Feed Of Two Or More Carbonaceous Material (at Least The Predominate One Being Solid) Patents (Class 201/21)
  • Patent number: 11299679
    Abstract: A method is disclosed, for producing coke in which at least a first and second source of carbonaceous materials are introduced as feedstock into a mixer. The materials are mixed into a single feedstock, and the single feedstock is analyzed to determine its coking feasibility. The single feedstock is pyrolyzed in a pyrolyzer to produce at least a coke material and a gaseous by-product. At least a portion of the gaseous by-product is used outside of the pyrolyzer. Other embodiments are also disclosed.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: April 12, 2022
    Inventor: Craig Eatough
  • Patent number: 10995274
    Abstract: A single pass method of production of an improved biocoal product according to which biomass is thermo-chemically broken down into its constituent components, the components are modified, and selected components are recombined to form a much more valuable fuel product which is more waterproof, more durable, and has a higher energy density than the original biomass. Other non-selected components may be used to provide energy to the biocoal production process.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: May 4, 2021
    Assignee: British Columbia Biocarbon Ltd.
    Inventor: Phil Marsh
  • Patent number: 10739285
    Abstract: A method for accurately measuring the thermoplasticity of a coal whose thermoplasticity has been difficult to evaluate and determining whether the coal that is to be measured does not significantly reduce the coke strength when used for a coal blend is disclosed. Also disclosed is a method for evaluating a coal used as a raw material for coke and includes using a physical property value relating to a thermoplasticity of a coal as an index for evaluating the coal, wherein a primary or secondary amine including an aromatic ring have been added to the coal, thereby enhancing the thermoplasticity of the coal.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: August 11, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yusuke Dohi, Kiyoshi Fukada, Takashi Matsui, Mikiya Nagayama, Narumi Nanri, Kazutoshi Hanada
  • Patent number: 10603867
    Abstract: Methods of forming carbon from cotton cloth and the product thereof are provided. The carbon described herein can be used as a structural component and/or as a conductive additive in various battery applications. The method of manufacturing a carbon comprises providing a cotton cloth and pyrolyzing the cotton cloth to form a carbon.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 31, 2020
    Assignee: Enevate Corporation
    Inventors: Benjamin Park, Genis Turon Teixidor, William Schank, Lothar Steffens
  • Patent number: 10530428
    Abstract: A system to process and handle minerals, aggregates, or ore during mining operations in a way that automatically collects, carries and transmits data about the product being mined. When mining coal, the system has a loader with a tag writer and coal loadable trucks with beds having read and writeable electronic tags mounted externally.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: January 7, 2020
    Assignee: JRL Coal, Inc.
    Inventor: William Quintrell
  • Patent number: 10415184
    Abstract: A process for recovering carbonized lignin having a defined grain size distribution from a lignin-containing liquid is provided. The lignin-containing liquid is subjected to a hydrothermal carbonization to convert the lignin into a carbonized lignin and the carbonized lignin is separated from the liquid containing the carbonized lignin. The lignin-containing liquid is subjected to a hydrothermal carbonization at temperatures in the range from about 150° C. to about 280° C. and by adapting the H+ ion concentration in the lignin-containing liquid before and/or during the hydrothermal carbonization the grain size distribution of the carbonized lignin is adjusted.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: September 17, 2019
    Assignee: SUNCOAL INDUSTRIES GMBH
    Inventor: Tobias Wittmann
  • Patent number: 10385506
    Abstract: A feeding arrangement for feeding lignocellulosic biomass material such as annual plant material towards a hydrolysis process includes at least one transportation device for transporting the biomass material towards the treatment process; and at least one tearing roll arranged at a predetermined distance from the at least one transportation device and being provided with tearing protrusion. The at least one tearing roll is arranged with a predetermined distance to the at least one transportation device to tear off parts of the transported material to provide a substantially continuous flow of material.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: August 20, 2019
    Assignee: VALMET AB
    Inventors: Patrik Pettersson, Johan Carlsson
  • Patent number: 10308511
    Abstract: A method for easily producing a graphite powder for use as a lithium secondary battery negative electrode material with small specific surface area while reducing energy consumption, and achieving high graphitization efficiency, includes melt-mixing a coke powder and a carbon precursor binder so that an amount of fixed carbon included in the carbon precursor binder is 5 to 15 parts by mass based on 100 parts by mass of the coke powder, to prepare a mixture, and pressing the mixture to prepare a compact, the coke powder being obtained by heating a green coke powder at 600 to 1450° C. in a non-oxidizing atmosphere, the green coke powder having a cumulative particle size at 50% in a volumetric cumulative particle size distribution of 5 to 50 ?m; heating the compact in a non-oxidizing atmosphere to effect carbonization and graphitization to obtain a graphitized compact; and grinding the graphitized compact.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: June 4, 2019
    Assignee: TOKAI CARBON CO., LTD.
    Inventors: Kazuhiro Yamamoto, Mayuri Komoriya, Motohiro Yamaki, Tomohito Fukugawa, Akihiro Kuroyanagi
  • Patent number: 10000715
    Abstract: A process for converting a molten polymeric material is provided. The process includes effecting disposition of a molten polymeric material, having at least one carbon-carbon double bond, in sufficient proximity to a catalyst material within a reaction zone, to effect a reactive process that effects generation of a reaction product. The reactive process effects cleaving of at least one carbon-carbon double bond. The catalyst material includes [Fe—Cu—Mo—P]/Al2O3 prepared by binding a ferrous-copper complex to an alumina support to generate an intermediate material, and reacting the intermediate material with a heteropolyacid.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: June 19, 2018
    Assignee: GREENMANTRA RECYCLING TECHNOLOGIES LTD.
    Inventors: Anil Kumar, Pushkar Kumar
  • Patent number: 9970921
    Abstract: Provided are, by using an index with which the influence on the strength of coke can be evaluated, a method for evaluating a weathering degree of coal and a coking property of weathered coal within the ranges in which the weathering degree and coking property cannot be determined by using conventional methods, and a method for controlling the weathering degree of coal with which it is possible to add weathered coal to a coal blend to be used for producing coke without decreasing the strength of coke by using the index. The weathering degree of coal is evaluated by using the surface tension of semicoke which is prepared by performing a heat treatment on weathered coal as an index. The weathering degree of each brand of coal is controlled so that the interfacial tension ?inter of a semicoke blend which is prepared by blending the plural brands of semicoke in accordance with the proportions is 0.03 mN/m or lower.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: May 15, 2018
    Assignee: JFE STEEL CORPORATION
    Inventors: Hiroyuki Sumi, Takashi Anyashiki, Kiyoshi Fukada, Yusuke Dohi, Hidekazu Fujimoto, Izumi Shimoyama
  • Patent number: 9822310
    Abstract: The invention relates to a continuous process for converting carbonaceous material contained in one or more feedstocks into a liquid hydrocarbon product, said feedstocks including the carbonaceous material being in a feed mixture including one or more fluids, said fluids including water and further liquid organic compounds at least partly produced by the process in a concentration of at least 1% by weight, where the process comprises converting at least part of the carbonaceous material by pressurizing the feed mixture to a pressure in the range 250-400 bar; heating the feed mixture to a temperature in the range 370-450° C., and maintaining said pressurized and heated feed mixture in the desired pressure and temperature ranges in a reaction zone for a predefined time; cooling the feed mixture to a temperature in the range 25-200° C.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: November 21, 2017
    Assignee: STEEPER ENERGY APS
    Inventor: Steen Brummerstedt Iversen
  • Patent number: 9758729
    Abstract: The invention relates to continuous process for converting carbonaceous material contained in one or more feedstocks into a liquid hydrocarbon product, said feedstocks including the carbonaceous material being in a feed mixture including one or more fluids, said fluids including water and further liquid organic compounds at least partly produced by the process in a concentration of at least 1% by weight, where the process comprises converting at least part of the carbonaceous material by pressurizing the feed mixture to a pressure in the range 50-400 bar; heating the feed mixture to a temperature in the range 250-500° C., maintaining said pressurized and heated feed mixture in the desired pressure and temperature ranges in a reaction zone for a predefined time; cooling the feed mixture to a temperature in the range 25-200° C.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 12, 2017
    Assignee: STEEPER ENERGY APS
    Inventor: Steen Brummerstedt Iversen
  • Patent number: 9751764
    Abstract: A method for producing a carbon material including an oxidation step of oxidizing an ashless coal, a forming step of mixing an oxidized ashless coal obtained in the oxidation step and an unoxidized ashless coal and forming a mixture thereof, and a carbonization step of carbonizing a formed body obtained in the formation step. Percentage of increase in oxygen of the oxidized ashless coal obtained in the oxidation step is from 2.0 to 10.0%. A mixing ratio of the oxidized ashless coal in the forming step is from 60 to 95 parts by mass per 100 parts by mass of a total of the oxidized ashless coal and the unoxidized ashless coal.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: September 5, 2017
    Assignee: Kobe Steel, Ltd
    Inventors: Maki Hamaguchi, Shohei Wada
  • Patent number: 9688561
    Abstract: The invention relates to a method of making a mineral melt comprising providing a circulating combustion chamber (1) which comprises an upper zone (2), a lower zone (3) and a base zone (4), injecting particulate fuel, particulate mineral material and primary combustion gas which has optionally an oxygen level of at least 25% by volume into the upper zone of the circulating combustion chamber so that the fuel undergoes pyrolysis in the upper zone to produce char, thereby melting the particulate mineral materials to form a mineral melt and generating exhaust gases, injecting secondary combustion gas which has optionally an Oxygen level of at least 25% by volume into the lower zone of the circulating combustion chamber so that the char combusts, thereby completing combustion of the fuel, and separating the mineral melt from the hot exhaust gases so that the hot exhaust gases pass though an outlet in the circulating combustion chamber and the mineral melt collects in the base zone.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: June 27, 2017
    Assignee: ROCKWOOL INTERNATIONAL A/S
    Inventors: Lars Elmekilde Hansen, Lars Boellund, Lars Kresten Hansen, Peter Farkas Binderup Hansen, Leif Moeller Jensen
  • Patent number: 9278327
    Abstract: Techniques, systems, apparatus and material are described for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: March 8, 2016
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 9260666
    Abstract: A method is described for reducing the carbon footprint of any commercially important industrial conversion process. The output of this conversion process can be combustible fuels, chemicals, electricity or heat energy. In its broadest form, a carbon negative module outputs energy to a conversion energy and this energy replaces conventional fossil-fuel based energy. A sequesterable carbonaceous solid is produced by the carbon negative process which represents a net carbon withdrawal from the atmosphere.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: February 16, 2016
    Assignee: Cool Planet Energy Systems, Inc.
    Inventors: Vital Aelion, Daren Daugaard, Wilson Hago
  • Patent number: 9017521
    Abstract: A process for heat treatment of a solid, with a coolant solid, in which a stage for mixing the solid with the pre-heated coolant solid is carried out, with the coolant solid being a solid hydrocarbon. The solid hydrocarbon is ground, before the mixing stage with the solid, to obtain a solid hydrocarbon powder with a grain size of between 20 ?m and 300 ?m. The solid is ground, before the mixing stage with the coolant solid, to obtain solid pellets with a thickness of between 1 mm and 30 mm, a width of between 1 mm and 40 mm, and a length of between 1 mm and 100 mm. The mixing is carried out at a temperature of between 80° C. and 700° C.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: April 28, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Elena Garcia Sanz, Matthieu Rolland
  • Patent number: 8975458
    Abstract: Techniques, systems, apparatus and material are disclosed for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: March 10, 2015
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20150052812
    Abstract: A processed biogas composition made with an oxygen-deficient thermal sub-system from a processed organic-carbon-containing feedstock made with a beneficiation sub-system is described. Renewable biomass feedstock passed through a beneficiation sub-system to reduce water content to below at least 20 wt % and water-soluble salt reduction of at least 60% from that of unprocessed organic-carbon-containing feedstock on a dry basis. The processed feedstock is introduced into an oxygen-deficient thermal sub-system to result in processed biogas having an energy density of at least 700 BTU/cubic ft (26 MJ/cubic meter), a carbon monoxide concentration of less than 20 vol %, and a carbon dioxide concentration of less than 15 vol %.
    Type: Application
    Filed: June 16, 2014
    Publication date: February 26, 2015
    Inventors: Philip James Scalzo, Carleton Drew Tait, Douglas M. Van Thorre, Michael L. Catto
  • Patent number: 8946494
    Abstract: A method for processing biomass to produce biofuel includes decomposing lignocellulosic material into byproduct polymers that include lignin, decomposing the lignin into targeted chemical fragments, and chemically converting the targeted chemical fragments into a biofuel.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: February 3, 2015
    Assignee: United Technologies Corporation
    Inventors: Thomas Henry Vanderspurt, Timothy D. Davis, Sean C. Emerson, Ying She, Rhonda R. Willigan, Salvatore Saitta, Tianli Zhu
  • Patent number: 8920609
    Abstract: The device and method are provided to increase anhydrosugars yield during pyrolysis of biomass. This increase is achieved by injection of a liquid or gas into the vapor stream of any pyrolysis reactor prior to the reactor condensers. A second feature of our technology is the utilization of sonication, microwave excitation, or shear mixing of the biomass to increase the acid catalyst rate for demineralization or removal of hemicellulose prior to pyrolysis. The increased reactivity of these treatments reduces reaction time as well as the required amount of catalyst to less than half of that otherwise required. A fractional condensation system employed by our pyrolysis reactor is another feature of our technology. This system condenses bio-oil pyrolysis vapors to various desired fractions by differential temperature manipulation of individual condensers comprising a condenser chain.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 30, 2014
    Inventors: Philip H. Steele, Fei Yu, Qi Li, Brian Mitchell
  • Patent number: 8916735
    Abstract: Techniques, systems, apparatus and material are described for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: December 23, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8877995
    Abstract: Pyrolysis fuels and methods for processing pyrolysis fuel are provided. In one embodiment, a method of processing pyrolysis fuel converts biomass to pyrolysis fuel including pyrolysis oil and char particles. Also, the method includes resizing a portion of the char particles so that substantially all resized char particles have a largest dimension no greater than about 5 microns.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Lance Awender Baird, Stanley Joseph Frey
  • Patent number: 8877015
    Abstract: A process and system is disclosed for optimizing a key parameter of a biomass feedstock that enhances bio-oil production. The process and system involves optimizing the values of the key parameter in multiple biomass feedstocks by regulating their feed rates and blending those feedstocks to produce a cumulative biomass feedstock with an optimal value for the key parameter. The key parameter in the biomass feedstocks is measured and the feed rates of the multiple biomass feedstocks are adjusted in order to produce a cumulative biomass feedstock exhibiting optimal values for the desired key parameter. The key parameters can include compositional properties, such as lignin content or mineral content, and/or fluidization properties of the biomass materials, such as density, particle cohesion force, or particle size.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 4, 2014
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Steve Yanik
  • Patent number: 8853475
    Abstract: A process for producing a renewable hydrocarbon fuel. The process can include providing a feed including a lignocellulosic material to a pyrolysis zone to produce a stream including a pyrolysis oil, providing the pyrolysis oil stream to a refining zone producing a refined stream, providing at least a portion of the refined stream to a reforming zone producing a stream including hydrogen, providing at least a portion of the hydrogen stream to the refining zone; and recovering the renewable hydrocarbon fuel from the refined stream.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 7, 2014
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Patent number: 8809606
    Abstract: Methods and apparatus for processing of waste and low-value products to produce useful materials in reliable purities and compositions, at acceptable cost, without producing malodorous emissions, and with high energy efficiency are disclosed. In particular, multi-stage processes are disclosed to convert various feedstocks such as offal, animal manures, municipal sewage sludge, tires, and plastics, that otherwise have little commercial value, to useful materials including gas, oil, specialty chemicals, and carbon solids. Disclosed processes subject the feedstock to heat and pressure, separates out various components, then further applies heat and pressure to one or more of those components. Various materials produced at different points in the process may be recycled and used to play other roles within the process. Also disclosed are apparatus for performing multi-stage processes of converting waste products into useful materials, and at least one oil product that arises from the process.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: August 19, 2014
    Assignee: AB-CWT LLC
    Inventors: Brian S. Appel, Terry N. Adams, Michael J. Roberts, William F. Lange, James H. Freiss, Craig T. Einfeldt, Michael Charles Carnesi
  • Publication number: 20140202844
    Abstract: Apparatus for pyrolysing or gasifying the organic content of material, including organically coated waste, biomass, industrial waste, municipal solid waste and sludge, having organic content; the apparatus comprising: an oven having a rotatable portion comprising a treatment chamber adapted to receive material for treatment; a plurality of gas inlets in at least one wall (5) of the treatment chamber through which hot gases are introduced to the treatment chamber to heat the material therein so as to cause the organic components thereof to pyrolyse or gasify; and a plurality of pockets (8) having open faces turned inwardly towards the inside of the treatment chamber on at least one wall of the rotatable portion such that, in use, material being pyrolysed or gasified can be received from the treatment chamber into the plurality of pockets (8) via said open faces, and be substantially retained therein through an initial rotation of the oven of less than 90 degrees.
    Type: Application
    Filed: May 23, 2012
    Publication date: July 24, 2014
    Applicant: CHINOOK END-STAGE RECYCLING LIMITED
    Inventors: Rifat Al Chalabi, Ophneil Henry Perry, John Turner
  • Patent number: 8664458
    Abstract: In a process for converting mixed polyethylene waste to make waxes and grease base stocks through catalytic depolymerization, the mixed polyethylene waste is preheated to form a molten mixed polyethylene waste. Then, depolymerization reaction of the molten mixed polyethylene waste is started. The depolymerization reaction uses a catalyst in a high pressure reactor at a desired temperature using heaters in the high pressure reactor. The catalyst is disposed on a stirring blade. Progression of depolymerization reaction of the molten mixed polyethylene waste is allowed to continue until a pressure in the high pressure reactor reaches a desired value. The heaters are turned off and depolymerization reaction of the molten mixed polyethylene waste is stopped upon the pressure in the reactor reaching desired value. The mixed polyethylene waste is converted to wax or grease base stock.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 4, 2014
    Assignee: Greenmantra Recycling Technologies Ltd.
    Inventors: Anil Kumar, Pushkar Kumar
  • Patent number: 8657999
    Abstract: A method for producing a fuel composition from a feedstock which may contain biomass and municipal solid waste is described. The method includes the step of pyrolyzing the feedstock in the presence of a transition metal, using microwave energy, so that the level of oxygen in at least one product of the pyrolysis is reduced. An integrated process is also described, in which the transition metal can be regenerated. Moreover, pyrolysis products such as bio-oils can be upgraded to liquid fuel compositions. Related systems for producing fuel compositions are also described.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Vitali Victor Lissianski, R. George Rizeq, Surinder Prabhjot Singh
  • Publication number: 20130340322
    Abstract: The process described in this embodiment relates to the field of synthetic fuel and synthetic chemical production through co-processing methods such as pyrolysis, combustion, gasification, distillation, catalytic synthesis, methanol synthesis, hydro-treatment, and hydrogenation, cavitation, bioreaction, and water treatment. The inventions described herein relates to synthetic hydrocarbons derived from various carbonaceous materials such as biomass, solid municipal waste and coal which can be converted into typical industrial products and various unique synthetic fuels. The byproducts of each process are directed to other processes for additional product yield and to reduce waste and emissions.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: Roy Cameron Knight, Lori L. Onjukka, Rolf L. Onjukka, Yuonne Mae Parrack
  • Patent number: 8604259
    Abstract: Useful byproducts are recovered through the pyrolytic processing of biomass material such as vegetation, paper, or worn tires. The process is conducted in a sealed enclosure under vacuum or other controlled atmosphere. The biomass material is ablated and burned by crunching between counter-rotating rollers rotated at different speeds whose inner walls have been exposed to a highly heated fluid. The biomass material is preheated by injecting into the feeding duct super-heated dry steam. A condenser within the enclosure reduces resulting vapors into oils that can be drained from the enclosure pan. Solid combustion residue is abstracted from the enclosure by an Archimedes screw.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: December 10, 2013
    Inventor: Vincent H Noto
  • Publication number: 20130313100
    Abstract: A method of fragmenting a discrete waste product item or a combination of discrete waste product items, the method comprises the steps of: (e) introducing said discrete waste product item or combination of discrete waste product items into a pressure vessel, (f) subjecting said item or items to an atmosphere of superheated steam in the vessel of at least 0.5 bar above atmospheric pressure, (g) subsequently decompressing the vessel to achieve a pressure reduction of at least 0.5 bar in at most 5 seconds, and (h) repeating steps (b) and (c) to effect fragmentation of said waste product item or combination of waste product items.
    Type: Application
    Filed: February 13, 2012
    Publication date: November 28, 2013
    Inventors: John Norris, Peter Norris, Alan Reid, Mark Talbot
  • Patent number: 8506658
    Abstract: A process and system for separating a light fraction, a bio-distillate fraction, and a heavy fraction from a bio-oil, and for producing a renewable distillate including at least in part the bio-distillate fraction and a stabilizing additive, is provided. The process comprises separating bio-oil into light, bio-distillate, and heavy fractions based on their boiling points. At least a portion of the bio-distillate fraction and a stabilizing additive are blended with a petroleum-derived-diesel-range stream, without any prior hydrotreatment, to thereby provide a renewable distillate composition.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 13, 2013
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Jennifer Sorrells, Changan Zhang
  • Patent number: 8492600
    Abstract: A self-sustaining process for producing high quality liquid fuels from biomass in which the biomass is hydropyrolyzed in a reactor vessel containing molecular hydrogen and a deoxygenating catalyst, producing a partially deoxygenated hydropyrolysis liquid, which is hydrogenated using a hydroconversion catalyst, producing a substantially fully deoxygenated hydrocarbon liquid and a gaseous mixture comprising CO and light hydrocarbon gases (C1-C3). The gaseous mixture is reformed in a steam reformer, producing reformed molecular hydrogen, which is then introduced into the reactor vessel for hydropyrolizing the biomass. The deoxygenated hydrocarbon liquid product is further separated to produce diesel fuel, gasoline, or blending components for gasoline and diesel fuel.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 23, 2013
    Assignee: Gas Technology Institute
    Inventors: Terry L Marker, Larry G Felix, Martin B Linck
  • Patent number: 8476480
    Abstract: A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100° C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 2, 2013
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert C. Brown, Samuel T. Jones, Anthony Pollard
  • Publication number: 20130137154
    Abstract: Methods and systems for developing and bio-refining or processing biomass feedstocks into a spectrum of bio-based products which can be used as a substitute for fossil oil derivatives in various types of product manufacturing processes and/or the production of bio-energy are disclosed. In addition, methods and systems for identifying, measuring and controlling key parameters in relation to specific biomass developing processes and bio-refining processes so as to maximize the efficiency and efficacy of such processes while standardizing the underlying parameters to facilitate and enhance large-scale production of bio-based products and/or bio-energy are disclosed.
    Type: Application
    Filed: October 15, 2012
    Publication date: May 30, 2013
    Applicant: ORIGINOIL, INC.
    Inventor: ORIGINOIL, INC.
  • Patent number: 8414743
    Abstract: A method and a device for the thermal decomposition of an initial material, in particular, for the decomposition of meat and bone meal, oil sludges, for example, from cleaning tankers, autofluff (also called autofluffy), basic glycerin, for example, from biodiesel production, paint sludges from paint shops, contaminated soils, coated wood, and plastics such as plexiglass. According to the present method, organic initial materials are thermally decomposed very completely in nearly all cases. The very complete decomposition is achieved by adding foreign particles such as metal spheres to the initial material which is being thermally decomposed.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 9, 2013
    Assignee: Gebr. Lodige Maschinebau GmbH
    Inventors: Alfons Schmidt, Hans-Jürgen Sickelmann, Armin Grob
  • Patent number: 8404909
    Abstract: A method of biomass pyrolysis is described which includes chemical looping of combustion char so that carbon dioxide can be captured from the combustion of the char as well as producing useable compounds from pyrolyzing biomass in a pyrolysis reactor including a metal oxide carrier particles which is in operative cooperation with a char combustor and oxidation reactor and separator for separating carbon dioxide from the flue gas produced by the char combustor.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: March 26, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Raja A Jadhav
  • Publication number: 20130008772
    Abstract: A method for converting biomass into syngas by converting the biomass into a viscous, pumpable pyrolysis liquid and feeding this liquid into a gasifier. The biomass is first fed to a pyrolysis unit which will convert the biomass in part to the viscous, pumpable pyrolysis liquid. This pyrolysis liquid is then fed into a gasifier either by itself or with a solid carbon-containing component where it will react to form syngas.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Inventors: Peter M. FRITZ, Ramachandran KRISHNAMURTHY, Satish TAMHANKAR
  • Patent number: 8349285
    Abstract: The invention relates a pyrolytic carbon black produced from pyrolyzed rubber, the pyrolytic carbon black having an ash content ranging between 9-15%, a toluene discoloration at 425 mu of between 80-90% transmission, an iodine adsorption between 30 and 45 mg/g; and, an n-dibutyl phthalate absorption number of or to 65 cc/100 gm.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: January 8, 2013
    Assignee: Raymond Chabot Inc.
    Inventors: Andrew D. E. MacIntosh, Vincent W. Y. Wong
  • Patent number: 8318997
    Abstract: Techniques, systems, apparatus and material are disclosed for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 27, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8314275
    Abstract: A process for stabilizing pyrolysis oil has been developed. The process involves heating the pyrolysis oil at a temperature of about 40° C. to about 85° C. under a reducing atmosphere for a time to stabilize the oil. The reducing atmosphere or gas is preferably hydrogen.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: November 20, 2012
    Assignee: UOP LLC
    Inventor: Timothy A. Brandvold
  • Patent number: 8308911
    Abstract: This invention relates to systems and methods for converting biomass into highly inert carbon. Specifically, some embodiments densify the carbon into anthracite-style carbon aggregations and store it in geologically stable underground deposits. The use of certain embodiments yield a net effect of removing atmospheric carbon via the process of photosynthesis and converting it into hard coal, which can be stored in underground beds that mimic existing coal deposits which are known to be stable for thousands of years.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: November 13, 2012
    Assignee: Cool Planet Biofuels, LLC
    Inventor: Michael C. Cheiky
  • Patent number: 8293958
    Abstract: A biomass fractionator and method are described for inputting ground biomass and outputting several vapor streams of bio-intermediate compounds along with syngas and biochar. In particular, a method for biomass fractioning, comprises dispensing biomass into thin sheets of ground biomass; subjecting the thin sheets to ramps of temperature; and selectively collecting various groups of compounds as they are released from the thin sheets.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: October 23, 2012
    Assignee: Cool Planet Biofuels, Inc.
    Inventor: Michael C. Cheiky
  • Patent number: 8226798
    Abstract: A method of forming a pyrolysed biocarbon from a pyrolyzable organic material is delineated. The method involves the conversion of pyrolyzable organic materials to biocarbon for subsequent use. A carbonization circuit is employed with individual feedstock segments being advanced through the circuit. The method facilitates user manipulation of rate of advancement of the feedstock through the circuit, selective collation of volatiles from pyrolyzing feedstock, selective exposure of predetermined feedstock segments to collated volatiles as well as thermal recovery and redistribution as desired by the user. This results in the capacity for a customizable biocarbon product, the latter being an auxiliary feature of the methodology.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 24, 2012
    Assignee: Alterna Energy Inc.
    Inventors: Hendrik van Aardt, Phil Marsh, Hugh McLaughlin
  • Patent number: 8217212
    Abstract: A method and related apparatus for torrefaction of associated biomass which includes providing an enclosed chamber having a body and a door having an open position allowing passage into and out of the enclosed chamber and a closed position in which the door is disposed in sealing engagement with the body, providing the enclosed chamber with walls capable of sustaining both a negative pressure and a positive pressure within the enclosed chamber; moving the door to an open position; depositing a liquid heat transfer fluid within the enclosed chamber at a temperature sufficient to achieve torrefication of the biomass and a first quantity of biomass material in the enclosed chamber that is substantially totally immersed in the liquid heat transfer fluid whereby heat transfer occurs between the liquid heat transfer fluid and the biomass immersed therein; moving the door to a closed position in sealing engagement with the body; and allowing the pressure within the enclosed chamber to rise to a pressure above the va
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: July 10, 2012
    Inventors: John A. Paoluccio, John J. Paoluccio
  • Patent number: 8217211
    Abstract: In at least one embodiment of the present invention, a method for producing liquid hydrocarbons from biomass is provided. The method comprises pyrolizing the biomass with hydrogen (H2) to form bio-oil. The bio-oil comprises alkanes, alkenes, alcohols, aldehydes, ketones, aromatics, hydrocarbons or mixtures thereof. The H2 is formed from a carbon-free energy source.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 10, 2012
    Assignee: Purdue Research Foundation
    Inventors: Rakesh Agrawal, Manju Agrawal, Navneet R. Singh
  • Patent number: 8202399
    Abstract: The invention provides a process for comminuting coal or other fuel solids in a shear field, and for optionally coating the solids with catalysts for combustion, liquefaction, and or gasification during the milling process. The process further provides for control of water content in the solids may be controlled before, during and after the milling in order to obtain micronized solids with fine hydration layers. The output fuel solids from the process can burn at low temperatures, avoiding emissions of nitrogen oxides, and they also have improved properties for surfactant-free suspension in either water or oil media, as well as for liquefaction and gasification.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: June 19, 2012
    Inventor: David Walker Taylor
  • Patent number: 8168043
    Abstract: A retort apparatus includes a primary rotating pipe within a second rotating pipe within a fixed pipe (27). The interior area of the primary rotating pipe is bounded by a heated pipe. A first annulus is formed between the primary and second rotating pipes. A second annulus is formed between the second rotating pipe and the heated pipe. A third annulus is formed between the primary rotating pipe and the fixed pipe. A heater is positioned within the interior area of said primary rotating pipe. In one embodiment, an inlet gate is provided for introducing a liquid and solid mixture into the first annulus proximate the second end thereof. A first conveyor is provided to move the mixture toward the hot end of the primary rotating pipe.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: May 1, 2012
    Assignee: Eau-Viron Incorporated
    Inventor: James Titmas
  • Patent number: 8083900
    Abstract: A process and system for separating water from bio-oil by using a partial condenser. The process comprises partially condensing vapor conversion products from a biomass conversion reaction to produce a water-rich overhead stream and a water-depleted stream comprising condensed bio-oil. The partial condenser removes a substantial portion of the water from the bio-oil, while providing an effective and flexible process for producing bio-oil.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: December 27, 2011
    Assignee: Kior Inc.
    Inventor: Ronny W. Lin