Control Of Heat Storage Patents (Class 165/236)
  • Patent number: 11919368
    Abstract: A heat pump includes a refrigerant loop. The refrigerant loop includes a first heat exchanger, a first region of a second heat exchanger, a third heat exchanger, a fourth heat exchanger, a first heat exchange fluid, a compressor, a vapor generator, and a four-way valve. The compressor includes a low-pressure inlet, a mid-pressure inlet, and an outlet. The vapor generator is positioned downstream of the outlet of the compressor and upstream of both the low-pressure inlet and the mid-pressure inlet. The four-way valve is positioned immediately upstream of the first heat exchanger. At least one component chosen from the group including the first heat exchanger, the second heat exchanger, and the vapor generator is free from compressor-driven flow of the first heat exchange fluid during a predetermined set of heating modes of operation of the heat pump and a predetermined set of cooling modes of operation of the heat pump.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: March 5, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Rachael Shey, Jeffrey Paul Brown
  • Patent number: 11549732
    Abstract: A refrigeration apparatus, including a main circuit (1) for circulation of a main flow (90) of refrigerant, and a lubrication branch (20), comprising a lubrication inlet (21), configured to derive a lubrication flow (91) from the main flow (90) circulating through a supply part (16) of the main circuit; and a lubrication outlet (22), to feed the compressor (2) with the lubrication flow (91) for lubrication. According to the invention, the refrigeration apparatus further includes: a subcooling branch (40), comprising a subcooling inlet (41), connected to an evaporator (8) of the main circuit (1), so as to derive a subcooling flow (92), and a subcooling outlet (42), connected to the evaporator (8), for reintroducing the subcooling flow (92) into the main flow (90); and a subcooling heat exchanger (31).
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: January 10, 2023
    Assignee: CARRIER CORPORATION
    Inventors: Raphael Muller, Jeremey Wallet-Laily, Charbel Rahhal, Antoine Barriere
  • Patent number: 11435122
    Abstract: This refrigeration apparatus (1) comprises a main refrigerant circuit (2) including a positive displacement compressor (4), a condenser (6), an expansion valve (8), an evaporator (10), through which a refrigerant circulates successively in a closed loop circulation, and a lubrication refrigerant line (18) in fluid connection with the main refrigerant circuit (2) and connected to the compressor (4) for lubrication of said compressor (4) with the refrigerant. The refrigeration apparatus (1) comprises a refrigerant container (20) connected between the condenser (6) and the expansion valve (8), said refrigerant container (20) being configured to retain a quantity of refrigerant, the lubrication refrigerant line (18) being connected to said refrigerant container (20). The refrigeration apparatus (1) further comprises heating means (28) for heating the refrigerant contained in the refrigerant container (20).
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: September 6, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Raphael Muller, Michel Grabon, Jeremy Wallet-Laily
  • Patent number: 11431289
    Abstract: The combination photovoltaic and thermal energy system includes a reverse flat plate solar collector (RFPC) mounted above a ground-based thermal energy storage reservoir and a hybrid photovoltaic-thermal (PV-T) panel mounted above the absorber plate of the RFPC. Heat exchanger pipes or conduits in the RFPC and the PV-T are connected so that the heat exchange fluid is preheated in the PV-T and then passes through the RFPC absorber plate, where it is heated to intermediate temperature ranges. The PV-T panel may be a monofacial PC-T panel, a bifacial PV-T panel, or a trifacial PV-T panel.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: August 30, 2022
    Inventor: Abdelhakim Mohamed Abdelghany Hassabou
  • Patent number: 11421914
    Abstract: Methods and apparatus are disclosed for high-efficiency thermal storage with a fluid-filled “battery” tank positioned within a fluid-filled “reservoir” tank. Fluid loops couple the tanks to a heat pump and a building. The heat pump can charge the battery tank or deliver thermal energy (cold or heat) to a building, using the reservoir tank or ambient air as a thermal energy source. The battery tank can discharge energy to the building jointly with the heat pump or, at periods of peak electricity usage, with the heat pump switched off. Operating modes allow significant savings in electricity usage and mitigate the “duck curve.” Low duty cycle usage of the reservoir enables efficient underground thermal storage with less digging than conventional geothermal technologies. Additional efficiency is achieved with phase change materials installed inside a tank or in a tank wall, providing temperature regulation. Control methods are disclosed.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: August 23, 2022
    Inventors: Xiaobing Liu, Ming Qu, Joseph K. Warner, Liang Shi
  • Patent number: 11266268
    Abstract: Disclosed herein is a cooking system for cooking food, the system including a housing having a hollow interior, a lid movable relative to the housing, at least one heating element associated with one of the housing and the lid, wherein the cooking system is operable in a plurality of modes including a conductive cooking mode and a convective cooking mode, wherein in the conductive cooking mode the cooking system is operable as a conductive cooker and in the convective cooking mode the cooking system is operable as a convection cooker.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: March 8, 2022
    Assignee: Sharkninja Operating LLC
    Inventors: Aaron Michael Gill, Ross Richardson, Naomi Kalia Williams Zabel, Da Deng, Mete Gursel, Andrew John Roy Tattersfield, Niall Christopher Denham, Roger Neil Jackson, Ronan Patrick Leahy, Evan James White, Thomas Guerin, Chris Martin, Nathaniel R. Lavins, Mackenzie Lee Swanhart, Samuel Andrew Ferguson, Scott James Stewart
  • Patent number: 11067296
    Abstract: Heat pump system (100) comprising at least one heat medium circuit (210,220,230,240,250,310,320,410,420,430,440,450,460) in turn comprising a compressor (211), an expansion valve (232,242), at least two different primary heat sources or sinks selected from outdoor air, a water body, the ground or exhaust air, at least one of two different secondary heat sources or sinks selected from indoors air, pool water and tap water, a respective temperature sensor (412,432) at each of said primary heat sources or sinks, a valve means (421,431,451) for selectively directing the primary-side heat medium to at least one of said primary heat exchanging means, and a control means (500). The invention is characterised in that, in a secondary-side heating operating mode, the temperature of said primary heat sources or sinks is measured, and in that the primary-side heat medium is directed only to available primary heat exchanging means associated with the heat sources or sinks with the highest temperature.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 20, 2021
    Assignee: SENS GEOENERGY STORAGE AB
    Inventors: David Callemo, Jan Thorburn
  • Patent number: 11015870
    Abstract: A water tank that is used with a solar air conditioning system and provides a supply of cold water for in-dwellings radiators of the system. In one embodiment, the tank application can begin at 32 F degrees and drop down to many degrees colder, such as, but not limited to, minus 100 F degrees. In one non-limiting embodiment, the tank can hold 2000 gallons of water.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 25, 2021
    Inventor: Ralph Muscatell
  • Patent number: 10900694
    Abstract: A recoverable and renewable heat recovery system includes a variable speed inverter compressor in fluid connection with a first heat exchanger and a second heat exchanger via a fluid circuit. The system further includes a solar thermal collection module positioned on top of the compressor and in fluid communication with the compressor, the first heat exchanger and the second heat exchanger via the fluid circuit. A light intensity sensor is configured to determine light intensity on the solar thermal collection module. The solar thermal collection module is configured to retain solar energy thermal energy to increase fluid pressure in the compressor.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: January 26, 2021
    Assignee: COMMERCIAL ENERGY SAVING PLUS, LLC
    Inventor: Stewart Kaiser
  • Patent number: 10618373
    Abstract: A heat exchanger has (i) a first passage in which a first fluid flows, (ii) a heat storage body that is thermally connected to the first passage and stores a warm heat or a cold heat, and (iii) a second passage that is thermally connected to both of the first passage and the heat storage body, the second passage in which a second fluid flows. The heat storage body changes to a first phase in a solid state when a temperature of the heat storage body is lower than or equal to a phase transition temperature, and changes to a second phase in a solid state when the temperature of the heat storage body exceeds the phase transition temperature. The heat storage body stores or dissipates heat depending on a phase transition between the first phase and the second phase.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: April 14, 2020
    Assignee: DENSO CORPORARTION
    Inventors: Takuya Fuse, Yasushi Kono, Shinya Kasamatsu
  • Patent number: 10596877
    Abstract: An air conditioning device for a vehicle has a compressor, an evaporator, a driving condition detector, a temperature detector, and a controller. The driving condition detector detects a driving condition of the vehicle. The evaporator has a cold storage portion storing the heat from the refrigerant and having phase-change energy in at least two different temperature ranges. The controller (i) maintains the compressor being stopped while a temperature detected by the temperature detector is lower than or equal to the first temperature when the vehicle is in a coasting operation and (ii) maintains the compressor being stopped while the temperature is lower than or equal to the second temperature when the vehicle is stopped. The coasting operation is a driving condition in which a vehicle speed is lower than or equal to a specified speed and an acceleration device of the vehicle is not operated.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: March 24, 2020
    Assignee: DENSO CORPORATION
    Inventors: Takashi Danjyo, Takayuki Oota, Satoshi Itoh
  • Patent number: 10436487
    Abstract: An air conditioner and a method for controlling an air conditioner are provided that efficiently inject a refrigerant into a compressor. The air conditioner may include a compressor to compress a refrigerant; a condenser to condense the refrigerant compressed at the compressor; an evaporator to evaporate the refrigerant condensed at the condenser; and an injection module to selectively or simultaneously inject some or a portion of the refrigerant flowing from the condenser to the evaporator into a high pressure side and a low pressure side of the compressor.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: October 8, 2019
    Assignee: LG ELECTRONICS INC.
    Inventors: Byoungjin Ryu, Younghwan Ko, Beomchan Kim
  • Patent number: 10088185
    Abstract: A thermostat with voltage and current sensing capability is coupled directly to an HVAC unit and provides low latency failure detection and control using an on-board CPU. The thermostat can be configured to detect failure modes using current and voltage sensing and to make autonomous decisions to control the HVAC in response to such measurements.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: October 2, 2018
    Assignee: GridPoint, Inc.
    Inventors: Sam Taylor, Daniel K. Dyess
  • Patent number: 10012407
    Abstract: Embodiments of the invention describe thermostats that use model predictive controls and related methods. A method of controlling a thermostat using a model predictive control may involve determining a parameterized model. The parameterized model may be used to predicted ambient temperature values for an enclosure. A set of radiant heating system control strategies may be selected for evaluation to determine an optimal control strategy from the set of control strategies. To determine the optimal control strategy, a predictive algorithm may be executed, in which each control strategy is applied to the parameterized model to predict an ambient temperature trajectory and each ambient temperature trajectory is processed in view of a predetermined assessment function. Processing the ambient temperature trajectory in this manner may involve minimizing a cost value associated with the ambient temperature trajectory.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: July 3, 2018
    Assignee: Google LLC
    Inventors: Yash Modi, Yoky Matsuoka, Mark Malhotra
  • Patent number: 9694651
    Abstract: A heating, ventilating and air conditioning (HVAC) system for use in an over-the-road or off road vehicle is provided. The HVAC system may be operated regardless of the operational state of the engine. That is, the HVAC system may be operated to condition the interior compartments of an over-the-road vehicle while the engine is running and while the engine is in a no-idle (off) condition. In general, the HVAC system efficiently shares one or more typical air conditionings components with those already found in the vehicle. In one instance, the HVAC system operates an electrically-driven compressor when a belt-driven compressor is idle. In another case, the HVAC system operates both an electrically-driven compressor and a no-idle condenser when a belt-driven compressor and condenser are idle. In yet another embodiment, the HVAC system shares an evaporator.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: July 4, 2017
    Assignee: Bergstrom, Inc.
    Inventors: Terry Zeigler, Eric Elias, Christophe Barreau
  • Patent number: 9644876
    Abstract: A refrigeration cycle apparatus simultaneously performs a cooling operation mode in which a refrigerant from a compressor is caused to flow to an indoor heat exchanger of an indoor unit having a cooling load, and a hot water supply operation mode in which a refrigerant from the compressor is caused to flow to a water heat exchanger of a hot water supply unit having a hot water supply demand. An operation control part switches the control mode of the simultaneous cooling and heating and hot water supply operation mode between a cooling-prioritized mode and a hot-water-supply-prioritized mode according to the relationship between the cooling load and the hot water supply load.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: May 9, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shogo Tamaki, Makoto Saito, Ryo Oya
  • Patent number: 9573437
    Abstract: A vehicular air conditioning system for saving energy includes: a first indoor cooling heat exchanger for suctioning in and cooling the air within or outside a vehicle; an indoor air conditioning heat exchanger installed on the downstream cooling heat exchanger for regulating the temperature of the applicable air, a refrigeration cycle connected to the applicable indoor air conditioning heat exchanger, a heating element mounted in the vehicle, and a circuit for the machine coolant circulating between the applicable heating element and the applicable first indoor cooling heat exchanger, and in which the air flow path for air flowing into the indoor air conditioning heat exchanger is structured by merging a flow path passing through the first indoor cooling heat exchanger to a flow path not passing through the first indoor cooling heat exchanger, and is also configured to allow switching to either of the two flow paths.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: February 21, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Tadashi Osaka, Hiroaki Matsushima, Sachio Sekiya, Riichi Uchida, Yuki Akiyama
  • Patent number: 9574784
    Abstract: The disclosure provides, in one aspect, a method of starting a HVAC system is disclosed. In one embodiment, the method includes: (1) receiving an initiation signal at a main system controller of the HVAC system, (2) determining if main controller application information associated with the main system controller is stored thereon, (3) querying an auxiliary controller of the HVAC system when determining the main controller application information is not stored on the main system controller, (4) sending the main controller application information to the main system controller from the auxiliary controller when the auxiliary controller includes the main controller application information, and (5) initiating the HVAC system based on the initiation signal and employing the main controller application information sent to the main system controller from the auxiliary controller.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: February 21, 2017
    Assignee: Lennox Industries Inc.
    Inventors: Glenn Will Kowald, Darko Hadzidedic
  • Patent number: 9453666
    Abstract: A cooling system may include a desiccant wheel with a first section and a second section. An intake air supply may be connected to the first section, and an exhaust air supply may be connected to the second section. A heat pump may be provided and include a compressor, a first condenser, a second condenser, a third condenser, an expansion device, a control valve, and an evaporator. A high temperature fluid line may be provided and include a solar panel, a fluid tank, and at least one heat exchanger. One of the second condenser and the third condenser may provide heat to the fluid tank of the high temperature fluid line. The first condenser and the at least one heat exchanger may be disposed in the exhaust air supply to heat air which regenerates desiccant material as it passes through the second section. The regenerated desiccant material removes moisture from the intake air passing through the first section.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 27, 2016
    Assignee: KING SAUD UNIVERSITY
    Inventor: Abdullah Alabdulkarem
  • Patent number: 9341396
    Abstract: A retrofit energy exchange system including a first set of valves for connecting to a first energy transfer sub-system. The system further includes a second set of valves for connecting to a second energy transfer sub-system. In addition, the system includes an energy exchange unit configured to supply excess energy from to the first energy transfer sub-system to the second energy transfer sub-system.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: May 17, 2016
    Assignee: ENERGY RECOVERY SYSTEMS INC.
    Inventor: Aniello Manzo
  • Patent number: 9273869
    Abstract: A wood burning furnace providing, in sequential connection, an air box, a fire box with a wood storage box/primary combustion chamber and a secondary combustion chamber separated by an ash grate, a heat exchanger, an exhaust manifold, and a smoke stack. The air box has an input port attached to an intake air blower. The air box also has two dampers, a first damper providing controlled access to an updraft exhaust pipe connected to the smoke stack. The second damper provides controlled access from the intake blower through the air box to the wood storage box/primary combustion chamber.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: March 1, 2016
    Inventor: Paul D. O'Reilly
  • Patent number: 9182142
    Abstract: A method for operating an HVAC system of a building is provided. The method includes providing a model for an indoor temperature of the building, a model for an operating cost of the HVAC system, and predicted future outdoor temperatures. Utilizing at least the models for the indoor temperature and the operating cost of the HVAC system and the predicted future outdoor temperatures, future operating states of the HVAC system can be calculated.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: November 10, 2015
    Assignee: General Electric Company
    Inventor: Yicheng Wen
  • Patent number: 9175888
    Abstract: A refrigerator is provided that includes a low energy refrigerator heat source. The refrigerator includes a heat source positioned at a source of latent heat. The heat source harvested heat from the source of latent heat and stores said heat in a fluid within that heat reservoir or heat exchanger. The warmed fluid is then supplied via a fluid pathway to an application requiring a heat output. Thus, the heat reservoir provides heat to the application without use of an energy-consuming device, which reduces the energy consumption of the refrigerator.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 3, 2015
    Assignee: Whirlpool Corporation
    Inventor: Patrick J. Boarman
  • Patent number: 9140500
    Abstract: When performing heat storage in a heat storage container accommodating a plurality of kinds of heat storage materials with different melting points, heat storage in the heat storage materials is performed such that a higher melting point heat storage material is in a latent heat storage state as much as possible. In other words, heat storage in the heat storage materials is performed in such a manner that the heat storage materials are in the latent heat storage state in which heat can be stored most effectively. In addition, when performing heat release from the heat storage container to heat coolant water in a circulation circuit, heat release is performed from the heat storage material in the sensible heat storage state as a priority, out of the heat storage materials. Accordingly, heat release from the heat storage container in the heat storage state is performed in such a manner that the heat storage materials are maintained in latent heat storage state for as a long period of time as possible.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 22, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Miyuki Goto, Satoru Shiga
  • Patent number: 9027634
    Abstract: ‘Underground Thermal Battery Storage System’ using a battery structure of one or more underground thermally insulated cells, where each cell comprised of a waterproof thermal insulation shell, one or more fluid storage tanks and earth matrix. The thermal storage cell's fluid storage tanks are interconnected using a thermal fluid transport system with control valves, circulating pumps, and managed by a programmable controller. The programmable controller uses the cell sensors to determine cell status, control cell interconnections, and to manage the thermal charging and discharging by exterior heating or cooling devices. A moisture injection system is provided to control the thermal conductivity within the cell's earth matrix.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: May 12, 2015
    Inventor: John R. Yatchak
  • Patent number: 9016358
    Abstract: A system for conditioning ambient air in a room of a building in terms of heat and/or cold and optionally humidity, where air flow is accomplished by latent heat accumulator bodies arranged in the room of the building. A separate air duct, which forms an incoming-air flow, is provided to blow out incoming air underneath the latent heat accumulator bodies, while air is sucked in parallel to the surface of the latent heat accumulator bodies.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 28, 2015
    Assignee: Autarkis B.V.
    Inventors: Klaus Fieback, Andreas Laube, Lutz Kutzker, Harald Kuhlei, Antonius Hubertus Henricus Schmitz
  • Patent number: 8960181
    Abstract: Solar heat collector, especially an evacuated-tube solar heat collector, filled with first solid heat storage and conducting material transfers the solar heat to an electric power heat insulated utensil through second heat conducting/transferring material for cooking foods and making coffee/tea. A set of solar cooking appliance having a solar heat collector filed with a first solid heat storage and conducting material and a solar cooking range filled with third solid heat storage and conducting material. The solar cooking range having a heat insulated enclosed compartment and also having a cooktop. The cooking range having a set of cooking chambers which are in thermal contact with the first and second heat storage and conducting material for cooking food therein. The cooking appliance also has a group of removable parts that cover the cooking chambers separately. An electric power heater provides a backup energy source and electric heat storage.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: February 24, 2015
    Inventor: Huazi Lin
  • Patent number: 8950469
    Abstract: A temperature control system includes a heat transfer medium supply configured to supply a first heat transfer medium of a first temperature into a heat transfer medium path; at least one heat transfer medium storage provided between the heat transfer medium path and the heat transfer medium supply and configured to store a second heat transfer medium of a second temperature higher than the first temperature; a heat transfer medium supply control device provided between the heat transfer medium supply and the heat transfer medium path and between the heat transfer medium storage and the heat transfer medium path and configured to stop a supply of the first heat transfer medium into the heat transfer medium path from the heat transfer medium supply and to supply the second heat transfer medium into the heat transfer medium path from the heat transfer medium storage when a heating unit generates heat.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: February 10, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Yasuharu Sasaki, Ryo Nonaka, Nobuyuki Nagayama
  • Patent number: 8921702
    Abstract: In one possible implementation, a thermal plane structure includes a non-wicking structural microtruss between opposing surfaces of a multilayer structure and a thermal transport medium within the thermal plane structure for fluid and vapor transport between a thermal source and a thermal sink. A microtruss wick is located between the opposing surfaces and extends between the thermal source and the thermal sink.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: December 30, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: William B. Carter, Peter D. Brewer, Adam F. Gross, Jeffrey L. Rogers, Keith V. Guinn, Alan J. Jacobsen
  • Patent number: 8919659
    Abstract: A heating system includes: a heat generation unit which generates heat using electricity supplied through a second power system of a lower electricity rate; a heat storage unit which stores heat generated by the heat generation unit; a heat radiation unit which radiates heat stored in the heat storage unit; and a control unit which causes, when receiving a signal from a power supplier indicating that a supply of electricity through the second power system is to be stopped after an elapse of a predetermined period of time, the heat generation unit generates additional heat that is required while the supply of electricity through the second power system being suspended, during a period of time from when the signal is received to when the supply of electricity through the second power system is stopped.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Shinichi Takasaki, Atsushi Kakimoto, Akira Hochi
  • Patent number: 8844608
    Abstract: In an induction emission air conditioning apparatus installed in a ceiling, it is provided within a casing with a heat exchanger through which a feed air introduced from an outdoor side passes, a fan passing the feed air through the air conditioning heat exchanger, and a heating and cooling unit 1 for blowing a mixed air obtained by inducing and suctioning the air in the room inside by using the feed air passing through the heat exchanger so as to mix with the feed air, into the room inside in a laminar manner, and emitting the heat of the mixed air to the room inside, integrally.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 30, 2014
    Assignee: Kimura Kohki Co., Ltd.
    Inventors: Keiichi Kimura, Mitsuo Morita, Kazuyuki Kasahara, Katsuhiro Urano
  • Patent number: 8768531
    Abstract: A centralized-monitoring apparatus, which centralized monitors a device including a storage, a temperature sensor to detect a temperature therein, and a temperature-variable device to cool or heat inside the storage such that the temperature reaches a set object-preservation temperature, comprises: an input device to be input with first information indicative of a time zone in which the temperature-variable device performing power-saving operation and second information indicative of a set temperature of the time zone; a storage device to store the first-and-second information from the input device; a timing device to measure a current time; and a control device to control the temperature-variable device, based on the first-and-second information and current time, so as to start operation of turning the temperature to the set temperature when the current time reaches a starting time of the time zone, and terminate the operation when the current time reaches an ending time thereof.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: July 1, 2014
    Assignee: Panasonic Healthcare Co., Ltd.
    Inventors: Yasuaki Sonoda, Masanaga Tanaka, Ikue Nono, Shigeyuki Nakamura
  • Patent number: 8667804
    Abstract: Thermal storage air conditioner including an outdoor unit having an outdoor heat exchanger for making heat exchange, and at least one compressor for compressing refrigerant, an indoor unit having at least one indoor heat exchanger for making heat exchange, a thermal storage unit having a thermal storage tank for holding thermal storage substance therein, a thermal storage heat exchanger for receiving refrigerant from an outside of the thermal storage unit to heat exchange with the thermal storage substance in the thermal storage tank, and a securing member for securing the thermal storage heat exchanger so as to maintain the thermal storage heat exchanger submerged under the thermal storage substance in the thermal storage tank, and a functional unit for selective control of refrigerant flows among the outdoor unit, the indoor unit and the thermal storage unit according to an operation condition, thereby maintaining the thermal storage heat exchanger in the thermal storage tank securely, to prevent drop of he
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: March 11, 2014
    Assignee: LG Electronics Inc.
    Inventors: Jae Yoon Koh, In Kyu Kim, Jin Ha Hwang
  • Patent number: 8639387
    Abstract: A method of controlling a controllable device related to a building aperture, whereby a climate related characteristic for the aperture is adjusted by the device, and whereby the device is controlled in accordance with a climate and comfort program which is dependent on a control parameter, whereby the device is controlled in accordance with a time schedule provided by the climate and comfort program.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: January 28, 2014
    Assignee: VKR Holding A/S
    Inventors: Henrik Raun Byberg, Ulrik Vagn Ebbe
  • Patent number: 8423322
    Abstract: The invention comprises systems and methods for evaluating changes in the operational efficiency of an HVAC system over time. The climate control system obtains temperature measurements from at least a first location conditioned by the climate system, and status of said HVAC system. One or more processors receives measurements of outside temperatures from at least one source other than said HVAC system and compares said temperature measurements from said first location with expected temperature measurements. The expected temperature measurements are based at least in part upon past temperature measurements.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: April 16, 2013
    Assignee: EcoFactor, Inc.
    Inventors: John Douglas Steinberg, Scott Douglas Hublou
  • Patent number: 8272432
    Abstract: A system and method for providing cool air to a passenger compartment of a hybrid vehicle in an engine off mode is disclosed. This may include operating a HVAC system to provide cold refrigerant flowing through an evaporator while an engine is operating, and forcing air through the evaporator to cool the air. A first portion of the cooled air from the evaporator is directed through a heater core and a second portion around the heater core, and an electric water pump is activated to pump coolant from a thermal storage tank, through the heater core and back to the thermal storage tank to cool the coolant. When the engine operation is ceased, the air flow is directed through the heater core, and the coolant is pumped from the thermal storage tank, through the heater core and back to the thermal storage tank to cool the air.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: September 25, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory A. Major, Mark D. Nemesh
  • Patent number: 8224495
    Abstract: A thermal source provides heat to a heat engine and or one or more thermal demands, including space and water heating and heat storage. Additionally the output of the heat engine may be used for local in situ electricity needs, or directed out over the grid. A system controller monitors conditions of the components of the system, and operates that system in modes that maximize a particular benefit, such as a total accrued desired benefit obtained such as reduced electricity cost, reduced fossil fuel use, maximized return on investment and other factors. The controller may use past history of use of the system to optimize the next mode of operation, or both past and future events such as predicted solar insolation.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: July 17, 2012
    Assignee: Cool Energy, Inc.
    Inventors: Samuel P. Weaver, Lee S. Smith
  • Publication number: 20120152514
    Abstract: A heating system includes: a heat generation unit which generates heat using electricity supplied through a second power system of a lower electricity rate; a heat storage unit which stores heat generated by the heat generation unit; a heat radiation unit which radiates heat stored in the heat storage unit; and a control unit which causes, when receiving a signal from a power supplier indicating that a supply of electricity through the second power system is to be stopped after an elapse of a predetermined period of time, the heat generation unit generates additional heat that is required while the supply of electricity through the second power system being suspended, during a period of time from when the signal is received to when the supply of electricity through the second power system is stopped.
    Type: Application
    Filed: July 19, 2011
    Publication date: June 21, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Shinichi Takasaki, Atsushi Kakimoto, Akira Hochi
  • Publication number: 20120144853
    Abstract: Heat pumps and refrigerating machines operate optimally if the temperature difference of the connected heat sources and heat sinks is as small. If this is not the case, there are two negative effects: At a high spread, increased dissipation occurs in the condensers and evaporators. In order to increase spread, the heat return flow is frequently mixed with the heat pump flow. For this purpose, hydraulic separators and overflow valves are employed. This results in highly dissipative mixing of heat carrier medium with differing temperatures. Using a pair of intermediate storage means, the dissipation that occurs can be drastically reduced. The low spread of the heat pump is adjusted to the high spread of the remaining system. The COP of the system is substantially improved. With heat pumps, the improvement ranges from about 5% to 20%.
    Type: Application
    Filed: August 11, 2010
    Publication date: June 14, 2012
    Inventor: Michael Loeffler
  • Patent number: 8191618
    Abstract: A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: June 5, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Kevin L. Gering, Daryl R. Haefner
  • Patent number: 7934543
    Abstract: Conditioning of ambient air in a room of a building in terms of heat and/or cold and optionally humidity, and air flow is accomplished by arrangement of latent heat accumulator bodies in the room of the building. A separate air duct, which forms an incoming-air flow, is provided to blow out incoming air underneath the latent heat accumulator bodies by utilizing the Koanda effect, while air is sucked in parallel to the surface of the latent heat accumulator bodies.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: May 3, 2011
    Inventors: Klaus Fieback, Andreas Laube, Lutz Kutzker, Harald Kuhlei, Antonius Hubertus Henricus Schmitz
  • Publication number: 20100251711
    Abstract: An apparatus for storing energy includes a compression chamber for receiving a gas, a compression piston for compressing gas contained in the compression chamber, a first heat store for receiving and storing thermal energy from gas compressed by the compression piston, an expansion chamber for receiving gas after exposure to the first heat store, an expansion piston for expanding gas received in the expansion chamber, and a second heat store for transferring thermal energy to gas expanded by the expansion piston. The cycle used by the apparatus has two different stages that can be split into separate devices or combined into one device.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Isentropic Limited
    Inventors: Jonathan Sebastian Howes, James Macnaghten
  • Patent number: 7693402
    Abstract: A thermal storage unit having at least one conduit around which a cast is made is provided. The thermal storage unit uses conventional piping or tubing to create conduits that economically maximize the surface area of flow in contact with the thermal mass by proving multiple passes for the fluid through the cast. This enables the thermal storage unit to economically provide heat storage as well as effective heat delivery and pressure containment for a fluid flowing through the conduit.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: April 6, 2010
    Assignee: Active Power, Inc.
    Inventors: Robert S. Hudson, David E. Perkins, Donald M. Hudson, David J. Beatty, Donald L. Stamets, Joseph F. Pinkerton
  • Patent number: 7669647
    Abstract: An air conditioning system for cooling or heating an air, and for feeding the heated or cooled air to predetermined portions is characterized by comprising: a first circulating circuit for circulating a first heating medium; a second circulating circuit for circulating a second heating medium; a control unit for controlling the heat for executing heat exchange between the first heating medium and the second heating medium to flow through either the heat exchanger or the first heat storing device. Moreover, an air temperature is controlled by heat of the second heating medium.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: March 2, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Tsubone, Yasukazu Aikawa, Yasutane Hijikata
  • Publication number: 20090301703
    Abstract: Heat storage for house warming over half a year can be constructed from the following principles: A large water volume typically around 10 000 m3 is necessary to keep the ratio of the heat loss through the surface compared to the heat content in the volume low. To assist the heat loss prevention the storage is isolated on the sides and on the top. From the non-isolated bottom and upwards a cooler zone is developed over half a year because of heat conduction to the ground. The approximate thickness of the temperature transition zone can be estimated to 2.
    Type: Application
    Filed: March 30, 2006
    Publication date: December 10, 2009
    Inventor: Christen Frands Pedersen
  • Patent number: 7610910
    Abstract: A building component system includes a building component that is controllable between a first state and a second state in response to a sensed condition. The system may include a sensor on a first side of the building component and a sensor on the second side of the building component. The building component may be a window that is controllable between an opaque state and a clear state by a micro electromechanical system (MEMS) network that senses the conditions on both sides of the window.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 3, 2009
    Assignee: Siemens Building Technologies, Inc.
    Inventor: Osman Ahmed
  • Patent number: 7518123
    Abstract: A heat capacitor for a capillary aerosol generator comprises a phase change material that changes phases at a temperature approximately equal to a temperature sufficient to volatilize liquid material in a capillary passage of the capillary aerosol generator. The phase change material stores heat, which can be used to generate aerosol either continuously or intermittently over a given time. The use of stored heat in the phase change material to generate aerosol over time enables operation of the capillary aerosol generator remote from a large energy source.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: April 14, 2009
    Assignee: Philip Morris USA Inc.
    Inventors: Tony Howell, Clover Hariaczyi, Marc Belcastro
  • Patent number: 7458418
    Abstract: A heat pump system includes a compressor, a heat rejecting heat exchanger, an expansion device, and a heat accepting heat exchanger. A storage tank stores the water that cools the refrigerant in the heat rejecting heat exchanger. A mechanical interface plate positioned between a hot water reservoir and a cold water reservoir in the storage tank reduces heat transfer between the hot water and the cold water. During a water heating mode, cold water from the cold reservoir flows into the heat sink to cool the refrigerant in the heat rejecting heat exchanger. As the water exchanges heat with the refrigerant, the water is heated in the heat sink, exits the heat sink, and flows into the hot reservoir of the storage tank. During a water discharge mode, the hot water in the hot reservoir is removed from the storage tank and flows into a hot water discharge. Cold water from a water source flows into the cold reservoir of the storage tank to refill the storage tank.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: December 2, 2008
    Assignee: Carrier Corporation
    Inventor: Tobias H. Sienel
  • Patent number: 7240725
    Abstract: A device for climate control of a vehicle is provided which includes a coolant circuit in which coolant flows through a compressor, a condenser, and an evaporator; a heat transfer medium circuit in which heat transfer medium flows through a heat source and a heat exchanger; and a heat/cold reservoir in which the evaporator and the heat exchanger are located. The device of the present invention provides an improved and comparatively economical approach to climate control in the area of a driver's bed in a motor vehicle interior by, at least in part, using a heating/cooling surface for a driver's bed and/or vehicle interior wall, which is integrated into the heat transfer medium circuit such that the heat transfer medium can flow selectively through the heating/cooling surface, or the heat transfer medium which is conveyed by the heat source can flow through the heating/cooling surface.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: July 10, 2007
    Assignee: Webasto Thermosysteme GmbH
    Inventors: Oliver Horn, Noureddine Khelifa, Wolfgang Kraemer
  • Patent number: 7069976
    Abstract: Process and device for controlling the temperature of an outbound secondary flow in a secondary circuit from a heat exchanger by a primary flow in a primary circuit, via a member that regulates the primary flow, influenced by a control unit. The enthalpy difference between inbound and outbound primary flow to and from the heat exchanger and the secondary flow are determined. The flow in the primary circuit is determined, and the parameters are supplied to the control unit for controlling the member, whereby the primary flow is controlled in dependence of the secondary flow, so that power supplied to the heat exchanger substantially equals the sum of the power needed to raise the temperature of the secondary flow from the initial temperature to the desired outbound temperature; the assumed power requirement for compensating for energy stored in the heat exchanger; and the assumed leak power from the heat exchanger.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: July 4, 2006
    Inventor: Matts Lindgren