Steam Quality Patents (Class 166/250.06)
  • Patent number: 9447668
    Abstract: Disclosed are systems and methods of injecting steam into a wellbore. One disclosed injection tool includes a body defining an inner bore and a radial flow channel, one or more fluid conduits defined in the body at the radial flow channel, a shroud arranged about the body such that an annulus is defined and in fluid communication with the one or more fluid conduits and the surrounding wellbore environment, a sleeve arranged within inner bore and movable between a first position, where the sleeve occludes the one or more fluid conduits, and a second position, where the one or more fluid conduits are exposed, and first and second seals generated at opposing axial ends of the radial flow channel when the sleeve is in the first position.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: September 20, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventor: John Charles Gano
  • Publication number: 20140284051
    Abstract: A control system for controlling the operation of a Downhole Steam Generator (DHSG) system includes a cascade control strategy for control of individual final control elements in communication with a local well master controller. The final control elements may control fuel, oxidant, feedwater, and/or carbon dioxide flow to the downhole steam generator. The local well master controller may monitor and adjust the flows to the DHSG to control the operating performance of the DHSG.
    Type: Application
    Filed: February 21, 2014
    Publication date: September 25, 2014
    Applicant: WORLD ENERGY SYSTEMS INCORPORATED
    Inventors: Marvin J. SCHNEIDER, Blair A. FOLSOM, James C. WRIGHT, Anthony Gus CASTROGIOVANNI, Andrew Henry KASPER
  • Patent number: 8800653
    Abstract: A method for identifying fluid migration or inflow associated with a wellbore tubular, comprises measuring strain of the wellbore tubular with a system comprising at least one string of interconnected sensors that is arranged such that the sensors are distributed along a length and the circumference of the wellbore tubular; establishing a baseline that is a function of steady state strain measurements within a first time period; and identifying fluid migration or inflow where strain measurements substantially deviate from the baseline within a second time period.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 12, 2014
    Assignee: Shell Oil Company
    Inventors: Dennis Edward Dria, Jeremiah Glen Pearce, Frederick Henry Rambow
  • Patent number: 8800651
    Abstract: A system for estimating a wellbore parameter includes a first component located at or near a terranean surface; a second component at least partially disposed within a wellbore at or near a subterranean zone; and a controller communicably coupled to the first and second components. The second component is associated with a sensor. The controller is operable to: adjust a characteristic of an input fluid to the wellbore through a range of input values; receive, from the sensor, a plurality of output values of the input fluid that vary in response to the input values, the output values representative of a downhole condition; and estimate a wellbore parameter distinct from the downhole condition based on the measured output values.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 12, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael Linley Fripp, Jason D. Dykstra
  • Patent number: 8683848
    Abstract: An improved hydrotest testing system comprises a safety stop which prevents the testing tools from being blown out of the top of the tubing string. The safety stop is made up into the upward facing box of the tubing joint to be tested, where the stop is positioned between the tool assembly placed within the tubing joint and the no-go head assembly which is located at the surface during the testing operation. Once the safety stop has been made up into upward facing box, the tool assembly is set within the joint to be tested and the joint pressure tested. The safety stop has a generally cylindrical body which has a bore extending through its length, where the bore has a reduced diameter throat which is sized smaller than portions of the downhole testing tool.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 1, 2014
    Assignee: C&H Testing Service, LLC
    Inventors: Don Taft, Don Hoover, Don Siewell
  • Patent number: 8645069
    Abstract: A simple, applicable in the field, and extra-equipment free method is provided for determining steam dryness directly in a thermal recovery of high-viscosity oil. A non-condensable gas is added into a saturated steam being injected into a well. The presence of non-condensable gas changes partial steam pressure. Correspondingly the steam condensation temperature also changes. The borehole temperature or pressure measurements can be used to evaluate the steam dryness.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: February 4, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Vladimir Vasilievich Terychnyi, Marat Tokhtarovich Nukhaev
  • Publication number: 20130014940
    Abstract: A system for estimating a wellbore parameter includes a first component located at or near a terranean surface; a second component at least partially disposed within a wellbore at or near a subterranean zone, the second component associated with a sensor; and a controller communicably coupled to the first and second components operable to: adjust a characteristic of an input fluid to the wellbore through a range of input values; receive, from the sensor, a plurality of output values of the input fluid that vary in response to the input values, the output values representative of a downhole condition; and estimate a wellbore parameter distinct from the downhole condition based on the measured output values.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Michael Linley Fripp, Jason D. Dykstra
  • Patent number: 7891427
    Abstract: The invention includes a method for determining a steam injection schedule for a set of subsurface formation subsurface regions of an oil field, the method including the steps of determining a thermal maturity for each subsurface region of the set; calculating a latent heat target for each subsurface region according to the determined thermal maturity therefore; calculating a steam injection target for each subsurface region according to the calculated latent heat target therefore; determining the availability of steam for injection to the subsurface regions; and calculating a steam injection schedule for each subsurface region according to the determined steam availability and calculated steam injection targets for all subsurface regions of the set.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: February 22, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: David William Tuk, James Richard Ouimette, James Lee Brink, Christopher Angelo
  • Publication number: 20080169095
    Abstract: A modular steam injection line, for use in SAGD operations for delivery of an equal steam mass flow along a length of the apparatus, incorporates steam splitter modules fluidly connected for forming the steam injection line. Each of the modular steam splitters is fit with interchangeable nozzles for delivering steam to the formation. The interchangeable nozzles have orifices of different sizes and the nozzle orifice size required for each individual module to deliver an equal mass flow of steam from each module along the entire length of the steam injection line is calculated based on steam conditions at each module so that each module can be fit with nozzles having the appropriate sized orifices.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 17, 2008
    Inventors: ARNOUD STRUYK, DENIS GILBERT