Heat Exchange Between Supply And Exhaust Lines Patents (Class 165/66)
  • Patent number: 11598550
    Abstract: A heat pipe system including a heat pipe having a first end and a second end for transferring working fluid from the first to the second end, a first reservoir in fluid communication with the first end for holding working fluid in liquid form, a first heat exchanger for transmitting thermal energy from a heat source to working fluid in the first reservoir to vaporize the fluid, a second heat exchanger for transmitting thermal energy from vaporized working fluid to a heat sink thereby condensing the fluid, a return conduit and a pump for pumping the condensed working fluid along the return conduit, where the heat pipe, the return conduit and the first reservoir form a hermetically sealed circuit. A method of transferring thermal energy using a heat pipe system is also disclosed.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: March 7, 2023
    Assignee: Brunel University London
    Inventor: Hussam Jouhara
  • Patent number: 11065591
    Abstract: A method and reactor for performing exothermic reactions with parallel operated catalyst modules arranged in stacked order within a pressure shell and adapted to axial flow of process gas through one or more catalyst layers and at least one catalyst layer cooled by an intrabed heat exchanger.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: July 20, 2021
    Assignee: Haldor Topsoe A/S
    Inventors: Christian Henrik Speth, Tommy Lykke Wind, Uffe Bach Thomsen, Anders Helbo Hansen
  • Patent number: 11040321
    Abstract: In an adiabatic axial flow converter, in which process gas passes from an outer annulus via a catalyst bed, wherein the process gas is converted to a product, to an inner centre tube, the catalyst bed comprises at least one module comprising one or more catalyst layers. Feed means are arranged to provide a flow of process gas from the outer annulus to an inlet part of one or more modules, and collector means are arranged to provide a flow of product stream of converted process gas which passes axially through the catalyst bed of one or more of the modules to the centre tube.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 22, 2021
    Assignee: Haldor Topsoe A/S
    Inventors: Christian Henrik Speth, Per Juul Dahl
  • Patent number: 10721918
    Abstract: A plenum flooring system installed over high density insulation panels, preventing heat loss to ground and intrusion of ground moisture. The system includes one or more flooring segments, each containing at least one surface opening to the plenum space, and a plenum ventilation system. The ventilation system includes a blower and air inlet openings in seals arranged along the perimeter of the plenum flooring segments at the walls of the interior of a poultry house. The blower withdraws air from the plenum space through the surface opening of the flooring segment and discharges it into the poultry house, creating a continuous flow of air to maintain uniform flooring surface temperatures and remove moisture that migrates to the plenum space from manure on the perforated flooring surface due to moisture gradient, then a refrigerated dehumidifier/air circulation unit to condense moisture in the air and discharges that liquid to the house exterior.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 28, 2020
    Assignee: Poultry Ecoservices, LLC
    Inventors: Patrick Clark Thompson, Rafael Sepulveda Correa
  • Patent number: 10639386
    Abstract: Disclosed herein are methods for pasteurizing architectural coating compositions using heat, radiation or other energy sources without additionally polymerizing the compositions and storing same.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: May 5, 2020
    Assignee: Columbia Insurance Company
    Inventors: Robert Sheerin, David L. Siegfried, Wilbur Mardis, John Ritzke, Navin Tilara
  • Patent number: 10386124
    Abstract: A dual pass heat exchanger for cooling and dehumidifying an airstream has adjacent passes for air flow in which air flow is in opposite directions being counter-flow and parallel-flow passes. A cooling coil contains flowing chilled liquid refrigerant extending through all of the passes, and the coiling coil has fins on outer surfaces thereof for promoting efficient thermal transfer, whereby density of the fins in the counter-flow passes is greater than density in the parallel-flow passes, whereby fin density is varied in fin style, locational density, thickness and/or depth.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: August 20, 2019
    Assignee: Kentuckiana Curb Company, Inc.
    Inventor: Walter Stark
  • Patent number: 9706793
    Abstract: Provided is a sterilization processing line resulting from an upstream tank (16) and a downstream tank (17) that each retain a product liquid being connected by a duct (18) that transfers the product liquid, a high-temperature heating unit (21) that sterilizes the product liquid being provided to the intermediate section of the duct, one or a plurality of stages of heating units (22, 23) that heat the product liquid in stages being provided to the duct reaching from the upstream tank to the high-temperature heating unit, and one or a plurality of stages of cooling units (24, 25, 26) that cool the product liquid in stages being provided to the duct reaching from the high-temperature processing unit to the downstream tank.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: July 18, 2017
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventor: Atsushi Hayakawa
  • Patent number: 9651316
    Abstract: The present invention provides a thermal energy exchanger for bathing shower water comprising an upper deck, a lower chassis and two hatches. The upper deck features creased top surface, multiple parallel septa and plural heat conducting ribs being created between each pair of adjacent septa. After having assembled, the circulation of internal water tunnel is configured into a continual zigzag duct to increase energy saving effect in consequence of improvement in heat exchanging efficiency of the water heater. With simple structure, it is easily fabricated by traditional extruding method without welding process and related welding technician. Thereby, selling price is reduced with marketing competitiveness because overall manufacturing cost is decreased so that the purchasing intention of the consumers is spurred. Thus, it is not only favorable to promote and penetrate marketing range and depth but also valuable to achieve energy saving and carbon reducing effect.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 16, 2017
    Inventors: Ying Lin Cai, Chao Fou Hsu
  • Patent number: 9651310
    Abstract: The present invention relates to a heat recovery system, of a part of the energy spent in the preparation of waste water, e.g. water from baths or kitchens, energy that is usually lost when the water is drained into the sewer. This energy can be recovered and reused to heat water that is readily used, for example in the shower, or can be stored in a water heater. This system is designed in such a way that, together with any tub or shower base, constitutes a heat recovery shower base or a heat recovery bath, for example. The energy recovery system is composed, preferably, by a coil generally made of copper inside a PVC pipe that has at one end a throttle plate also made of PVC, a filter for the protection of the system against impurities, turbulence fins, and an external casing. The system has a compact structure which benefits its rapid adaptation.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 16, 2017
    Assignee: EIDT—ENGENHARIA, INOVACAO E DESENVOLVIMENTO TECNOLOGICO, SA.
    Inventor: José Alberto Garcia Meliço
  • Patent number: 9454194
    Abstract: A heat dissipating module includes a heat dissipating member and an air flow guiding mechanism. The air flow guiding mechanism includes a base, an air guiding plate and a stopping structure. The base is disposed on a side of the heat dissipating member, and the air guiding plate is pivoted to the base. The stopping structure is disposed on the base. A side of the stopping structure abuts against the air guiding plate, so as to allow the air guiding plate to rotate in a first direction and to stop the air guiding plate from rotating in a second direction opposite to the first direction.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: September 27, 2016
    Assignee: Wistron Corporation
    Inventor: Shih-Huai Cho
  • Patent number: 8999146
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Patent number: 8978747
    Abstract: A datacenter may use heat collected from a heat exchanger at the exhaust portion of a cooling system to heat inlet louvers for an atmospheric intake. The louvers may have fluid passages through which heated fluid may pass and cause the louvers to heat up. The heated louvers may operate during periods of snow, rain, high humidity, or other conditions to eliminate condensation, snow and ice buildup, or other problems. In some embodiments, a liquid may be passed through the louvers, while in other embodiments, heated air or other gas may be passed through conductive paths in the louvers. In a heated air system, holes in the louvers may allow the heated air to enter the incoming airstream to regulate the incoming temperature to the datacenter.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: March 17, 2015
    Assignee: Microsoft Corporation
    Inventors: Eric C Peterson, Christian L. Belady
  • Patent number: 8904772
    Abstract: Regarding an engine exhaust gas heat exchanger that allows exhaust gas to collide with a coolant passage through apertures, a configuration that can improve efficiency of heat exchange is provided. The engine exhaust gas heat exchanger 1 is provided with multiple stages of unit exhaust gas passages 3a, 3b, 3c that are configured with a first exhaust gas passage A in which a plane facing an inlet is blocked and that has a plurality of apertures 30 in a circumferential direction and in a flow direction, and a second exhaust gas passage B that has a dividing wall facing the apertures 30 and also serving as the coolant passage 20 and an outlet that also serves as an inlet of the first exhaust gas passage A of a next stage or an outlet 26 of the engine exhaust gas heat exchanger 1.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: December 9, 2014
    Assignee: Yanmar Co., Ltd.
    Inventors: Hiroshi Azuma, Kosuke Matsuura
  • Patent number: 8901468
    Abstract: A heating system for hot water and conditioned air uses electromagnetic energy created by one or more magnetrons operated by high voltage transformers. The heating system includes oil cooled transformers and magnetrons. Using radiators in the form of heat exchangers, heat recovered from the transformers and magnetrons is dissipated directly into the path of the return air and the air handler blower. The magnetron heating system includes a coiled conduit sized to allow complete heating of the fluid flowing therethrough. The conduit has a conical shape to allow upper magnetrons to heat the outside of the conduit and lower magnetrons to heat the inside of the conduit.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: December 2, 2014
    Inventor: Vincent A. Bravo
  • Patent number: 8877399
    Abstract: Various hot box fuel cell system components are provided, such as heat exchangers, steam generator and other components.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: November 4, 2014
    Assignee: Bloom Energy Corporation
    Inventors: David Weingaertner, Michael Petrucha, Martin Perry, David Edmonston, Virpaul Bains, Andy Ta, Navaneetha Krishnan
  • Patent number: 8763376
    Abstract: A vehicle includes a coolant circuit that circulates a flow of an engine coolant therethrough. The coolant circuit includes an Exhaust Gas Heat Recover (EGHR) system for transferring heat from a flow of exhaust gas from an internal combustion engine to the flow of the engine coolant. A control valve is disposed downstream of the EGHR system, and directs the flow of the engine coolant along either a first fluid flow path back to the internal combustion engine to heat the internal combustion engine, or a second fluid flow path including a transmission fluid warming system to heat a supply of transmission fluid to reduce transmission spin loss.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 1, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Gopala K. Garnepudi
  • Publication number: 20140131005
    Abstract: A temperature control system, a wafer chuck, a thermal module for use with the chuck, and an apparatus for use in semiconductor manufacture are disclosed herein. The temperature control system includes: a target having a temperature, a fluid circulation loop coupled to the target for controlling the temperature of the target, a heating heat exchanger coupled to the fluid circulation loop for selectively providing heat to the fluid circulation loop, a cooling heat exchanger coupled to the fluid circulation loop for selectively providing cooling to the fluid circulation loop and a plurality of thermal electric elements carried by the target for selectively providing heating or cooling to the target. The heating heat exchanger and cooling heat exchanger provide gross control of the temperature of the target, and the plurality of thermal electric elements provide fine control of the temperature of the target.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 15, 2014
    Applicant: Noah Precision, LLC
    Inventor: Boris ATLAS
  • Patent number: 8544454
    Abstract: The invention relates to a heat exchanger (or a motor vehicle, comprising a first flow path (1) with a number of flow conduits (6) for conducting a fluid to be cooled, a deflection region (13), situated downstream of the first flow path (1) and a second flow path (2), situated downstream ol the deflection region (13). According to the invention, the flow conduits (6) of the first flow path (1) continue in the deflection region (13) and the second (low path (2) as continuous separate flow conduits (6). The invention also relates to a flow conduit (41, 41?, 61, 61?, 71, 71?, 81, 81?, 91, 91?) for a heat exchanger (30,40) for exchanging heat between a first fluid (31) and a second fluid (33). The aim of the invention is to guarantee an improved transfer of heat with a simultaneous acceptable pressure drop, whilst reducing the blocking risk.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: October 1, 2013
    Assignee: Behr GmbH & Co. KG
    Inventors: Peter Geskes, Bernd Grünenwald, Wolfgang Knödler, Jens Ruckwied
  • Patent number: 8534346
    Abstract: A modular, water-to-air heat exchanger with flexible tubes is adjustable in length to conform to different size cooling coils and thus provides an inexpensive, retro-fittable run-around heat recovery for pre-existing air handling systems. The heat exchanger comprises multiple heat exchange tubes formed of flexible material in a shape that permits them to be lengthened or shortened by simply moving the headers toward or away from each other. Preferably, the tubes are formed of a flexible, non-resilient material such as copper, and are shaped in a serpentine or helical manner. In this way, the tubes can be drawn out to elongate the heat exchanger or compressed to shorten it, depending on the dimension of the cooling coil in the air handler. One convenient way to control the length of the flexible tubes is to support the headers on one or more adjustment bars, each having a threaded adjustment mechanism.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: September 17, 2013
    Assignee: ClimateCraft Technologies, Inc.
    Inventor: Walter P. Mecozzi
  • Patent number: 8491678
    Abstract: A system and method of recovering some of the latent heat of vaporization in a system having a heated environment that adds heat to liquid material and converts the liquid material into gaseous material. The latent heat of vaporization is partially recovered using a unique heat exchanger. The heat exchanger preheats the liquid material entering the heated environment with heat energy from the gaseous material exiting the heated environment. The heat exchanger has a gas flow path. A volume of a gas medium fills the gas flow path. A pump causes the gas medium to flow through the gas flow path at a predetermined mass flow rate. The gas medium and its flow rate are selected to ensure that the specific heat of the gas medium surpasses that of the gaseous material exiting the heated environment.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: July 23, 2013
    Inventor: Peter R. Bossard
  • Patent number: 8484966
    Abstract: A system for generating power from a low grade heat source includes a heat source inlet, heat sink inlet, heat exchanger unit, and a heat engine. The heat source inlet conveys a flow of a heated fluid into the system. The heat sink inlet conveys a flow of a cooled fluid into the system. The heat exchanger unit is configured to rotate. A portion of the heat exchanger unit alternates between thermal contact with the heated fluid and thermal contact with the cooled fluid in response to being rotated. The heat engine is configured to generate power in response to the heat exchanger unit being rotated.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: July 16, 2013
    Assignee: SPX Corporation
    Inventors: Eric K. Rasmussen, Jidong Yang, Hobart Cox
  • Patent number: 8376030
    Abstract: A system for heating includes a heat exchanger. The heat exchanger receives hot exhaust from combustion. The heat exchanger uses the heat from the hot exhaust to heat a fluid. A method for heating uses a heat exchanger. The heat exchanger receives hot exhaust and a fluid. The heat exchanger heats the fluid.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: February 19, 2013
    Inventor: Jayant Jatkar
  • Patent number: 8199491
    Abstract: A drainage system is provided for draining liquid accidentally spilled on a casing having a plurality of pushbuttons on a surface of the casing. An electronic apparatus may comprise a casing and a drainage system. The drainage system may be connected with the casing. The drainage system may include a liquid collecting basin, a drainage exit, and a liquid passageway. The liquid passageway may have a capillary surface and may lead the liquid from the liquid collecting basin to the drainage exit.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 12, 2012
    Assignee: Lenovo (Singapore) Pte. Ltd.
    Inventors: Yoshiharu Uchiyama, Akinori Uchino, Tsutomu Chonan, Hiroyuki Noguchi, Kimio Kumada
  • Patent number: 8104532
    Abstract: A heat exchanger placed underneath an elevated tub or shower stall or under the bathroom floor includes a flat top heat conductive plate. The top plate is fastened to a flat lower plate, having a serpentine pattern with a shallow depth embedded into the top surface. When the top plate is fastened and sealed to the lower plate, the flow of the incoming cold water is contained within the confines of the serpentine lower plate of the heat exchanger. Heat is transferred from the grey waste water falling onto the top plate to preheat the incoming cold water flowing underneath the top plate in the serpentine conduit chamber of the lower plate in contact with a bottom surface of the top plate. The cold water is thereby preheated and used as a substitute for the incoming cold water that would be normally plumbed to the discharge shower head.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: January 31, 2012
    Inventor: Jeremiah Cardone
  • Publication number: 20120018124
    Abstract: A heat exchanger includes a heat-exchange section including a first group of tubes and a second group of tubes alternating with the first group of tubes. The first and second groups of tubes are in contact with a heat-conductive medium. In one structure, a first inlet manifold at a first end of the heat-exchange section is fluidly coupled to first ends of the first group of tubes. A first outlet manifold is isolated from the first inlet manifold and is fluidly coupled to first ends of the second group of tubes. A second inlet manifold at a second end of the heat-exchange section is fluidly coupled to second ends of the second group of tubes. A second outlet manifold is isolated from the second inlet manifold and is fluidly coupled to second ends of the first group of tubes.
    Type: Application
    Filed: September 29, 2011
    Publication date: January 26, 2012
    Inventors: Daniel W. Kappes, Dustin J. Albin
  • Patent number: 8033322
    Abstract: A space has inlet and outlet registers and outside and exhaust air ducts. The outside air duct is located adjacent to the inlet register. The exhaust air duct is located adjacent to the outlet register. The space has an outside air passageway through the outside air duct adjacent to the inlet register. The space has an exhaust air passageway through the exhaust air duct adjacent to the outlet register. A thermosyphon run around heat pipe assembly includes outside air coils and exhaust air coils. Vapor lines and liquid lines couple the coils. The outside air coils are positioned adjacent to the air inlet duct. The exhaust air coils are located adjacent to the air outlet duct. A control device, in the form of a modulating return damper, is located between the air ducts. An air filter is provided upstream of and adjacent to the outside air coils.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 11, 2011
    Inventor: Richard W. Trent
  • Patent number: 8029580
    Abstract: A reformer for a fuel cell system has at least a dual pipe configuration that forms independent spaces through which fuel containing hydrogen passes. The reformer includes a first reaction assembly for generating heat energy by an oxidation reaction of the fuel and a second reaction assembly for generating hydrogen gas from the fuel through a reforming reaction using the heat energy. The reformer further includes a first pipe, and a second pipe having a circumference significantly less than a circumference of the first pipe to thereby allow for positioning of the second pipe within the first pipe. An oxidation catalyst layer is formed in the second pipe, and a reforming catalyst layer is formed between the first pipe and the second pipe.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: October 4, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ju-Yong Kim, Ho-Jin Kweon, Yeong-Chan Eun, Sung-Yong Cho, Seong-Jin An
  • Patent number: 8007729
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 30, 2011
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Patent number: 7996933
    Abstract: A trap for recovering heat energy from a liquid has a chamber 7 with an internal baffle wall 45-48. An upper chamber opening 9 and a weir at an inlet end 13 of a discharge conduit 11 are on opposite sides of the baffle wall. Liquid fed into the chamber via the upper opening flows downward and under the baffle wall before flowing upward and over the weir to be discharged from the chamber through the discharge conduit. A second liquid flows through a heat exchange conduit 17-24. One preferred embodiment has a concentric arrangement of a plurality of cylindrical baffle walls alternating with a plurality of cylindrical chambers of the heat exchange conduit. A corresponding method of heat recovery is also claimed. In one preferred application, the trap is fitted into the base or floor tray of a shower for recovery of heat energy from waste shower water.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: August 16, 2011
    Inventor: Garth Kennedy McGregor
  • Patent number: 7997328
    Abstract: In an air conditioner, air-supply passages cross air-discharge passages, and heat exchangers are disposed at intersections between the air-supply passages and the air-discharge passages. This increases the effective heat-exchanging areas of the heat exchangers. In addition, the air conditioner is configured such that the air conditioner can be easily installed and repaired even when the air conditioner is rotated to be properly connected with air-supply ducts and air-discharge ducts.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: August 16, 2011
    Assignee: LG Electronics Inc.
    Inventors: Kyung Hwan Kim, Keun Hyoung Choi, Han Lim Choi
  • Patent number: 7942193
    Abstract: A defrost system for a heat recovery ventilator/energy recovery ventilator (HRV/ERV), uses the interior space supply air of an integrated fan coil for defrosting a HRV/ERV core without creating negative pressure in the interior space, which wastes energy, without need of an external fifth port from which to draw defrost air from the interior space, which increases costs, and without re-circulating exhaust air into the interior space. During the defrost cycle, automatically controlled dampers close off the fresh air and exhaust air inputs, and exhaust output, and circulate supply air through the heat exchange core and into to the living space.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 17, 2011
    Assignee: Nu-Air Ventilation Systems Inc.
    Inventor: Bradley D. Caldwell
  • Patent number: 7878236
    Abstract: In an HVAC system in which ambient air is supplied by the system to a building through an ambient air intake airstream and is exhausted from the building through an exhaust airstream energy is conserved by transferring heat between the intake airstream and the exhaust airstream. A heat exchange fluid is circulated between heat exchangers located in the intake airstream and in the exhaust airstream. An air turbine is placed in the exhaust airstream for being driven by the exhaust airstream, and the air turbine is coupled with a pump arranged to circulate the heat exchange fluid between the heat exchangers such that upon being driven by the exhaust airstream, the air turbine, in turn, drives the pump to circulate the heat exchange fluid between the heat exchangers and thereby effects the transfer of heat from one to the other of the intake airstream and the exhaust airstream and a concomitant conservation of energy in the HVAC system.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: February 1, 2011
    Inventor: Joseph G. Breen
  • Patent number: 7789128
    Abstract: The invention relates to a plate-type heat exchanger for drying a gaseous medium, especially air, comprising a stack of plates which are interconnected to define flow spaces between the plates, a gas-gas heat exchanger being formed in one portion of the stack, with a moist inlet gas stream flowing away from an inlet gas connection and a dried outlet gas stream flowing towards an outlet gas connection, both flowing next to each other through separate flow spaces to exchange thermal energy, and a gas-coolant heat exchanger being formed in another portion of the stack, with a coolant and the moist inlet gas stream flowing next to each other through further separate flow spaces for cooling purposes, and a flow connection being formed between an outlet of the gas-coolant heat exchanger and the gas-gas heat exchanger, in-cluding an overflow member to guide the dried outlet gas stream through the overflow member from the gas-coolant heat exchanger to the gas-gas heat exchanger The overflow member is formed of a stac
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: September 7, 2010
    Assignee: Gea WTT GmbH
    Inventor: Peter Rehberg
  • Patent number: 7762807
    Abstract: A single-ended, internally recuperated, radiant tube annulus system in which at least part of the heat recovery takes place within the furnace to which the system is attached and in which the oxidant and/or fuel are preheated not only by heat transfer from the exhaust gases, but also directly from the combustion process. The system includes a plurality of concentric radiant tubular members arranged in a manner providing an outer annular region in which the combustion process is carried out, an inner tubular member through which exhaust gases are exhausted from the system, and intermediate annular regions between the inner tubular member and the outer annular region through which preheated oxidant is provided to the outer annular region for the combustion process. In accordance with one embodiment of this invention, the internal recuperator is used as a fuel reformer.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: July 27, 2010
    Assignee: Gas Technology Institute
    Inventors: Martin Brendan Linck, Harry S. Kurek, Mark J. Khinkis, Aleksandr P. Kozlov
  • Publication number: 20100064714
    Abstract: A data center includes an air-conditioned room, two rack rows formed on a floor surface of the air-conditioned room and each composed of a plurality of racks arranged in a horizontal direction, each of the plurality of racks housing electronic devices in multistage configuration, an air conditioner for conditioning air in the air-conditioned room to eliminate heat generated from the electronic devices housed in the plurality of racks, and a hot zone in the air-conditioned room. The hot zone is defined by the two rack rows arranged on the floor surface of the air-conditioned room such that rear sides thereof are opposite each other at a distance, a ceiling disposed above the two rack rows, two panels disposed at both ends of the two rack rows in the horizontal direction and extending from a lower end of the two rack rows to the ceiling, and two partitions disposed at an upper front top end of the two rack rows and extending to the ceiling.
    Type: Application
    Filed: June 23, 2009
    Publication date: March 18, 2010
    Applicant: Hitachi Cable, Ltd.
    Inventor: Kanji Tashiro
  • Patent number: 7624788
    Abstract: A heat exchanger according to certain embodiments includes an outer portion formed of at least one inflatable cell and an inner portion. The inflatable cell has inner and outer surfaces that are separated from each other and at least partially support the outer portion when inflated. The outer portion defines a first interior passage configured to convey fluid. The inner portion is positioned within the outer portion, the inner portion defining a second interior passage configured to convey fluid.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: December 1, 2009
    Assignee: State of Oregon acting by and through the State Board of Higher Education on Behalf of The University of Oregon
    Inventors: George Zindel Brown, Thomas Dale Northcutt, Jeffrey Alan Kline
  • Patent number: 7539601
    Abstract: A refrigeration based air handling system design process for significant energy and cost savings in cleanroom and other applications requiring large air change rates is presented. The process utilizes a by pass around the air conditioning system, the ratio of bypass to air conditioning flow being such that minimal or no reheat of the air is required for applications having relative humidity (RH) control requirements and with RH control being achieved via cooling. If dehumidification is achieved by adsorptive processes, then the by pass ratio is varied so as to minimize cooling of the heated dry air. In other non relative humidity control applications the bypass is varied to minimize the air conditioning flow, thereby decreasing cost, but by using optimum cooling coil velocities in a manner such that system energy for airflow is minimized. The energy and cost savings achieved by this process vary between 65% to 15% depending on the Class of the cleanroom and/or on the number of air changes per hour required.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: May 26, 2009
    Inventor: Rajan A. Jaisinghani
  • Patent number: 7448439
    Abstract: A heat exchanger includes a plurality of unit modules aligned in parallel, in which each unit module has a heat exchange function.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: November 11, 2008
    Assignee: Fujitsu Limited
    Inventors: Kazuo Hirafuji, Toshimitsu Kobayashi, Yuuji Hasegawa, Manabu Miyamoto
  • Patent number: 7442353
    Abstract: A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: October 28, 2008
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: George A. Richards, David A. Berry
  • Patent number: 7421964
    Abstract: The present invention relates to a floating structure comprising at least a closed space (10), a hull in the shape of a concrete cofferdam (12) having an external delimiting surface intended to be exposed to surrounding water, and a function for heating of the space comprising a heat pump connected to a closed circuit for circulating heat transport medium. At least one collector hose (14) for the circulating heat transport medium is provided in recesses in the concrete such that the cross section of the collector hose is located entirely within an outer outline of the cofferdam, whereby heat from surrounding water is absorbed by the collector hose and used for heating of the space. The invention also relates to a method of moulding a concrete cofferdam (12) adapted to be a hull of a floating structure.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: September 9, 2008
    Assignee: Aquavilla AB
    Inventors: Arne Johansson, Richard Bergström
  • Patent number: 7398643
    Abstract: A combined EGR cooler and non-thermal plasma device has first and second fluid passageways which are in heat exchange communication with one another. One or more electrodes are located in the second fluid passageway. The electrodes are connected to a voltage source. When a voltage of sufficient magnitude is applied to the electrodes, a non-thermal plasma is generated in the second fluid passageway. The device can be constructed in the form of a shell-and-tube heat exchanger or a stacked-tube type heat exchanger, wherein the electrodes extend through the heat exchange tubes. Hot exhaust gases preferably flow through the tubes in heat exchange contact with a liquid coolant, thereby cooling the exhaust gases. The electrodes generate non-thermal plasma inside the tubes, converting at least a portion of the NO in the exhaust to NO2, which reacts with soot in the exhaust gases to generate CO2 and N2, thereby cleaning the exhaust gases.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: July 15, 2008
    Assignee: Dana Canada Corporation
    Inventor: James Scott Cotton
  • Patent number: 7360580
    Abstract: A heat exchanger is mounted external to a section of flue pipe or is an integral part of a section of flue pipe. The heat exchanger preheats a domestic hot water supply and boosts the return water temperature prior to reentry to the furnace coil. The heat exchanger reduces fuel use, pollution and wear of the furnace and burner. A typical heat exchanger installation includes an oil or gas burner located on a furnace or boiler having a flue pipe leading to a gaseous outlet, such as a masonry chimney. A short vertical flue section leads to a draft-regulating damper. The flue heat exchanger may be a coil of tubing wrapped around flue section, such that the tubing picks up heat from the heated flue gasses. Preheated water exits from the heat exchanger.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: April 22, 2008
    Inventor: Joseph C. Ferraro
  • Publication number: 20080006389
    Abstract: Devices and associated methods to prevent burst-related hazards by providing pressure relief in a microelectronic cooling system are generally described. In this regard, according to one example embodiment, a pump outlet line includes at least one pressure relief indentation to rupture along the indentation at a selected pressure to prevent burst-related hazards in a microelectronic cooling system.
    Type: Application
    Filed: June 27, 2006
    Publication date: January 10, 2008
    Inventors: Ioan Sauciuc, Gregory M. Chrysler, Je-Young Chang, Ravi Prasher
  • Patent number: 7316261
    Abstract: A heat exchanging system of a ventilating device includes: a heat exchanging housing communicating with an outdoor air passage and an indoor air passage; a rotational shaft rotatably supported at one side of the case of a ventilating device; and a heat exchanging elements mounted at an outer circumferential surface of the rotational shaft at regular intervals, and performing a heat-exchanging operation of outdoor air and indoor air while being rotated by a wind force of outdoor air passing the outdoor air passage and a blow force of indoor air passing the indoor air passage. Thus, any additional driving unit is not necessary to rotate the heat exchanging system, so that a fabrication cost can be reduced, the overall size of the ventilating device can be reduced, and a noise and vibration can be reduced.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: January 8, 2008
    Assignee: LG Electronics Inc.
    Inventors: Min-Chul Cho, Soo-Yeon Shin, Seong-Hwan Lee
  • Patent number: 7270691
    Abstract: In accordance with an embodiment of the invention, an integrated air processing device includes a housing defining an air inlet, an air outlet, and a pathway from the inlet to the outlet. An air decontamination section, an air conditioning section, and a heating section are provided along the pathway. A blower is also provided along the pathway, to drive air from the inlet to the outlet, along the pathway. In another example, an integrated air processing device includes a housing as above, and an air conditioning section and a heating section along the pathway. An air decontamination section and/or a blower may also be provided along the pathway. In accordance with another embodiment, a portable isolation containment system includes one or more portable containment enclosures coupled to the integrated air processing devices described above. Methods are disclosed, as well.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: September 18, 2007
    Inventors: Theodore A. M. Arts, Paul J. Chirayath
  • Patent number: 7226681
    Abstract: An enclosure for a fuel cell stack for insulating the hot zone of the fuel cell stack and for exchanging heat from the fuel cell stack to a reactant that passes through the enclosure to be used by the fuel cell stack. The enclosure comprises at least one chamber having an intake means for the reactant and an exhaust means for passing the reactant to the fuel cell stack. In one embodiment there are three layered chambers.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: June 5, 2007
    Inventors: Stephen Florence, Joseph English, Bryce Sharman, Glenn Price
  • Patent number: 7220392
    Abstract: A fuel conversion reactor includes a shell-and-tube heat exchanger for controlling the temperature of a hot gaseous mixture produced by catalytic or non-catalytic reaction of a fuel with a gaseous fluid, and for controlling the temperature of the gaseous fluid and/or the fuel prior to the reaction. The reactor is either a catalytic or non-catalytic burner, or a fuel reformer for converting a fuel to hydrogen. A preferred reactor includes an outer shell having first and second ends and an inner surface, a primary inner shell extending into the outer shell, the primary inner shell defining a heat exchanging chamber and having primary and secondary ends, and a secondary inner shell having a first end located adjacent the secondary end of the primary inner shell. One or more outlet apertures are formed between the two inner shells for passage of the gaseous fluid out of the heat exchanging chamber.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: May 22, 2007
    Assignee: Dana Canada Corporation
    Inventors: Xiaoyang Rong, Brian E. Cheadle
  • Patent number: 7101507
    Abstract: Aerobic and anaerobic contamination is removed from a slurry by a sterilizing process and apparatus (10). A slurry piping circuit (26, 28, 30, 32, 34) interconnects a supply tank (12), three serial heat exchangers (16, 18, 20) and a storage tank (14). The circuit and storage tank are sanitized by flushing with mist of hydrogen peroxide (44) and nitrogen (50). One heat exchanger (16) transfers heat from the sterilized slurry to the unsterilized slurry. A closed hot water piping circuit (60, 62, 64) interconnects a hot water boiler (22) and the other two heat exchangers (18, 20). The slurry is sterilized in an insulated manifold (24) interconnecting the other two heat exchangers (18, 20). Slurry is pumped through the piping and heated by hot water in the manifold to kill the bacteria, and is covered by a layer of nitrogen (54) in the storage tank (14).
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: September 5, 2006
    Inventor: Paul E. Adler
  • Patent number: 7059385
    Abstract: The invention relates to an air condition device consisting of recovery cells (1, 2), an inlet (3) and exhaust ducts (4) leading to and from a room, an inlet (5) and exhaust ducts (6) located at the other end of the device and leading to and from the outdoor air, the air flows in the air conditioning device being controlled by means of rotating deflectors (7, 8). The deflectors (7, 8) consist of baffles fixed to different control axes (9, 10) and rotating about their axes, the air openings (11, 12) provided in the deflectors being located altematingly at the same recovery cell (1, 2), where the air flow directions are reversed periodically.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: June 13, 2006
    Assignee: MG Innovations Corp.
    Inventor: Kari Moilala
  • Patent number: 7013953
    Abstract: A waste heat recovery system includes: a tank; heat exchange pipes connected with one another in the form of a ‘S’ shape in multiple steps inside the tank and having city water flow pipes bound up into a bundle; circulation leading plates mounted between the heat exchange pipes for inducing a flow of waste water; movable nozzles mounted on the circulation leading plates and connected with a high pressure water pipe for spraying high pressure water onto the surface of the heat exchange pipe or having a brush for cleaning the surface of the heat exchange pipe; a nozzle driving part for driving the movable nozzle by means of a driving motor; and waste water inlet and outlet for flowing hot waste water from the upper portion to the lower portion of the tank and city water inlet and outlet for flowing city water from the lower portion to the upper portion of the tank.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 21, 2006
    Inventor: A-Ra Jung