, ideally suited for use as a component in a vehicle frame or subassembly, i.e., body-in-white. The alloy consists of essentially 0.45 to 0.7% magnesium, and about 0.35 to 0.6%, silicon, and about 0.1 to 0.35%, vanadium, and, 0.1-0.4% iron, preferably 0.15 to 0.3%, the balance substantially aluminum and incidental elements and impurities.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: June 18, 1996
    Assignee: Aluminum Company of America
    Inventor: Allison S. Warren
  • Patent number: 5525169
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.2 to about 0.65 wt. % magnesium, about 0.02 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.2 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 860.degree. F. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: May 11, 1994
    Date of Patent: June 11, 1996
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 5520754
    Abstract: A composition and method for producing a low density, high stiffness aluminum alloy which is capable of being processed into structural components having a desired combination of tensile strength, fracture toughness and ductility. The method includes the steps of forming, by spray deposition, a solid Al-Li alloy workpiece consisting essentially of the formula Al.sub.bal Li.sub.a Zr.sub.b wherein "a" ranges from greater than about 2.5 to 7 wt %, and "b" ranges from greater than about 0.13 to 0.6 wt %, the balance being aluminum, said alloy having been solidified at a cooling rate of about 10.sup.2 to 10.sup.4 K/sec. The method further includes several variations of selected thermomechanical process steps for: (1) eliminating any residual porosity which may be present in the workpiece as a result of the spray deposition step; and (2) producing components for a wide range of applications.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: May 28, 1996
    Assignee: Lockheed Missiles & Space Company, Inc.
    Inventors: Deborah L. Yaney, Richard E. Lewis
  • Patent number: 5516382
    Abstract: An aluminum alloy useful for drawing and/or ironing, particularly of drink cans. The alloy consists essentially of, in weight percent, Fe<0.25; Si<0.25; Mn from 1.05 to 1.6; Mg from 0.7 to 2.5; Cu from 0.20 to 0.6; Cr from 0 to 0.35; Ti from 0 to 0.1; V from 0 to 0.1; other elements: each <0.05; total<0.15; and remainder Al.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: May 14, 1996
    Assignee: Pechiney Rhenalu
    Inventor: Guy-Michel Raynaud
  • Patent number: 5516374
    Abstract: A method for manufacturing an aluminum alloy sheet for use in a body panel material, comprising: (a) casting a melted aluminum alloy containing Al, Mg, Fe, Mn, Cr, Ti and Zr, having a Mg content of 4 to 10 weight %, and having contents of Fe, Mn, Cr, Ti and Zr which are determined by a value f satisfying the following equation (I), and the balance being Al: 0.4 wt %.ltoreq.f.ltoreq.1.5 wt % (I), wherein, f=(Fe)+1.1 (Mn)+1.1 (Cr)+3 (Ti)+3 (Zr), wherein (Fe), (Mn), (Cr), (Ti), and (Zr) respectively represent the percentage content by weight of Fe, Mn, Cr, Ti and Zr, to form an ingot; (b) hot rolling the ingot to obtain a hot rolled sheet; (c) cold rolling the hot rolled sheet at a cold reduction R satisfying the following equation (II): -log(f-0.2)+8.ltoreq.R.ltoreq.-60 log (f-0.2)+50 (II) to obtain a cold rolled sheet; (d) subjecting the cold rolled sheet to a final annealing treatment including raising the temperature of the rolled sheet to 450.degree. to 550.degree. C. at a rate of 100.degree. C.
    Type: Grant
    Filed: May 4, 1994
    Date of Patent: May 14, 1996
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Tetsushi Habu, Minoru Hayashi, Yoichiro Bekki
  • Patent number: 5512112
    Abstract: A process for producing an aluminum-based alloy composition having improved combinations of strength and fracture toughness. The process includes casting an ingot consisting essentially of 2.5-5.5 percent copper, 0.10-2.30 percent magnesium, with minor amounts of grain refining elements, dispersoid additions and impurities and the balance aluminum. The amounts of copper and magnesium are controlled such that the solid solubility limit for these elements in aluminum is not exceeded. The alloy composition also includes 0.10-1.00 percent silver for improved mechanical properties. The ingot, in accordance with the inventive process, is homogenized and worked to produce a product. The product is solution heat treated to obtain a saturated solid solution and then aged to develop an improved combination of high strength and fracture toughness.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: April 30, 1996
    Assignee: Reynolds Metals Company
    Inventor: William A. Cassada, III
  • Patent number: 5503689
    Abstract: An aluminum alloy composition for sheet product consists essentially of 0.3 to 1.1 wt. % silicon, 0.4 to 1.0 wt. % iron, 0.009 to 0.25 wt. % copper and optionally, minor amounts of manganese, magnesium, chromium, zinc, titanium and other incidental impurities with the balance aluminum. In making aluminum sheet from this composition, the aluminum alloy is continuously cast into an intermediate gauge sheet product and directly cold rolled without an intermediate thermal treatment to final gauge. Optionally, the final gauge sheet product can be subjected to a known temper practice. Using the iron, silicon and copper-containing aluminum alloy composition, a sheet product is produced which has acceptable mechanical properties for use as general purpose aluminum sheet, semi-rigid aluminum container stock, consumer wrap container cutter bars and the like.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: April 2, 1996
    Assignee: Reynolds Metals Company
    Inventors: Bennie R. Ward, Stanley M. Boyd, James P. Martin
  • Patent number: 5490885
    Abstract: A method of treating a blank of an aluminium base alloy comprising a combination of heat treatments and cold forming operations to produce a highly recovered semi-fabricated wrought product that is not statically recrystallized and that is inherently non-superplastic and is capable of superplastic deformation only after an initial non-superplastic deformation to achieve dynamic recrystallization.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: February 13, 1996
    Assignee: Alcan International Limited
    Inventors: William S. Miller, Roger Grimes
  • Patent number: 5466312
    Abstract: A method for making aluminum foil comprises providing an aluminum-based alloy composition consisting essentially of about 0.05 to 0.20 weight percent silicon, about 0.02 to 0.50 weight percent iron, about 0.05 to 0.30 weight percent copper and balance aluminum and inevitable impurities and grain refining elements, wherein the ratio of iron to silicon ranges between about 2:1 and 4:1. The aluminum-alloy composition is continuously cast using a unitary and chilled casting wheel to form a cast strip product of desired width and gauge. The cast strip product is then homogenized, cold rolled and recrystallized annealed into an aluminum foil product. The aluminum-based alloy composition produces a single roll cast product having minimum microshrinkage porosity on the air surface thereof. Reducing or eliminating the microshrinkage porosity in the cast product results in an aluminum foil product having a minimum of pinholes in the final foil product.
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: November 14, 1995
    Assignee: Reynolds Metals Company
    Inventors: Bennie R. Ward, Jr., Sander A. Levy, George A. Sloan
  • Patent number: 5462614
    Abstract: A method of producing a support for a planographic printing plate, which reduces the scattering in the material of the aluminum support, improves the yield of the electrolytic surface graining treatment, and is able to produce lithographic printing plates having superior surface graining aptitude. Aluminum material with a width of 1000 mm and a thickness of 6 mm is formed in the continuous casting twin-roller thin plate device. It is then cold rolled to a plate thickness of 3 mm, and after conducting annealing at 400.degree. C., cold rolling (including correction) is further conducted to bring it to 0.3 mm and form the samples. The temperature distribution of the molten metal at the outlet of the molten metal supply nozzle is kept within a predetermined range.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: October 31, 1995
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi, Masaya Matsuki
  • Patent number: 5456774
    Abstract: A thermo mechanical treatment method for providing super-plasticity to Al--Li alloy being a kind of light and high strength alloys. The thermo mechanical treatment method according the invention comprises steps of, homogenizing Al--Li alloy consisting of Al--Cu--Li--Mg--Zr at a temperature of 500.degree.-500.degree. C. for 10-30 hours, and controlled rolling the alloy at a temperature of 300.degree.-500.degree. C., a rolling speed of 2-20 m/min and a draft percentage per pass of 2-18%. The thermo mechanical treatment of the invention has a wide industrially applicable range and thus an excellent operation efficiency. The thermo mechanical treatment exhibits excellent super-plasticity at a higher strain speed as compared with known treatments.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: October 10, 1995
    Assignee: Korea Institute of Science and Technology
    Inventors: In Ge Moon, Jong Woo Park, Jae Eun Yoo
  • Patent number: 5455003
    Abstract: A method is disclosed for the production of aluminum-copper-lithium alloys that exhibit improved strength and fracture toughness at cryogenic temperatures. Improved cryogenic properties are achieved by controlling the composition of the alloy, along with processing parameters such as the amount of cold-work and artificial aging. The ability to attain substantially equal or greater strength and fracture toughness at cryogenic temperature in comparison to room temperature allows for use of the alloys in cryogenic tanks for space launch vehicles and the like.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: October 3, 1995
    Assignee: Martin Marietta Corporation
    Inventors: Joseph R. Pickens, William T. Tack
  • Patent number: 5437746
    Abstract: An aluminium alloy sheet for various discs having good platability is described. The alloy consists essentially of 2 to 6 wt % of Mg, 0.1 to 0.5 wt % of Zn, 0.03 to 0.40 wt % of Cu, 0.01 to 0.30 wt % of Fe and the balance of Al.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Eiki Usui, Masahiro Kawaguchi
  • Patent number: 5419791
    Abstract: This is a method for heat assisted forming, annealing, and hardening 360.degree. sheet metal shapes in a clean environment in a single facility that results in dimensionally correct, cost-effective, contaminant free parts.
    Type: Grant
    Filed: July 21, 1993
    Date of Patent: May 30, 1995
    Inventor: Carroll W. Folmer
  • Patent number: 5415709
    Abstract: The present invention provides a high-strength, abrasion resistant aluminum alloy having a composition represented by the general formula Al.sub.a M.sub.b X.sub.c Z.sub.d Si.sub.e, wherein M is at least one element selected from the group consisting of Fe, Co, and Ni; X is at least one element selected from the group consisting of Y, La, Ce and Mm (mischmetal); Z is at least one element selected from the group consisting of Mn, Cr, V, Ti, Mo, Zr, W, Ta and Hf; and a, b, c, d and e are all expressed by atom percent and range from 50 to 89 %, 0.5 to 10 %, 0.5 to 10 %, 0 to 10 % and 10 to 49 %, respectively, with the proviso that a+b+c+d+e =100 %, the alloy containing fine Si precipitates and fine particles of intermetallic compounds dispersed in an aluminum matrix. The aluminum alloy may further contain not greater than 5 % of at least one element selected from the group consisting of Cu, Mg, Zn and Li. The alloy can be warm-worked at 300.degree.-500.degree. C.
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: May 16, 1995
    Assignee: YKK Corporation
    Inventor: Kazuhiko Kita
  • Patent number: 5413650
    Abstract: The mechanical properties of aluminium alloy extrusion in a specified transverse direction are improved by upsetting the extrusion billet in at least one direction chosen with reference to the specified transverse direction. For example, the extrusion billet may be of generally circular cross-section with one or two opposite segments arising. The extrusion may be subjected to thermomechanical treatment and/or vibration treatment. A preferred final thermomechanical treatment is also described.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: May 9, 1995
    Assignee: Alcan International Limited
    Inventors: Martin R. Jarrett, William Dixon
  • Patent number: 5405462
    Abstract: A superplastic aluminum-based alloy material consisting of a matrix formed of aluminum or a supersaturated aluminum solid solution, whose average crystal grain size is 0.005 to 1 .mu.m, and particles made of a stable or metastable phase of various intermetallic compounds formed of the main alloying element (i.e., the matrix element) and the other alloying elements and/or of various intermetallic compounds formed of the other alloying elements and distributed evenly in the matrix, the particles having a mean particle size of 0.001 to 0.1 .mu.m. The superplastic aluminum-based alloy material is produced from a rapidly solidified material consisting of an amorphous phase, a microcrystalline phase or a mixed phase thereof by optionally heat treating at a prescribed temperature for a prescribed period of time and then subjecting to a single or combined thermo-mechanical treatment. The superplastic aluminum-based alloy material of the present invention is suited for to superplastic working.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: April 11, 1995
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Katsumasa Ohtera, Makoto Kawanishi
  • Patent number: 5341303
    Abstract: A method is disclosed for developing the contours of forming tools for fabricating metal members of complex shape such as wing skin and fuselage panels for aircraft. A computer simulation is performed of the age forming process on a geometrical representation of a member having the material properties of a desired metal member. The age forming process includes the steps of: a) overforming an unformed member in a tool having a contour of smaller curvature than the contour of the desired member; b) constraining the unformed member in the overformed condition; c) applying a thermal aging cycle to the member; d) cooling the constrained member following the thermal aging cycle; and e) releasing the constrained member from the condition imparted by step (b) and allowing it to spring back to a dimensionally stable condition which defines the desired member having a surface contour of complex shape.
    Type: Grant
    Filed: March 25, 1993
    Date of Patent: August 23, 1994
    Assignee: Avco Corporation
    Inventors: Saeed D. Foroudastan, Mitchell C. Holman
  • Patent number: 5332456
    Abstract: A superplastic aluminum-based alloy material consisting of a matrix formed of aluminum or a supersaturated aluminum solid solution, whose average crystal grain size is 0.005 to 1 .mu.m, and particles made of a stable or metastable phase of various intermetallic compounds formed of the main alloying element (i.e., the matrix element) and the other alloying elements and/or of various intermetallic compounds formed of the other alloying elements and distributed evenly in the matrix, the particles having a mean particle size of 0.001 to 0.1 .mu.m. The superplastic aluminum-based alloy material is produced from a rapidly solidified material consisting of an amorphous phase, a microcrystalline phase or a mixed phase thereof by optionally heat treating the material at a prescribed temperature for a prescribed period of time and then subjecting it to a single or combined thermomechanical treatment. The superplastic aluminum-based alloy material of the present invention is suited for superplastic working.
    Type: Grant
    Filed: September 25, 1992
    Date of Patent: July 26, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Katsumasa Ohtera, Makoto Kawanishi
  • Patent number: 5312498
    Abstract: A method of producing an aluminum-based alloy product having improved exfoliation resistance and fracture toughness which comprises providing an aluminum-based alloy composition consisting essentially of about 5.5-10.0% by weight of zinc, about 1.75-2.6% by weight of magnesium, about 1.8-2.75% by weight of copper with the balance aluminum and other elements. The aluminum-based alloy is worked, heat treated, quenched and aged to produce a product having improved corrosion resistance and mechanical properties. The amounts of zinc, magnesium and copper are stoichiometrically balanced such that after precipitation is essentially complete as a result of the aging process, no excess elements are present. The method of producing the aluminum-based alloy product utilizes either a one- or two-step aging process in conjunction with the stoichiometrically balancing of copper, magnesium and zinc.
    Type: Grant
    Filed: August 13, 1992
    Date of Patent: May 17, 1994
    Assignee: Reynolds Metals Company
    Inventor: Kevin R. Anderson
  • Patent number: 5306362
    Abstract: The invention provides an aluminum alloy material consisting essentially of, by weight percent, 1% to 1.8% Cu, 0.8% to 1.4% Mg, 0.2% to 0.39% Si, 0.5% to 0.4% Fe, 0.05% to 0.40% Mn, with the balance aluminum with normal impurities. The alloy forms two precipitation phases during heat treatment and age hardening: a beta phase of Mg.sub.2 Si and an S' phase of Al.sub.2 CuMg. The alloy has improved formability without significant sacrifice of strength, and is particularly suited to be formed into automobile sheet metal parts such as hood lids, trunks lids, and fenders.
    Type: Grant
    Filed: September 23, 1992
    Date of Patent: April 26, 1994
    Assignee: Alcan International Limited
    Inventors: Alok K. Gupta, David J. Lloyd, Pierre H. Marois
  • Patent number: 5302218
    Abstract: An aluminum alloy member is heated to 470.degree.-550.degree. C., and is quenched to room temperature for hardening. Then the aluminum alloy member is heated to 160.degree.-220.degree. C., and is cooled, which is carried out in a cooling process of a tempering treatment. As the aluminum alloy member is in a softening state in the cooling process, plastic working such as shot peening treatment is performed on the surface of the aluminum alloy member. Thereafter, the temperature of the aluminum alloy member falls to room temperature. In this way, it is possible to generate a great amount of compression residual stress in the aluminum alloy member, without performing a severe plastic working treatment on the surface thereof. Since the present invention requires no severe plastic working treatments on the surface of the aluminum alloy member, this causes no severe surface roughness thereon.
    Type: Grant
    Filed: September 22, 1992
    Date of Patent: April 12, 1994
    Assignee: Mazda Motor Corporation
    Inventors: Kazuhiko Shirai, Masaru Takatoo