By Electrical Induction Patents (Class 164/493)
  • Patent number: 8333230
    Abstract: A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: December 18, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Kenneth C. Marsden, Mitchell K. Meyer, Blair K. Grover, Randall S. Fielding, Billy W. Wolfensberger
  • Publication number: 20120279678
    Abstract: Processes and methods related to producing, processing, and hot working alloy ingots are disclosed. An alloy ingot is formed including an inner ingot core and an outer layer metallurgically bonded to the inner ingot core. The processes and methods are characterized by a reduction in the incidence of surface cracking of the alloy ingot during hot working.
    Type: Application
    Filed: June 26, 2012
    Publication date: November 8, 2012
    Applicant: ATI PROPERTIES, INC.
    Inventor: Ramesh S. Minisandram
  • Publication number: 20120145353
    Abstract: Disclosed is a method for producing alloy ingot including: a step of: charging alloy starting material into a cold crucible in a cold-crucible induction melter, and forming melt pool of the alloy starting material by induction heating in inert gas atmosphere; a step of continuing the induction heating and adding first refining agent to the melt pool, and then reducing the content of at least phosphorus from among impurity elements present in the melt pool; and a step of forming alloy ingot by solidifying the melt, the phosphorus content of which has been reduced. The first refining agent is mixture of metallic Ca and flux, where the flux contains CaF2 and at least one of CaO and CaCl2. The weight proportion of the sum of CaO and CaCl2 with respect to CaF2 ranges from 5 to 30 wt % and the weight proportion of metallic Ca with respect to the melt pool is 0.4 wt % or greater.
    Type: Application
    Filed: July 15, 2010
    Publication date: June 14, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Jumpei Nakayama, Tatsuhiko Kusamichi
  • Publication number: 20120024108
    Abstract: A system and process for reclaiming nickel and cadmium from a feed source such as Ni—Cd batteries. The feed source is shredded to produce feed particles, screened to size the particles, magnetically separated to remove non-metallic materials, and induction heated to generate nickel and cadmium products.
    Type: Application
    Filed: October 10, 2011
    Publication date: February 2, 2012
    Applicant: METAL CONVERSION TECHNOLOGIES, LLC
    Inventor: John A. PATTERSON
  • Publication number: 20120018115
    Abstract: A process produces a 3-dimensional component (16) by selective laser melting (SLM), in which the component (16) is formed on a foundation with a surface, e.g., a platform (10) or a support, which in particular is a component of the same type which has already been produced previously, by successively melting layers of a first metal powder to form a sequence of stacked layers. The process is substantially simplified and made more flexible by virtue of the fact that the separation of the finished component (16) from the surface of the platform (10) or the support thereof is simplified by providing a separating layer (11) between the component (16) and the platform (10) or the support, this separating layer making it possible to separate the finished component (16) from the platform (10) or the support without damaging the finished component (16).
    Type: Application
    Filed: January 20, 2011
    Publication date: January 26, 2012
    Inventors: SIMONE HÖVEL, ALEXANDER STANKOWSKI, LUKAS RICKENBACHER
  • Patent number: 8087449
    Abstract: A rolling method in a rolling line, to obtain strip with a thickness varying from 0.7 mm to 20 mm, for steel which can be cast in the form of thin slabs with a thickness from 30 mm to 140 mm, the line includes a continuous casting device; a tunnel furnace for maintenance/equalization and possible heating; a rolling train having a roughing train and a finishing train; a rapid heating unit, with elements able to be selectively activated, interposed between the roughing train and the finishing train. For each lay-out of the rolling line, the position of the rapid heating unit which defines the number of stands which form the roughing train, disposed upstream of the unit, and the number of stands which form the finishing train, disposed downstream of the unit, is calculated as a function of the product of the thickness and speed of the thin slab.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: January 3, 2012
    Assignee: Danieli & C. Officine Meccaniche SpA
    Inventors: Gianpietro Benedetti, Paolo Bobig
  • Patent number: 8056608
    Abstract: A method of mitigating against thermal contraction induced cracking during casting of a super Ni alloy, the method comprising: pouring liquid alloy into a mould such that liquid alloy is present in a feeder of said mould; and inducing an electrical current in alloy in said feeder to reduce a rate of cooling of alloy in said feeder.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: November 15, 2011
    Assignee: Goodwin PLC
    Inventors: Richard Stanley Goodwin, Stephen Roberts
  • Publication number: 20110195269
    Abstract: Processes and methods related to producing, processing, and hot working alloy ingots are disclosed. An alloy ingot is formed including an inner ingot core and an outer layer metallurgically bonded to the inner ingot core. The processes and methods are characterized by a reduction in the incidence of surface cracking of the alloy ingot during hot working.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 11, 2011
    Applicant: ATI Properties, Inc.
    Inventor: Ramesh S. Minisandram
  • Patent number: 7967057
    Abstract: There is described a method for producing ultrahigh-purity Fe-base, Ni-base, and Co-base alloying materials to achieve impurity levels of (C+O+N+S+P)<100 ppm, and Ca<10 ppm, in the form of a large ingot, using a refining flux while forcibly cooling the crucible. A refining flux selected from the group consisting of metal elements of the Groups IA, IIA, and IIIA of the Periodic Table, oxides thereof, halides thereof, and mixtures thereof, is added to the molten metal during primary melting and the molten metal is held in contact with the refining flux for at least 5 minutes before tapping. Thereafter, the molten metal is caused to undergo solidification inside a mold, thereby producing a primary ingot.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: June 28, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Kazutaka Kunii, Tatsuhiko Kusamichi, Jumpei Nakayama, Kiyoshi Kiuchi
  • Publication number: 20110132659
    Abstract: Provided are an aluminum alloy having high toughness and high electric conductivity, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, a wire harness, and a process for production of an aluminum alloy wire. The aluminum alloy wire contains by mass 0.2 to 1.0% of Mg, 0.1 to 1.0% of Si, and 0.1 to 0.5% of Cu with the balance being Al and impurities and satisfies the relationship: 0.8?Mg/Si mass ratio?2.7. The Al alloy wire exhibits an electric conductivity of 58% IACS or above and an elongation of 10% or above. The Al alloy wire is produced via successive steps of casting, rolling, wire drawing, and softening treatment. Since the Al alloy wire has been subjected to softening treatment, the wire is excellent in toughnesses such as elongation and impact resistance, so that when used in a wire harness, the wire is inhibited from being broken in the neighborhood of a terminal in mounting the wire harness.
    Type: Application
    Filed: June 12, 2009
    Publication date: June 9, 2011
    Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
  • Patent number: 7942191
    Abstract: A method for producing a wide steel strip using thin slab continuous casting and rolling by the following steps a) casting a molten steel into a thin slab having a thickness of between 50 and 90 mm; b) cutting; c) soaking; d) heating by electromagnetic induction; e) descaling; f) rolling; g) cooling with laminar flow; and h) coiling. The method can effectively control the solution and precipitation of carbon, nitrogen, and sulfide in steel with a low cost. The process is easy and flexible, and steel can be produced in a wide range of categories. Further provided is a system for producing a wide steel strip with thin slab continuous casting and rolling.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: May 17, 2011
    Assignee: Wuhan Iron and Steel (Group) Corp
    Inventors: Chao Zhang, Zhonghan Luo, Zemin Fang, Jionghui Mao, Shenglin Chen, Ruoping Wang, Xiangxin Wang
  • Publication number: 20110100514
    Abstract: A zirconium-based amorphous alloy includes 10.0 to 15.0 wt % copper, 7.0 to 13.0 wt % nickel, 5.0 to 8.0 wt % niobium, and 2.0 to 5.0 wt % aluminum, with the remainder zirconium and unavoidable impurities. A method for constructing a spectacle frame, comprises forming a nickel-niobium alloy, a weight ratio of the nickel and the niobium of which is being in a range between 7:8 and 13:5, melting the nickel-niobium alloy, mixing the molten the nickel-niobium alloy with 55.0 to 75.0 wt % Zr, 10.0 to 15.0 wt % Cu, and 2.0 to 6.0 wt % Al to form a master alloy, melting the master alloy, and molding the master alloy into a spectacle frame.
    Type: Application
    Filed: September 30, 2010
    Publication date: May 5, 2011
    Applicants: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: QING LIU, YI-MIN JIANG
  • Publication number: 20110094705
    Abstract: Methods for centrifugally casting a highly reactive titanium metal involving providing a cold wall induction crucible having a plurality of induction coils and a removable bottom plate, using a power source to heat a titanium metal charge in the induction crucible to obtain a molten metal, preheating a secondary crucible and placing the preheated secondary crucible into a centrifugal casting machine, positioning the centrifugal casting machine having the secondary crucible beneath the induction crucible, withdrawing the bottom plate of the induction crucible and turning off the power source to the induction crucible to allow the molten metal to fall from the induction crucible into the secondary crucible, and accelerating the secondary crucible to centrifugally force the molten metal into a casting mold to produce a cast component.
    Type: Application
    Filed: November 27, 2007
    Publication date: April 28, 2011
    Inventors: THOMAS JOSEPH KELLY, MICHAEL JAMES WEIMER
  • Publication number: 20110036535
    Abstract: A method of mitigating against thermal contraction induced cracking during casting of a super Ni alloy, the method comprising: pouring liquid alloy into a mould such that liquid alloy is present in a feeder of said mould; and inducing an electrical current in alloy in said feeder to reduce a rate of cooling of alloy in said feeder.
    Type: Application
    Filed: April 24, 2009
    Publication date: February 17, 2011
    Applicant: GOODWIN PLC
    Inventors: Richard Stanley Goodwin, Stephen Roberts
  • Publication number: 20110036534
    Abstract: A process for producing a lithium-containing alloy material is described. The process supplies a light alloy material applicable to the design of lightweight structural components. The process includes first melting alloy materials at a required ratio into a homogeneous alloy melt, then pouring the alloy melt into a ladle protected with an inert gas and pre-filled with a lithium material, where the lithium material is vigorously flushed and mixed with a hot stream of the alloy melt, and diffused into the alloy melt, and then after uniformly mixing, pouring the lithium-containing alloy melt into a mold to form an ingot and produce a lithium alloy. The process solves the fundamental problems of both contamination and uncontrolled component caused by longtime overheat in traditional melting techniques, and is a novel, safe, economic, and efficient manufacture process.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Applicant: AMLI MATERIALS TECHNOLOGY CO., LTD
    Inventors: Ming Tarng Yeh, Yum Cherng Tai, Jung Shun Fu, Shih Wei Chen
  • Publication number: 20110000584
    Abstract: The invention refers to a process for forming a steel component, incorporating the steps of—providing a blank having substantially the volume of the component to be formed,—heating the blank to a semi solid state with a specific liquid fraction,—forming the blank with a forging technique to a component of near net shape dimensions,—subjecting the formed, near net shape component, to a normalization combined with a hardening,—subjecting the normalized and hardened near net shape component to machining to give the component net shape.
    Type: Application
    Filed: November 6, 2008
    Publication date: January 6, 2011
    Inventors: Patrik Dahlman, Martin Friis, Henrik Karlsson
  • Publication number: 20100212856
    Abstract: The invention relates to a method for producing a metal strip (1) by continuous casting and rolling. According to said method, a thin slab (3) is initially cast into a casting machine (2), which is subsequently rolled in at least one rolling train (4, 5) using primary heat from the casting cycle. According to the invention, in order to improve the functionality of the continuous casting and rolling installation, the cast thin slab (3) is passed between the casting machine (2) and the at least one rolling train (4, 5) and at least one holding oven (6) as well as at least one induction oven (7). The holding oven (6) and the induction oven (7) are activated or deactivated according to a selected mode of operation, that is, a first mode of operation for the continuous production of the metal strip (1) and a second mode of operation for the discontinuous production of the metal strip (1). The invention further relates to a device for producing a metal strip by continuous casting and rolling.
    Type: Application
    Filed: December 7, 2006
    Publication date: August 26, 2010
    Inventors: Dieter Rosenthal, Stephan Krämer, Jürgen Seidel, Frank Benfer
  • Publication number: 20100181041
    Abstract: The invention concerns a production of precision castings by centrifugal casting, comprising the following steps: a) providing a centrifugal casting device having a rotor (1) being rotatable around an axis (A), and at least one crucible (8) being accommodated in the rotor (1) and at least one mold (4) being associated with said crucible (8) and being accommodated in a first radial distance (r1) from the axis (A), b) creating a metal melt (15) within the crucible (8), c) rotating the rotor (1) and thereby forcing the melt (15) by means of centrifugal forces from the crucible (8) into the mold (4), d) exerting a pressure on the melt (15) being forced into the mold (4) until the temperature of the solidifying melt (15) has reached a predetermined cooling-temperature in a range of 1300° to 800° C., wherein the pressure corresponds to the centrifugal force acting on the melt (15) at the moment when the mold (4) is completely filled times a factor of 1.0 to 5.
    Type: Application
    Filed: October 23, 2006
    Publication date: July 22, 2010
    Inventor: Manfred Renkel
  • Patent number: 7749433
    Abstract: The invention relates to a high-hardness palladium alloy for manufacturing semi-finished products to be used in goldsmith's art or jewels to be obtained by the lost wax casting method, which comprises, in the following concentrations, expressed in thousandths by weight (‰): palladium from 948 to 990‰; copper from 0.0 to 50‰; indium from 0.0 to 50‰; gallium from 1 to 48‰; aluminium from 0.8 to 49.5‰; ruthenium from 0.0 to 50‰; rhenium from 0.0 to 50‰; silicon from 0.1 to 1.2‰; platinum from 0.0 to 40‰; nickel from 0.0 to 50‰; iridium from 0.0 to 40‰. In the manufacturing process of the above alloy, the component elements of said alloy are placed in a crucible, respectively made of zirconia, boron nitride or other ceramic material, and are melted using the induction method and using a protective atmosphere, respectively of argon, nitrogen or other inert gas.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: July 6, 2010
    Assignee: 8853 S.p.A.
    Inventor: Paolo Battaini
  • Publication number: 20100012288
    Abstract: A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Kenneth C. Marsden, Mitchell K. Meyer, Blair K. Grover, Randall S. Fielding, Billy W. Wolfensberger
  • Publication number: 20100000706
    Abstract: The invention concerns a method for production of a turbine blades by centrifugal casting, the turbine blade having a leading edge portion with a first thickness and a flowing-off edge portion with a second thickness being smaller than the first thickness, comprising the following steps: a) providing a centrifugal casting device having a rotor (1) being rotatable around an axis (A), and at least one crucible (8) being accommodated in the rotor (1), the crucible having at least one outlet opening, b) providing a mold (4) having an extended cavity (20) for forming the turbine blade, c) arranging the mold (4) at a radially outward position with respect to the crucible (8), so that an inlet opening (5) of the mold (4) is arranged vis-a-vis with an outlet opening (9) of the crucible (8), and further arranging the mold (4) so that a mold leading edge (21) is directed in a direction against the rotational direction of the rotor (1), d) rotating the rotor (1) and thereby forcing a metal melt (15) by means of centrif
    Type: Application
    Filed: February 7, 2007
    Publication date: January 7, 2010
    Inventor: Manfred Renkel
  • Patent number: 7540316
    Abstract: Method for inductive heating of a material located in a channel, the material having a melting range between a solidus temperature and a liquidus temperature. The method includes providing an internal inductive heating assembly in the material in the channel, and supplying a signal to the assembly to generate a magnetic flux in at least one of the assembly and material. The magnetic flux generates inductive heating of the assembly and/or the material and a physical agitation which lowers the solidus temperature of the material to a reduced solidus temperature.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: June 2, 2009
    Assignee: iTherm Technologies, L.P.
    Inventors: Wayne N. Collette, Kyle B. Clark, Valery Kagan, Stefan von Buren
  • Publication number: 20090038772
    Abstract: There is provided an induction-melting apparatus capable of exhibiting high refining performance without inflicting damage to a crucible even if a halide-compound base refining flux is used upon induction-melting of an ultrahigh-purity high melting-point metal, having a melting point reaching 1500° C., and a method for induction-melting using the same. There is also provided a melting method for enabling production of ultrahigh-purity Fe-base, Ni-base, and Co-base alloying materials, each having an impurity level of (C+O+N+S+P)<100 ppm, and Ca<10 ppm, and in the form of a large ingot. Further, with the induction-melting apparatus, a plurality of tubular segments are disposed so as to be cylindrical in shape, a gap in a range of 1.
    Type: Application
    Filed: November 21, 2006
    Publication date: February 12, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Kazutaka Kunii, Tatsuhiko Kusamichi, Jumpei Nakayama, Kiyoshi Kiuchi
  • Publication number: 20080251233
    Abstract: An integrated process control installation is provided for electric induction metal melting furnaces with variable furnace states. The integrated process control installation can include supporting charge delivery and slag removal installations, and furnace process operations for process control of melting metal in the furnaces. The variable furnace states, supporting installations, and furnace process operations are controlled by a supporting processing installation, while a robotic apparatus performs the furnace process operations.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 16, 2008
    Inventors: John H. Mortimer, Peter Aruanno, Emad Tabatabaei, Satyen N. Prabhu
  • Publication number: 20080096043
    Abstract: The present invention relates to a method of production of functionally graded materials based on an incremental melting and solidification process. Its operation principle can be described as follows: the materials (metal elements, alloys or ceramics) are melt by the induction heating in the mould, and the continual granules, powders or wire, or even liquid materials, of another metal alloys are fed to the mould. The heating zone is limited to a small part of the mould. The incremental melting and solidification process proceeds from the bottom to the top of the mould by changing the relative position between the mould and the heating apparatus. Usage of this method ensures the obtainment of components with no particular alloy composition, but with a gradual changing of the chemical composition along the casting.
    Type: Application
    Filed: July 27, 2004
    Publication date: April 24, 2008
    Applicant: UNIVERSIDADE DO MINHO
    Inventor: Filipe Samuel Correia Pereira Da Silva
  • Publication number: 20080063556
    Abstract: The invention relates to a high-hardness palladium alloy for manufacturing semi-finished products to be used in goldsmith's art or jewels to be obtained by the lost wax casting method, which comprises, in the following concentrations, expressed in thousandths by weight (%) palladium from 948 to 990%; copper from 0.0 a 50%; indium from 0.0 to 50%; gallium from 1 to 48%; aluminium from 0.8 to 49.5%; ruthenium from 0.0 to 50%; rhenium from 0.0 to 50%; silicon from 0.1 to 1.2%; platinum from 0.0 to 40%; nickel from 0.0 to 50%; iridium from 0.0 to 40%. In the manufacturing process of the above alloy, the component elements of said alloy are placed in a crucible, respectively made of zirconia, boron nitride or other ceramic material, and are melted using the induction method and using a protective atmosphere, respectively of argon, nitrogen or other inert gas.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 13, 2008
    Inventor: PAOLO BATTAINI
  • Patent number: 7246649
    Abstract: A diecast machine comprises: a sleeve extending in the vertical direction; a plunger moving upward in the vertical direction inside the sleeve; a mold disposed above an upper side of the sleeve; a case member constituted of a nonconductive member, which covers at least a lower end of the sleeve and forms a closed space including the lower end of the sleeve; a communicating pipe connecting the inside of the closed space to the outside of the closed space; and high-frequency induction coil configured to heat metal material disposed on the plunger from the outside of the case member and melt the metal material.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: July 24, 2007
    Assignees: NGK Insulators, Ltd., Tohoku University
    Inventors: Naokuni Muramatsu, Akihisa Inoue, Hisamichi Kimura
  • Publication number: 20030205358
    Abstract: To restrict to a low level a temperature gradient of an ingot immediately after solidification in a bottomless crucible in a electromagnetic induction casting method using an electrically conductive bottomless crucible. An upper section and a lower section of an electrically conductive bottomless crucible to be disposed inside an induction coil are configured as a water-cooled section and a non-water-cooled section. Both the water-cooled section and the non-water-cooled section are divided by vertical slits into a plurality of portions in a circumferential direction. Rapid cooling with water in the lower section of the crucible is restricted.
    Type: Application
    Filed: September 26, 2001
    Publication date: November 6, 2003
    Inventors: Naritoshi Kimura, Kenichi Sasatani, Kyojiro Kaneko
  • Patent number: 6550526
    Abstract: The invention relates to a crucible induction furnace for producing cast parts consisting of aluminum and magnesium alloys, especially particle-reinforced alloys. According to the invention, the material being melted is directly, inductively heated and stirred in an electrically non-conductive, refractory lining or crucible.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: April 22, 2003
    Assignee: Honsel GmbH & Co., KG
    Inventors: Dieter Brungs, Andreas Kessler, Manfred Dette
  • Patent number: 6250363
    Abstract: A composite material is rapidly melted by furnishing a pre-wetted composite material in the form of granules, placing the granules into an induction coil, and powering the induction heater to melt the metal matrix portion of the granules to form a molten mixture. High power inputs to the induction coil may be used, so that the granules are rapidly heated to their melting point and to temperatures above the melting point, from which the molten mixture may be cast. Because of the rapid heating, otherwise-reactive composite materials may be prepared by melting in air.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: June 26, 2001
    Assignee: Alcan International Ltd.
    Inventors: Don Doutre, Gary Hay, Peter Wales, Richard S. Bruski
  • Patent number: 6146438
    Abstract: An apparatus and method of forming balls includes a metering device 2, a melting device 14 and a cooling device 20. The metering device 14 stamps a desired volume of solid material in the form of a slug 12 which passes through the melting device 14 where it is caused to levitate and transform state from a solid to a molten liquid. The molten liquid material 13 is released from the melting device 14 and descends through the cooling device 20 where it transforms state once again from a molten material to a solid material while maintaining a ball shape. A forming gas is passed over the molten material 13 in a direction opposite to the falling molten material 13. The balls 15 are finally cooled in a cooling bath 32.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: November 14, 2000
    Assignee: The Whitaker Corporation
    Inventors: Dimitry Grabbe, Iosif Korsunksy
  • Patent number: 6059015
    Abstract: A method for directional solidification (DS) of a molten material, and an apparatus therefor. The method generally entails the use of a container having a base and peripheral wall that define an interior of the container, an induction coil for heating the contents of the container and generating an electromagnetic field, and means for controllably separating the container from the heating means and the electromagnetic field, such as by withdrawing the container from the heating means and electromagnetic field. Using such an apparatus, a material is heated within the container to yield a melt that is substantially prevented from contacting the wall of the container as a result of being at least partially levitated by the electromagnetic field. The container is then separated, e.g.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: May 9, 2000
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Dennis Joseph Dalpe
  • Patent number: 5925199
    Abstract: Solid and liquid phases coexist in a semi-molten casting material. A plurality of composite-solid phases having liquid and solid phase regions and a plurality of single-solid phases exist as the solid phases in a mixed state in an outer layer portion of the semi-molten casting material. If the sectional area of the solid phase region is represented by A, and the sectional area of the solid phase region is represented by B in one of the composite-solid phases, the liquid phase enclosure rate P of the composite-solid phase is defined as being represented by P={B/(A+B)}.times.100 (%). The liquid phase enclosure rate P of the single-solid phase is equal to 0 (%). When two groups are selected from a class of the solid phases, for example, by first and second straight lines so as to include a plurality of the solid phases, average values M.sub.1 and M.sub.2 of liquid phase enclosure rates of, for example, six solid phases in each of the first and second groups are represented by M.sub.1 =(P.sub.1 +P.sub.2 - - - +P.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: July 20, 1999
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Haruo Shiina, Nobuhiro Saito, Takeyoshi Nakamura
  • Patent number: 5901776
    Abstract: A refractory guide member and a method for heating the refractory guide member by use of an inductor, where at least one collateral electromagnetic field located in a region spaced apart from the inductor is generated by the inductor. The mold part is made of an electrically conductive layer with several insulating interrupting slots for the controlled deflection of eddy currents from a main field generated by the inductor into a region spaced apart from the inductor.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: May 11, 1999
    Assignee: Didier-Werke AG
    Inventors: Raimund Bruckner, Rudiger Grau, Daniel Grimm, Seyed Masoud Hashemi, Karl-Heinz Spitzer
  • Patent number: 5837055
    Abstract: Disclosed is a levitation melting method comprising applying a high-frequency current to a high frequency induction coil wound around a melting crucible to induction-heat a material introduced to the melting crucible; and erecting the resulting molten metal to be in no contact with the inner wall surface of the melting crucible with the bottom of the material being maintained in the solidified state; wherein a power input P of a high-frequency power source to the high-frequency induction coil, an inner radius R at the bottom of the crucible and super heat .DELTA.T of the molten metal satisfy the relationship of P/R2=.DELTA.T.multidot.(0.0008 to 0.002), as well as, a melting and casting method for casting the molten metal prepared by the levitation melting method described above into a mold using a snout suspended above the melting crucible such that the lower end of the snout may be submerged in the molten metal.
    Type: Grant
    Filed: May 1, 1996
    Date of Patent: November 17, 1998
    Assignee: Daido Tokushuko Kaisha
    Inventors: Junji Yamada, Noboru Demukai
  • Patent number: 5819837
    Abstract: Metal is melted in an induction-heated crucible (13) on which a mold (10) with a downward-facing filling opening (26) is located in the melting position. After melting the metal, the crucible (13) and the mold (10) are jointly rotated about a horizontal axis (A--A) into a tilting position in which the molten material flows from the crucible (13) into the mold (10). In order to melt reactive metals, melting is done in a crucible (13) that is surrounded by a vacuum, this crucible being surrounded by an induction coil (15) outside of the vacuum. The mold (10) is located in a vacuum-sealed casting chamber (6) which is evacuated together with the crucible (13) prior to melting and casting is carried out by a joint tilting of the crucible (13), casting chamber (6) and mold (10) by at least 180 degrees while the vacuum is maintained.
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: October 13, 1998
    Assignee: ALD Vacuum Technologies GmbH
    Inventors: Franz Hugo, Jakob Huber, Robert Y. Abramson, John Sheehan
  • Patent number: 5810066
    Abstract: A system and method of electroslag refining of metal is taught. The system and method includes the introduction of unrefined metal into an electroslag refining process in which the unrefined metal is first melted at the upper surface of the refining slag. The molten metal is refined as it passes through the molten slag. The refined metal is collected in a cold hearth apparatus having a skull of refined metal formed on the surface of the cold hearth for protecting the cold hearth from the leaching action of the refined molten metal. A cold finger bottom pour spout is formed at the bottom of the cold hearth to permit dispensing of molten refined metal from the cold hearth. The dimensions of the cold finger apparatus pour spout are controlled by positioning a retaining means around the outer surface of the pour spout thereby controlling the flow rate of molten metal through the cold finger apparatus.
    Type: Grant
    Filed: December 21, 1995
    Date of Patent: September 22, 1998
    Assignee: General Electric Company
    Inventors: Bruce Alan Knudsen, Robert John Zabala, Mark Gilbert Benz, William Thomas Carter, Jr., Paul Leonard Dupree
  • Patent number: 5769151
    Abstract: Methods for controlling the superheat of the stream of molten metal from an electroslag refining apparatus is taught. The methods include the introduction of unrefined metal into an electroslag refining process apparatus in which the unrefined metal is first melted at the upper surface of the refining slag. The molten metal is refined as it passes through the molten slag. The refined metal is collected in a cold hearth apparatus having a skull of refined metal formed on the surface of the cold hearth for protecting the cold hearth from the leaching action of the refined molten metal. A cold finger bottom pour spout or exit orifice is formed at the bottom of the cold hearth to permit dispensing of molten refined metal from the cold hearth.
    Type: Grant
    Filed: December 21, 1995
    Date of Patent: June 23, 1998
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jr., Mark Gilbert Benz, Robert John Zabala, Bruce Alan Knudsen, Paul Leonard Dupree
  • Patent number: 5738163
    Abstract: A levitation melting method and device through which a material having various configurations can be melted through efficient induction heating. First, a starting material(WB), whose outer diameter has been adapted to the inner diameter of a crucible(13), is inserted in crucible(13). The crucible(13) is shielded with argon gas, thereby starting the melting of the material(WB) to molten metal(WM). Subsequently, a suction tube(33) of a mold(31) is inserted into the molten metal(WM) for drawing a part of molten metal(WM) up into the mold(31) for casting. After part of the molten metal(WM) is drawn up, a sliding cover(15) is slid such that a material holder(19) is positioned right above the crucible(13). By opening a sliding plate(35) of the material holder(19), material pieces(WS) are inserted from the material holder(19) into the molten metal(WM) left in the crucible(13).
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: April 14, 1998
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Noboru Demukai, Masayuki Yamamoto, Junji Yamada
  • Patent number: 5722481
    Abstract: Molten metal melted in a levitation melting furnace is cast through a suction pipe immersed therein from above into a mold having a gas permeability in a double-structure mold chamber arranged directly above the melting furnace. The metal is levitation-melted in an inert atmosphere under atmospheric pressure. An outer mold chamber of the double-structure mold chamber is joined to the levitation melting furnace. Pressure in the outer mold chamber and in an inner mold chamber of the double-structure mold chamber and in an upper space in the levitation melting furnace is reduced to below atmospheric pressure. The suction pipe arranged in the inner mold chamber and communicating with the mold therein is immersed into the molten metal. The molten metal is cast into the mold under an increased pressure by blowing an inert gas into the upper space in the melting furnace. The inner mold chamber is raised, thereby pulling out the suction pipe from the molten metal.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: March 3, 1998
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Junji Yamada, Noboru Demukai, Masayuki Yamamoto
  • Patent number: 5665437
    Abstract: A process and a device for coating the surface of strip material, especially non-ferrous metal and steel strip, with a metal coating, wherein the material is conducted without reversal of direction through a container holding the molten coating material. The container has a passage duct below the level of the melting bath, in which induction currents are induced by an electromagnetic travelling field and produce, in interaction with the electromagnetic travelling field, an electromagnetic force for restraining the coating material. In order to stabilize the melt in the passage duct as well as in the container, and in order to attain, to a large extent, a counterbalance between hydrostatic and electromagnetic forces, a constant direct or alternating current field is directed opposite to the travelling field in the area near the container, damping the movement in the coating material.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 9, 1997
    Assignee: Mannesmann Aktiengesellschaft
    Inventors: Klaus Frommann, Walter Ottersbach, Werner Haupt, Vladimir A. Paramonov, Anatolij I. Tychinin, Anatolij I. Moroz, Boris L. Birger, Vladimir M. Foliforow
  • Patent number: 5579825
    Abstract: A die casting method and a die casting machine of the invention is provided. The method comprises the steps of forming a casting sleeve comprising an inner cylinder and an outer cylinder, having a conductor material, and disposing an induction coil on the outer periphery of the outer cylinder. The conductor material may be in the form of a plurality of conductors uncontinuously disposed about the cylinder or it may be in the form of a single conducting material having a plurality of slits. A material to be cast in the casting sleeve may be heated, maintained a constant temperature and stirred by electromagnetic induction. The material may be substantially separated from the wall face of the casting sleeve by an electromagnetic force generated between the conductor and the material and the temperature drop of the material may be suppressed.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: December 3, 1996
    Assignee: Hitachi Metals, Ltd.
    Inventors: Ryoichi Shibata, Takao Kaneuchi
  • Patent number: 5332026
    Abstract: An ingot having a predetermined amount of electrolytic copper and a small percentage of boron copper alloy is rapidly heated to about 2,100.degree. F. in a clay graphite crucible by induction coils surrounding the crucible. The crucible and the entire amount of molten copper are automatically transferred to a cavity defined within a shot cylinder above a vertically movable shot piston of a vertical die casting press. A shuttle moves a lower end ring mold and a stack of connected rotor laminations into a position above the shot cylinder, and the press moves an upper end ring mold downwardly to clamp the stack between the molds and against the cylinder. The molten copper is rapidly injected upwardly through gates within the lower mold and into end ring cavities within the molds and also through connecting aligned bar slots within the stack of laminations with a shot pressure of about 2250 psi.
    Type: Grant
    Filed: September 28, 1992
    Date of Patent: July 26, 1994
    Assignee: THT Presses Inc.
    Inventors: Ted H. Thieman, Richard J. Kamm
  • Patent number: 5325906
    Abstract: A method for the electroslag refining of metal is provided. The method involves providing a refining vessel to contain an electroslag refining layer floating on a layer of molten refined metal. An ingot of unrefined metal is lowered into the vessel into contact with the molten electroslag layer. A refining current is passed through the slag layer to the ingot to cause surface melting at the interface between the ingot and the electroslag layer. As the ingot is surface melted at its point of contact with the slag, droplets of the unrefined metal are formed and these droplets pass down through the slag and are collected in a body of molten refined metal beneath the slag. The refined metal is held within a cold hearth. At the bottom of the cold hearth, a cold finger orifice is provided to permit the withdrawal of refined metal from the cold hearth apparatus. The refined metal passes from the cold finger orifice as a stream and is processed into a sound metal structure having desired grain structure.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: July 5, 1994
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Thomas F. Sawyer
  • Patent number: 5299619
    Abstract: The present invention involves a method and apparatus for making an intermetallic casting (e.g. a titanium, nickel, iron, etc. aluminide casting) wherein a charge of a solid first metal protected from air as required is disposed in a vessel, and a charge of a second metal that reacts exothermically with the first metal is melted in another vessel. The molten second metal is introduced to the vessel containing the charge of the first metal so as to contact the first metal. The first and second metals are heated in the vessel to exothermically react them and form a melt for gravity or countergravity casting into a mold. The exothermic reaction between the first and second metals releases substantial heat that reduces the time needed to obtain a melt ready for casting into a mold. In particular, the exothermic reaction between the first and second metals, in effect, reduces the residence time of the intermetallic melt in the vessel.
    Type: Grant
    Filed: December 30, 1992
    Date of Patent: April 5, 1994
    Assignee: Hitchiner Manufacturing Co., Inc.
    Inventors: George D. Chandley, Merton C. Flemings
  • Patent number: 5287910
    Abstract: Titanium based and nickel based castings are made by casting a suitable melt having a relatively low melt superheat into a mold cavity defined by one or more low carbon steel or titanium mold members where the melt solidifies to form the desired casting. The melt super-heat is limited so as not to exceed about 150.degree. F. above the liquidus temperature of the particular melt being cast. For a steel mold, one or more titanium melt inlet-forming members are provided for cooperating with the steel mold members to form an melt ingate that communicates to the mold cavity for supplying the melt thereto in a manner to avoid harmful iron contamination of the melt during casting. The mold body-to-mold cavity volume ratio is controlled between 10:1 to 0.5:1 to minimize casting surface defects and mold wear/damage.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: February 22, 1994
    Assignee: Howmet Corporation
    Inventors: Gregory N. Colvin, Leonard L. Ervin, Robert F. Johnson
  • Patent number: 5275229
    Abstract: Apparatus for inductively melting a quantity of metal without a container includes a first induction coil having a plurality of turns defining a volume for receiving a quantity of metal, the first induction coil being adapted to exert a force on the metal, a second induction coil having a plurality of turns at substantially right angles to the turns of the first induction coil, the second induction coil, being disposed within said volume coaxial with the first induction coil. Both the first and second induction coils have connectors thereon for connecting the coils to at least one power supply for energizing the first and second induction coils. A support is provided for supporting the metal from below, and has an opening through it. The support includes a raised segmented rim around substantially its entire periphery. The support is maintained at a preselected temperature. In an alternate embodiment, structure is also provided for imparting rotational motion to the support.
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: January 4, 1994
    Assignee: Inductotherm Corp.
    Inventors: Oleg S. Fishman, Rudolph K. Lampi, Vitaly Peysakhovich
  • Patent number: 5232041
    Abstract: A method for metallurgically bonding cast-in-place cylinder liners 12 to a cylinder block 38 includes first coating the outer surface of the liners 12 with a low melting point molten metal material 14 and allowing it to solidify. The coated liners 12 are then positioned within a cylinder block casting mold 22 and molten cylinder block metal introduced into the mold 22. At a time prior to the cylinder block metal contacting and surrounding the coated liners 12, induction heating coils 28 are activated to premelt the coating material 14. The molten cylinder block metal then contacts and mixes with the molten coating metal 14 to form a metallurgical bond between the liners 12 and cylinder block 38 upon solidification.
    Type: Grant
    Filed: February 14, 1992
    Date of Patent: August 3, 1993
    Assignee: CMI International, Inc.
    Inventor: John W. Kuhn
  • Patent number: 5193607
    Abstract: Precision casting of titanium or titanium alloy includes establishing molten metal by induction heating in an assembly formed with water cooled copper segments disposed circlewise on the inside of an induction coil in a state insulated from each other and casting the molten metal into a permeable mold by vacuum casting. The precision casting method uses apparatus including an induction coil, an assembly formed with the aforementioned copper segments, an arrangement for feeding a base metal from the under side thereof and a permeable mold into which the molten base metal in the assembly is transferred by vacuum casting. It is possible to obtain precision castings of metal having high melting points and high actvitiy such as titanium, titanium alloy or the like.
    Type: Grant
    Filed: August 26, 1992
    Date of Patent: March 16, 1993
    Assignee: Daido Tokushuko K.K.
    Inventors: Noboru Demukai, Shingo Hitotsuyanagi
  • Patent number: 5156202
    Abstract: A permanent mold for mold-casting reactive metals and metal alloys (FIG. 1) includes a multiple of radially disposed, plate-like segments 3, 3', 3", . . . which enclose the workpiece 12 and are preferably made of cooled metallic material and which form together the permanent mold including a top inlet opening 14 and a bottom opening 15 for withdrawing the working piece; in order to close the withdrawal opening 15, a closing plate 9 is provided which is composed of a multiple of ring segments 13, 13', 13", . . . and the permanent mold 5 is enclosed by a magnetic coil 6 so as to generate an electromagnetic field.
    Type: Grant
    Filed: September 4, 1991
    Date of Patent: October 20, 1992
    Assignee: Leybold Aktiengesellschaft
    Inventors: Georg Sick, Otto W. Stenzel