Composite Article Forming Patents (Class 164/91)
  • Publication number: 20080257516
    Abstract: A pressure vessel of the present invention is such that at least part thereof comprises a metallic composite material 40 comprising a light metal 41, which is turned into a matrix, and a plate-shaped iron-based member 42, which is buried in the light metal 41, whose major component is iron, and which is provided with a large number of through holes penetrating the front and rear surfaces. By means of this construction, it is possible to provide a pressure vessel having a novel construction whose pressure resistance is enhanced without being accompanied by thickening, and a compressor being provided with a housing comprising the pressure vessel.
    Type: Application
    Filed: June 17, 2008
    Publication date: October 23, 2008
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Motoharu TANIZAWA, Kyoichi KINOSHITA, Yuki OKAMOTO, Tsukasa SUGIE, Manabu SUGIURA, Takayuki KATO, Fuminobu ENOKIJIMA
  • Publication number: 20080211202
    Abstract: A stabilizer link assembly formed by die casting end rings over the ends of a stabilizer link rod.
    Type: Application
    Filed: May 23, 2005
    Publication date: September 4, 2008
    Inventors: John Belding, Greg Dambois, Daniel Dearing, Jeremy R. King, Keith Kinney, Mark Kittridge, Brian Perkins
  • Patent number: 7211214
    Abstract: In accordance with the invention, features can be directly imprinted into the surface of a solid substrate. Specifically, a substrate is directly imprinted with a desired pattern by the steps of providing a mold having a molding surface to imprint the pattern, disposing the molding surface adjacent or against the substrate surface to be imprinted, and irradiating the substrate surface with radiation to soften or liquefy the surface. The molding surface is pressed into the softened or liquefied surface to directly imprint the substrate. The substrate can be any one of a wide variety of solid materials such as semiconductors, metals, or polymers. In a preferred embodiment the substrate is silicon, the laser is a UV laser, and the mold is transparent to the UV radiation to permit irradiation of the silicon workpiece through the transparent mold. Using this method, applicants have directly imprinted into silicon large area patterns with sub-10 nanometer resolution in sub-250 nanosecond processing time.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: May 1, 2007
    Assignee: Princeton University
    Inventor: Stephen Y. Chou
  • Patent number: 7172661
    Abstract: A high precision alloy, and in particular, high-strength nickel-based amorphous compositions for fabrication of glass-coated microwires.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: February 6, 2007
    Assignee: Global Micro Wire Technologies Ltd.
    Inventors: Eliezer Adar, Ehud Yaffe
  • Patent number: 6953627
    Abstract: A process for the production of thin walled parts of steel, wherein there are layers that are at least partly differently treatable relating to their strength and hardness qualities. This process can include creating a composite material from a plurality of different layers by connecting at least one core layer and at least one surface layer together. At least one layer of the core or surface layer is cast adjacent to another layer to form a composite material having an alloy gradient that is flat at each interface between any of the core layer or the surface layer. Next, the process can include deforming the composite material along a length of these layers. Finally the process can include heat treating the layers to transform the strength and hardness qualities of at least one of these layers.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: October 11, 2005
    Assignee: C.D. Walzholz-Brockhaus GmbH
    Inventor: Hans-Toni Junius
  • Patent number: 6902828
    Abstract: A bright composite sheet product including a roll cast core and a clad material bonded to the core. The core is an aluminum alloy of the AA series 1XXX, 3XXX, 5XXX, or 8XXX, and the clad material contains at least 99.5 wt. % aluminum. The composite sheet products is particularly suited for use in lighting fixtures.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: June 7, 2005
    Assignee: Alcoa Inc.
    Inventors: Jose L. Gazapo, Catalina Fernandez Rivera, Emilio Sanchez Suarez
  • Patent number: 6899160
    Abstract: The present invention discloses a conductive injection molding composition. The thermally conductive composition includes a metallic base matrix of, by volume, between 30 and 60 percent. A first thermally conductive filler, by volume, between 25 and 60 percent is provided in the composition that has a relatively high aspect ratio of at least 10:1. In addition, an alternative embodiment of the composition mixture includes a second thermally conductive filler, by volume, between 10 and 25 percent that has a relatively low aspect ratio of 5:1 or less.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: May 31, 2005
    Assignee: Cool Options, Inc.
    Inventor: Kevin A. McCullough
  • Publication number: 20040185290
    Abstract: Method provides ceramic fibers with a matrix that includes aluminum.
    Type: Application
    Filed: December 8, 2003
    Publication date: September 23, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Colin McCullough, Dough E. Johnson
  • Patent number: 6739377
    Abstract: In a process for casting a metallic semi-finished product into a casting, the semi-finished product is roughened on a surface which faces the casting, then being placed in a defined position in a casting mold and surrounded with casting metal, after which a firm bond is formed between the semi-finished product and the solidified casting metal at the roughened surface. The surface of the semi-finished product is roughened by high-pressure water blasting.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 25, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Franz Rueckert, Helmut Schaefer, Dezsoe Schilling, Peter Stocker
  • Patent number: 6699401
    Abstract: A method for producing a Si—SiC member for heat treatment of semiconductor, which is suitable for heat treatment of a semiconductor wafer with a large diameter and capable of reducing the contamination of the semiconductor wafer as much as possible is provided. Further, a method for producing a Si—SiC member for heat treatment of semiconductor capable of reducing the contamination of the semiconductor wafer as much as possible and causing no slip is provided. This method comprises the first step of kneading a SiC powder having a total metal impurity quantity of 0.2 ppm or less with a molding assistant; the second step of forming a compact from the kneaded raw material; the third step of calcining the compact; the fourth step of purifying the calcined body; and the fifth step of impregnating the purified body with silicon within a sealed vessel provided in a heating furnace body.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: March 2, 2004
    Assignee: Toshiba Ceramics Co., Ltd.
    Inventors: Yushi Horiuchi, Shigeaki Kuroi
  • Publication number: 20040000386
    Abstract: A molded brake disc having a central hub portion and an annular disc portion extending from the hub portion in a radial outward direction for frictional engagement with brake pads, wherein the disc portion is formed of metal matrix composite having a reinforcing material added to a metal matrix, and the hub portion is formed of metal which is inexpensive as compared to the metal matrix composition. Due to a limited use of the expensive metal matrix composite, the molded brake disc as a whole is inexpensive as compared to a conventional molded brake disc entirely formed of metal matrix composite.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 1, 2004
    Applicant: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yasuhiro Nakao, Hiroto Shoji, Kunitoshi Sugaya, Takashi Kato, Takaharu Echigo
  • Patent number: 6517953
    Abstract: Often, metal matrix composites (MMC's) lack adequate machinability and possess excessive abrasiveness because hard ceramic materials, such as silicon carbide, are used as the reinforcement phase. To make a metal matrix composite body having a more machinable and less abrasive surface, an MMC comprising an aluminum nitride reinforcement is formed on the surface of the body. In one embodiment, a layer is provided to a permeable mass or preform at the surface at issue, the layer featuring at least a reduced loading of ceramic filler material, and sometimes no ceramic material at all. The reduced loading is achieved by incorporating a fugitive material into the coating layer. Molten matrix metal is caused to infiltrate the permeable mass or preform and the coating layer to produce a macrocomposite body comprising a metal matrix composite coating and substrate.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: February 11, 2003
    Assignee: Lanxide Technology Company, LP
    Inventors: Brian E. Schultz, Michael K. Aghajanian
  • Patent number: 6460597
    Abstract: Method of making articles comprising polycrystalline &agr;-Al2O3 fibers within a matrix of aluminum, or an alloy of aluminum and up to about 2% copper.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: October 8, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Colin McCullough, Andreas Mortensen, Paul S. Werner, Herve E. Deve, Tracy L. Anderson
  • Patent number: 6450237
    Abstract: A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52).
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 17, 2002
    Inventors: Thomas N. Meyer, Srinath Viswanathan
  • Patent number: 6406800
    Abstract: A bent pipe for use in piping arrangement for transporting materials conaining solids, the bent pipe being prepared by subjecting to high-frequency bending work a straight blank pipe prepared by centrifugal casting and having a plurality of layers. The straight blank pipe comprises an outer layer made of a steel having high weldability, and an inner layer made of a high Cr cast iron containing at least Cr in an amount of 10 to 35 wt. % and having high wear resistance, the outer layer and the inner layer being metallurgically joined. Preferably, a barrier layer is provided between the outer layer and the inner layer for preventing an alloy component in each of the layers from diffusing into the other layer. The barrier layer is preferably about 10 to about 100 &mgr;m in thickness.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: June 18, 2002
    Assignee: Kubota Corporation
    Inventors: Makoto Ozaki, Daisuke Minohara
  • Patent number: 6399018
    Abstract: Solid objects are made by means of a novel multi-step forming, debinding, sintering and infiltrating process, using a metal-ceramic composition. In this process, the mixture is held for a period of time to degas and settle the powdered material from a liquid binder. The packed geometry is then heated to above the melting temperature of the binder to remove the binder portion of the solid geometry. Upon removal of the binder the binder-free solid geometry is raised to a temperature where the metal pre-sinters together into a three-dimensional rigid matrix with interconnected porosity to form a solid precursor. The porous matrix includes the particulate ceramic material and a first metal, which are at least partially sintered. A molten second metal is then introduced to the fill the porous matrix and form an infiltrated matrix.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: June 4, 2002
    Assignee: The Penn State Research Foundation
    Inventors: Randall M. German, Timothy J. Weaver, Julian A. Thomas, Sundar V. Atre, Anthony Griffo
  • Patent number: 6353992
    Abstract: A crank arm for a bicycle includes a crank arm body formed of a first material and a core formed of a second material disposed in the crank arm body. The second material has a specific gravity less than a specific gravity of the first material. The second material may be a porous material such as volcanic glass or some other lightweight material. In the method used to form the crank arm body, a core having a specific gravity lower than a specific gravity of the metal forming the outer portions of the crank arm is positioned in a casting mold so that a melt space is formed around the core. Molten metal is poured into the casting mold, and the molten metal is solidified to form a crank billet such that the core is integrally formed with the metal.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: March 12, 2002
    Assignee: Shimano, Inc.
    Inventor: Eiji Mizobe
  • Patent number: 6344270
    Abstract: Metal matrix composite wires that include at least one tow comprising a plurality of substantially continuous, longitudinally positioned fibers in a metal matrix. The fibers are selected from the group of ceramic fibers carbon fibers, and mixtures thereof. The wires have certain specified characteristics such as roundness values, roundness uniformity values, and/or diameter uniformity values.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: February 5, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Colin McCullough, David C. Lueneburg, Paul S. Werner, Herve E. Deve, Michael W. Carpenter, Kenneth L. Yarina
  • Patent number: 6329056
    Abstract: Metal matrix composite wires that include a plurality of substantially continuous, longitudinally positioned fibers in a metal matrix. The wire exhibits zero breaks over a length of at least 300 meters when tested according to a specified test.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: December 11, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Herve E. Deve, Michael W. Carpenter, Colin McCullough, Paul S. Werner
  • Patent number: 6329079
    Abstract: A tube for a cracker unit in which ethylene is produced withstands, without oxidizing or losing its strength, the elevated temperatures required to effect cracking, yet retards coking. The tube has a shell formed from stainless steel or high nickel alloy and a liner formed from an iron-aluminum alloy. The liner retards the deposit of carbon and its build up known as coking. To form the tube, a high alloy ingot is bored to provide a bore that extends through its center. Then a weld overlay is applied to surface of the bore, with the overlay being derived from a weld metal containing at least 16% aluminum and the balance essentially iron. Thereafter, the ingot is heated to its hot working temperature and extruded through sets of opposed rollers, with the direction of advance being in the direction of the bore. The extruding transforms the ingot into a lined tube.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: December 11, 2001
    Assignee: Nooter Corporation
    Inventor: John J. Meyer
  • Publication number: 20010033039
    Abstract: A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.
    Type: Application
    Filed: April 24, 2001
    Publication date: October 25, 2001
    Inventors: Robert J. Lauf, Paul A. Menchhofer, Claudia A. Walls, Arthur J. Moorhead
  • Patent number: 6286583
    Abstract: A cylinder-liner blank which preferably consists of a hypereutectic aluminum/silicon alloy and is cast into a crankcase. A special surface treatment achieves better material bonding of the liner in the crankcase. The blank has a roughness of 30 to 60 &mgr;m on its outside, in the form of pyramid-like or lancet-like protruding material scabs or material accumulations. To obtain this roughness, the surface is blasted with particles which are broken so as to have sharp edges and consist of a brittle hard material, preferably high-grade corundum, with an average grain size of about 70 &mgr;m. A fine fraction is formed and is continuously separated off. The average grain size is maintained by adding new particles.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: September 11, 2001
    Assignee: DaimlerChrysler AG
    Inventors: Franz Rueckert, Peter Stocker
  • Patent number: 6251159
    Abstract: A dispersion strengthening method for metallic melts that are used to form large articles. The method comprises adding nanophase particles into a molten metallic melt and dispersing the nanophase particles in the metallic melt. The nanophase particles comprising particles with diameters in the range of about 5 nanometers to about 100 nanometers. The step of dispersing the nanophase particles in the metallic melt spaces the particles from each other with an average interparticle spacing (IPS) in a range from about 10 nanometers to about 500 nanometers.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: June 26, 2001
    Assignee: General Electric Company
    Inventors: Thomas Martin Angeliu, Charles Gitahi Mukira
  • Publication number: 20010001978
    Abstract: An electronic apparatus such as a portable computer comprises an electronic apparatus frame and a raised portion provided on that region of the electronic apparatus frame which engages an ejector pin projecting from inside a mold device and formed thicker than the other part of the electronic apparatus frame.
    Type: Application
    Filed: December 18, 2000
    Publication date: May 31, 2001
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takashi Hosoi, Nobuyuki Takaki, Yasuo Ono
  • Patent number: 6033791
    Abstract: A wear resistant, high-impact iron alloy member (20,22) suitable for use in an impact rock crusher and a method of making the same. The invention provides a white iron alloy member (20,22) having at least one wear surface (24) with carbide granules encapsulated in a matrix (28) of white iron and contained in a selected region adjacent the wear surface (24) of the member (20,22). The iron alloy member is made by a method of casting comprising the steps of: placing a molding insert (35,40) in a mold (60) at a selected location adjacent the wear surface (24); positioning a quantity of carbide granules (29), most preferably tungsten carbide granules 29, in the molding insert (35,40) before pouring; and pouring molten white iron alloy into the mold (60) to form the casting.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: March 7, 2000
    Assignee: Smith and Stout Research and Development, Inc.
    Inventors: Jerry I. Smith, Anthony E. Stout
  • Patent number: 5897943
    Abstract: Metal matrix composites comprising of a solid preform comprising of a filler phase containing fly ash and a binding material having a binder to water ratio of 1:1 to 1:9, wherein the preform contains a metal homogeneously distributed within the preform.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: April 27, 1999
    Assignee: Electric Power Research Institute, Inc.
    Inventor: Pradeep K. Rohatgi
  • Patent number: 5876659
    Abstract: Fiber bundle reinforced composite material useful for various high temperature structural members having excellent strength, toughness and resistance to oxidation and a process for producing the same. The fiber bundle reinforced composite material is reinforced with fiber bundles each having a plurality of continuous inorganic fibers bundled with medium such as carbon, being oriented in one, two or three directions, or randomly in the matrix which is reinforced with nano-sized particles precipitated. The fiber bundle reinforced composite material has a desired orientation of fibers and enables production of fiber bundle reinforced composite members having excellent strength and toughness.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: March 2, 1999
    Assignee: Hitachi, Ltd.
    Inventors: Yoshiyuki Yasutomi, Shigeru Kikuchi, Yukio Saito, Kunihiro Maeda
  • Patent number: 5722324
    Abstract: An ink trough for a printing press is formed between two rollers and two side members on opposite ends of the rollers. The rollers can be operated independently for ink removal and cleaning purposes.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: March 3, 1998
    Assignee: Technoroll Co., Ltd.
    Inventors: Hiroshi Nishiwaki, Toshiharu Fujiwara, Kazushi Hatanaka, Nobuyuki Baba
  • Patent number: 5488984
    Abstract: A method for the mass production of squirrel-cage rotors for electric motors includes the step of die casting-in-place rotor bars within the slots formed by stacked steel laminations. The molten metal alloy utilized in the method is high conductivity aluminum. Before introduction of the molten aluminum, the steel laminations are treated in a solution of sodium nitrite, sodium tetraborate decahydrate, and a wetting agent to prevent soldering of the aluminum to the steel.
    Type: Grant
    Filed: June 3, 1994
    Date of Patent: February 6, 1996
    Assignee: A. O. Smith Corporation
    Inventor: Chris K. Fahy
  • Patent number: 5435966
    Abstract: This invention relates generally to a novel method for removing metal from a formed self-supporting body. A self-supporting body is made by reactively infiltrating a molten parent metal into a bed or mass containing a boron donor material and a carbon donor material (e.g., boron carbide) and/or a boron donor material and a nitrogen donor material (e.g., boron nitride) and, optionally, one or more inert fillers. Once the self-supporting body is formed, it is then subjected to appropriate conditions which causes metallic constituent contained in the self-supporting body to be at least partially removed.
    Type: Grant
    Filed: January 11, 1993
    Date of Patent: July 25, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: William B. Johnson, James C. Wang
  • Patent number: 5394928
    Abstract: A cast composite material is formed from about 5 to about 35 volume percent of particulate reinforcement, preferably silicon carbide particles, embedded in an aluminum alloy matrix having from about 8.5 to about 12.6, most preferably about 9.5 to about 11.0, weight percent silicon. The cast composite material is particularly well suited for use as a foundry alloy for remelting purposes. Other alloying elements may be added without interfering with the beneficial effects of the silicon.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: March 7, 1995
    Assignee: Alcan International Ltd.
    Inventors: Donald E. Hammond, Michael D. Skibo
  • Patent number: 5372777
    Abstract: The present invention relates to the formation of bodies having graded properties. Particularly, the invention provides a method for forming a metal matrix composite body having graded properties. The graded properties are achieved by, for example, locating differing amounts of filler material in different portions of a formed body and/or locating different compositions of filler material in different portions of a formed body and/or locating different sizes of filler materials in different portions of a formed body. In addition, the invention provides for the formation of macrocomposite bodies wherein, for example, an excess of matrix metal can be integrally bonded or attached to a graded metal matrix composite portion of a macrocomposite body.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: December 13, 1994
    Assignee: Lanxide Technology Company, LP
    Inventor: Chwen-Chih Yang
  • Patent number: 5366686
    Abstract: A method for producing an article including a refractory compound by infiltrating a preform with a liquid infiltrant and initiating a reaction between the preform and the liquid infiltrant to establish a reaction front which propagates in a direction opposite to the direction of flow of the liquid infiltrant is provided, as are articles prepared according to this method.
    Type: Grant
    Filed: March 19, 1993
    Date of Patent: November 22, 1994
    Assignee: Massachusetts Institute of Technology, a Massachusetts Corporation
    Inventors: Andreas Mortensen, David C. Dunand
  • Patent number: 5350003
    Abstract: The present invention relates to a novel process for removal of at least a portion of at least one metallic component of a metallic constituent from a multi-phase composite body. Particularly, by providing at least one of an infiltration enhancer or an infiltration enhancer precursor or an infiltrating atmosphere to be in communication with a permeable mass, which contacts at least a portion of a composite body, said metallic component of the composite body, when made molten, is caused to spontaneously infiltrate the permeable mass. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum. The metallic constituent is essentially leached or removed from the multi-phase body by spontaneous infiltration.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: September 27, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Birol Sonuparlak, William B. Johnson, Ali S. Fareed
  • Patent number: 5286560
    Abstract: An aluminum alloy matrix composite containing alumina or aluminum silicate reinforcement whereby said composite material exhibits wetting between said reinforcement and said aluminum alloy. The composite comprises (a) alumina or aluminosilicate reinforcement; (b) a matrix of aluminum or aluminum alloy; and (c) an intelayer of mixed oxides of aluminum and boron wherein the interlayer of mixed oxides of aluminum and boron includes but is not limited to the following oxides, B.sub.2 O.sub.3, Al.sub.2 O.sub.3, 2Al.sub.2 O.sub.3.B.sub.2 O.sub.3 and 9Al.sub.2 O.sub.3 2B.sub.2 O.sub.3 at the interface between said reinforcement and said matrix.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: February 15, 1994
    Assignee: Aluminum Company of America
    Inventors: Maya Fishkis, Chanakya Misra, Karl Wefers
  • Patent number: 5240066
    Abstract: A method for preparing glass-coated microwires is provided. A metal in a glass tube is superheated in a high frequency induction field, whereby the glass tube softens. A thin capillary tube is drawn from the softened glass and the glass tube fills with molten metal. The metal-filled capillary enters a cooling zone in the superheated state and the rate of cooling is controlled such that a microcrystalline or amorphous metal microstructure is obtained. The cooling zone includes a stream of cooling liquid through which the capillary passes. The microstructure of the microwire is controlled by choice of amorphisizers, cooling rate, nature of the cooling liquid, location of the cooling stream, dwell time in the cooling stream and degree of superheating and supercooling of the metal.
    Type: Grant
    Filed: September 26, 1991
    Date of Patent: August 31, 1993
    Assignee: Technalum Research, Inc.
    Inventors: Igor V. Gorynin, Boris V. Farmakovsky, Alexander P. Khinsky, Karina V. Kalogina, Alfredo Riviere V., Julian Szekely, Navtej S. Saluja
  • Patent number: 5236032
    Abstract: A metal matrix composite material having uniformly dispersed intermetallic compounds and no micropores is manufactured by forming a porous preform including 60% to 80% by volume fine fragments essentially made of aluminum, 1% to 10% by volume fine fragments essentially made of nickel, copper or both, and 1% to 10% by volume fine fragments essentially made of titanium so that these fine fragments occupy in total 62% to 95% by volume of said preform, and at least a part of the preform is contacted with a melt of a matrix metal selected from aluminum, aluminum alloy, magnesium and magnesium alloy, so that the porous preform is infiltrated with the melt under no substantial application of pressure to the melt.
    Type: Grant
    Filed: December 6, 1991
    Date of Patent: August 17, 1993
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuya Nukami, Tetsuya Suganuma, Atsuo Tanaka, Jun Ohkijima, Yoshiaki Kajikawa, Masahiro Kubo
  • Patent number: 5232040
    Abstract: This invention relates generally to a novel method for removing metal from a formed self-supporting body. A self-supporting body is made by reactively infiltrating a molten parent metal into a bed or mass containing a boron source material and a carbon source material (e.g., boron carbide) and/or a boron source material and a nitrogen source material (e.g., boron nitride) and, optionally, one or more inert fillers. Once the self-supporting body is formed, it is then placed, at least partially, into contact with another material which causes metallic constituent contained in the self-supporting body to be at least partially removed.
    Type: Grant
    Filed: November 15, 1991
    Date of Patent: August 3, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: William B. Johnson, James C. Wang
  • Patent number: 5070591
    Abstract: Metal and ceramic particles of various morphologies are clad with a coating from the transition metal group consisting of silver, gold, copper, nickel, iron, cobalt, aluminum etc., or combinations thereof, to provide improved coated particles for microelectronics or metal matrix composites or other uses. Refractory metal precursor core particles, such as tungsten, molybdenum, niobium and zirconium, as examples, are provided from a composite of tungsten and copper, for example, made by pressurizing and infiltrating or liquid phase sintering of molten copper into a porous tungsten skeleton. Precursor chip particles derived from a tungsten impregnated billet are used as starter particles which may be further enhanced by cogrinding in an attritor ball mill with smaller copper particles to thereby produce an enhanced copper clad-coating of tungsten particles with predetermined percent by weight of copper and tungsten content.
    Type: Grant
    Filed: January 22, 1990
    Date of Patent: December 10, 1991
    Inventors: Nathaniel R. Quick, James C. Kenney
  • Patent number: 5025849
    Abstract: Tubes or other symmetrical shapes are formed of composite materials, such silicon carbide and aluminum, by spin casting. The reinforcing material can be precast into a billet or bar of the matrix metal, remelted and introduced into a spinning mold. Tubes can be produced with walls having differing amounts of reinforcing materials in the tube wall. Castings can be obtained having a uniform distribution of a reinforcement in a matrix metal.
    Type: Grant
    Filed: November 15, 1989
    Date of Patent: June 25, 1991
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Subhash D. Karmarkar, Amarnath P. Divecha
  • Patent number: 5000244
    Abstract: In a preferred embodiment, a compound aluminium alloy engine block casting comprises at least a piston-travel region of a cylinder wall section formed of a first alloy, preferably hypereutectic aluminum-silicon alloy, and a remainder including a crankcase section and a water jacket wall formed of a distinct second alloy, preferably hypoeutectic aluminum-silicon alloy. The engine block casting is made by a lost foam process that employs an expendable pattern formed of expanded polystyrene or the like. The pattern comprises a first runner system for casting the first alloy to decompose and replace a portion of the pattern corresponding to the piston-travel region of the casting, and a second runner system for casting the second alloy to decompose and replace the remainder of the pattern. The first alloy and the second alloy are independently but concurrently cast into a singular mold, such that the entire pattern is duplicated, whereupon the alloys merge and fuse to form an integral casting.
    Type: Grant
    Filed: December 4, 1989
    Date of Patent: March 19, 1991
    Assignee: General Motors Corporation
    Inventor: Richard J. Osborne
  • Patent number: 4949773
    Abstract: This invention relates to a production method of a mold for continuous casting comprising the steps of: providing a cooled water path in the mold water cooling mechanism; filling the cooled water path with a wax; making the wax surface uniform; providing a copper or copper alloy stratum on the wax surface by electrolytic plating; removing wax from the cooled water path and uniting the mold water cooling mechanism with the mold as one; and comprising the additional step of providing a copper or nickel plating on the surface on which is provided the cooled water path in the mold water cooling mechanism before depositing wax in the path.
    Type: Grant
    Filed: August 11, 1989
    Date of Patent: August 21, 1990
    Assignee: Techno Research Kabushiki
    Inventors: Hirotoshi Nomura, Tokumi Ikeda
  • Patent number: 4890380
    Abstract: A high power current-limiting fuse comprises a cylindrical envelope which closely surrounds a metallic fusible element in the form of a wire or ribbon. The cylindrical envelope is made of high density rigid ceramic such as Alumina of formula Al.sub.2 O.sub.3, and Beryllium oxide of formula BeO. The two ends of the envelope are metalized to form two terminals respectively connected to the ends of the fusible element, whereby the current-limiting fuse is connectable to an electric circuit to be protected through the two so formed terminals. A sheath of fiberglass or ceramic can be mounted around the cylindrical envelope so as to increase the mechanical rigidity of the current-limiting fuse.
    Type: Grant
    Filed: November 9, 1988
    Date of Patent: January 2, 1990
    Assignee: Hydro-Quebec
    Inventors: Vojislav Narancic, Gilles Fecteau
  • Patent number: 4890662
    Abstract: A method and system for forming a composite mixture of at least two materials, at least one of which is a metal or metal alloy. The materials in a molten state are supplied via inlet channels to a mixing region so as to indirectly impinge on each other and then to flow through an outlet channel to a cooling system, such as a casting or mold device or a device for providing rapid solidification thereof. The ratio of the cross-sectional area of the outlet channel to the sum of the cross-sectional areas of the inlet channels is arranged to be less than 32 and the ratio of the distance from the input side of the outlet channel to the input of the cooling system to the diameter of the outlet channel is arranged to be greater than 5.
    Type: Grant
    Filed: July 15, 1988
    Date of Patent: January 2, 1990
    Assignee: Sutek Corporation
    Inventors: Luis E. Sanchez-Caldera, Arthur K. Lee, Nam P. Suh, Jung-Hoon Chun
  • Patent number: 4707313
    Abstract: A method of making a laminated structure for use in an electrical apparatus. A female mold is produced having an upwardly facing cavity of a shape corresponding to the laminated structure. A layer of a ferrous metal is sprayed onto the bottom surface of the mold and subsequently an electrically insulated layer is applied to the layer of metal. Alternate layers of the ferrous metal and the insulating layer are deposited in the cavity of the mold to provide a laminated structure in which the metal and insulating layers are integrally bonded together. Through use of the method of the invention, a ferrous metal with the most desirable electrical characteristics can be employed.
    Type: Grant
    Filed: July 2, 1986
    Date of Patent: November 17, 1987
    Assignee: A. O. Smith Corporation
    Inventor: Timothy H. Houle
  • Patent number: 4535518
    Abstract: A method for forming small-diameter, angled ducts and manifolds in a face plate for a rocket-engine injector or the like. A surface of a circular base plate 16 is formed with an annular flange 18 thereon having two inwardly sloping sides 11 and 13. Grooves 20, 22 are machined along the intersections of the sides 11 and 13 with the surface of the base plate 16 for propellant-containing manifolds 36 and 38. Grooves 10 are etched in spaced sets of two down the sloping sides of the flange from the flange top 24 to the manifold grooves 20,22. The grooves 10, 20, 22 are filled with wax 23 and a layer 26 of metal is electrodeposited over the grooved surface of the base plate 16 to cover the top 24 of the flange 18, the deposited layer forming orifice ducts and propellant manifolds from the grooves. This layer 26 is machined down to a depth at which the orifice ducts 34 are exposed so that orifices 12 appear at the surface 30 of the machined layer. The wax 23 is now removed by heat or a solvent.
    Type: Grant
    Filed: September 19, 1983
    Date of Patent: August 20, 1985
    Assignee: Rockwell International Corporation
    Inventor: Vance W. Jaqua
  • Patent number: 4533579
    Abstract: Ceramics adapted to be enveloped in a casting having a cumulative particle size distribution such that the percentage of particles with sizes of less than 44.mu. lies within the range of 14.5-50% and the balance consists of particles the maximum size of which ranges from 500-2,000.mu., in order to produce vibration-resistant ceramic parts which may be enveloped in a casting.
    Type: Grant
    Filed: September 24, 1982
    Date of Patent: August 6, 1985
    Assignee: Toyoda Jidosha Kogyo Kabushiki Kaisha
    Inventors: Kametaro Hashimoto, Kenji Ushitani, Fumiyoshi Noda, Masahiko Sugiyama, Mikio Murachi
  • Patent number: 4232091
    Abstract: A composite material of aluminum or an aluminum alloy, reinforced with a fiber or whisker form of unmodified alumina. The material is produced by preheating a mould and a mat of unmodified alumina to a temperature in the range of 700.degree. C. to 1050.degree. C. Molten aluminum or its alloy free of elements which react with the alumina are introduced into the mould to cover the mat. A pressure of at least 75 Kg/cm.sup.2 is applied to the contents of the mould to overcome the surface tension between the alumina and the molten mass of metal and to cause the molten mass to fully penetrate the alumina mat. Upon solidification of the molten aluminum, the composite material is obtained.
    Type: Grant
    Filed: May 21, 1979
    Date of Patent: November 4, 1980
    Assignee: Hepworth & Grandage Limited
    Inventors: Rex W. Grimshaw, Colin Poole
  • Patent number: 4224727
    Abstract: A master cylinder body including a cylindrical-shaped inner section of uniform wall thickness formed as by die-casting and an outer section cast on the inner section around the periphery thereof. The extreme simplicity in configuration of the inner section enables it to be formed with no casting defects such as shrinkage cavities which may result in oil leakage therethrough. The inner section and the outer one cast thereon become solidly fused together at the cylindrical interface therebetween as long as the materials used are of the same metallurgical type. Formation of a multitude of annular or helical ridges on the outer periphery of the inner body section further ensures the solid interconnection between the two body sections.
    Type: Grant
    Filed: May 25, 1978
    Date of Patent: September 30, 1980
    Assignee: Nissin Kogyo Kabushiki Kaisha
    Inventor: Yukikazu Miyashita
  • Patent number: 4216682
    Abstract: A fiber-reinforced light alloy cast article for use in various mechanical parts such as, for example, a connecting rod, a rocker arm, and so forth in an internal combustion engine. The composite light alloy cast article includes therein a portion filled with a shaped body made of an inorganic fiber material of high elasticity and high mechanical strength, and another portion filled with a shaped body of inorganic fibers having low elasticity and high hardness and having an appropriate bulk density suited for required purposes, the fiber-shaped bodies being filled in the required portions of the composite light alloy cast article by high pressure solidification casting.
    Type: Grant
    Filed: March 26, 1979
    Date of Patent: August 12, 1980
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Keisuke Ban, Takeo Arai