Hydrocarbon Patents (Class 203/68)
  • Patent number: 6059933
    Abstract: Inhibition of the formation of unsaturated carbon compounds during the heating of 141b involving the addition of various inhibitors such as butylene oxide and/or the use of a vessel made of a nickel alloy.
    Type: Grant
    Filed: April 25, 1995
    Date of Patent: May 9, 2000
    Assignee: ELF Atochem North America, Inc.
    Inventors: Richard M. Crooker, Maher Y. Elsheikh, Anthony D. Kelton, Morris P. Walker, Danny W. Wright
  • Patent number: 6042697
    Abstract: 9,11- Diene C18 fatty acid cannot be separated from 10,12-Diene C18 fatty acid by conventional rectification because of the proximity of their boiling points. 9,11-Diene C18 fatty acid can be readily separated from 10,12-Diene fatty acid by azeotropic distillation. Effective agents are propyl formate, butyl ether, methyl pivalate and cyclopentanone.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: March 28, 2000
    Inventor: Lloyd Berg
  • Patent number: 6039846
    Abstract: 3-Methyl-2-pentenal cannot be separated from 1-butanol by conventional rectification because of the proximity of their boiling points. 3-methyl-2-pentenal can be readily separated from n-butanol by azeotropic distillation. Effective agents are dimethoxymethane, petroleum ether and tetramethylortho-silicate.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: March 21, 2000
    Inventor: Lloyd Berg
  • Patent number: 6024841
    Abstract: 2-Methyl-1-butanol and 3-methyl-1-butanol are difficult to separate from 1 pentanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-butanol and 3-methyl-1-butanol can be easily separated from 1-pentanol by extractive distillation. Effective agents are 3-carene, propylene glycol phenyl ether and dimethylsulfoxide.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: February 15, 2000
    Inventor: Lloyd Berg
  • Patent number: 6024840
    Abstract: Propylene oxide obtained by an epoxidation process which uses methanol as a solvent may be effectively treated to remove acetaldehyde by subjecting the crude epoxidation reaction product to fractional distillation. The methanol solvent is utilized during such distillation to lower the relative volatility of the acetaldehyde impurity, thereby making it possible to obtain a bottoms fraction containing substantially all the acetaldehyde. Purified propylene oxide having a reduced acetaldehyde concentration is removed as an overhead stream. Water may also be effectively separated from the propylene oxide using this procedure.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: February 15, 2000
    Assignee: Arco Chemical Technology, L.P.
    Inventor: Michael A. Rueter
  • Patent number: 5993610
    Abstract: Ethyl acetate cannot be separated from ethanol by distillation or rectification because of the closeness of their boiling points. Ethyl acetate is readily separated from ethanol by azeotropic distillation. Effective agents are ethyl ether, methyl formate and cyclohexane.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: November 30, 1999
    Inventor: Lloyd Berg
  • Patent number: 5964987
    Abstract: Natural cresylic acid is processed to remove neutral oil impurities by countercurrent liquid/liquid extraction using a heavy phase solvent of a mixture of glycerol and another polyhydric alcohol, preferably triethylene glycol. The light phase solvent is a light paraffinic or cycloparaffinic hydrocarbon.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: October 12, 1999
    Assignee: Dakota Gasification Company
    Inventors: David H. Duncan, Gene G. Baker, Dana J. Maas, Kevin M. Mohl, Alfred K. Kuhn
  • Patent number: 5922175
    Abstract: A process for the purification of 1-chloro-1,2,2,2-tetrafluoroethane (F124) containing 1,2-dichlorotetrafluoroethane (F114) and/or 1,1-dichlorotetrafluoroethane (F114a). The F124 to be purified is subjected to extractive distillation, the extractant being chosen from C.sub.5 -C.sub.8 aliphatic or cycloaliphatic hydrocarbons and C.sub.4 -C.sub.8 perfluoroalkyl halides.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: July 13, 1999
    Assignee: ELF Atochem S.A.
    Inventors: Rene Bertocchio, Eric Deslandes, Eric Lacroix
  • Patent number: 5908538
    Abstract: 2-Methyl-1-propanol cannot be separated from t-amyl alcohol by distillation or rectification because of the closeness of their boiling points. 2-Methyl-1-propanol is readily separated from t-amyl alcohol by azeotropic distillation. Effective agents are butyl propionate, cyclohexane and 2,2-dimethoxypropane.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: June 1, 1999
    Inventor: Lloyd Berg
  • Patent number: 5904815
    Abstract: t-Amyl alcohol cannot be separated from n-butanol by distillation or rectification because of the closeness of their boiling points. t-Amyl alcohol is readily separated from n-butanol by azeotropic distillation. Effective agents are propyl acetate, tetrahydrofuran and heptane.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: May 18, 1999
    Inventor: Lloyd Berg
  • Patent number: 5897750
    Abstract: Acetone cannot be separated from a mixture of isopropanol and water because of the closeness of their boiling points. Acetone can be easily separated from isopropanol and water by extractive distillation. Effective extractive agents are 1-nitropropane, 3-carene, dimethylsulfoxide and 3-pentanone.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: April 27, 1999
    Inventor: Lloyd Berg
  • Patent number: 5882485
    Abstract: A process for the separation of dimethyl ether and chloromethane in mixturesA process for the separation of dimethyl ether and chloromethane in mixtures by two distillation steps. In the first step, the mixture is subjected to an extractive distillation with water, aqueous salt solutions or organic liquids as extractant, the top product being chloromethane. In the second step, the dimethyl ether is separated from the extractant.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: March 16, 1999
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Peter Roth, Erhard Leistner, Hans Haverkamp, Wolfgang Wendel, Michael Kleiber
  • Patent number: 5868908
    Abstract: A process for separating inorganic salts from a solution of dimethyl sulfoxide, water and salts including feeding the solution plus a hydrocarbon based oil to a vacuum thin film evaporator. The DMSO and water are vaporized and condensed outside the evaporator for reuse or further purification. The salt and oil exit the evaporator as a liquid phase slurry. Water is added to the slurry to dissolve the salt and produce an aqueous phase and an oil phase which are separated. The oil phase is recycled to the thin film evaporator portion of the process.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: February 9, 1999
    Assignee: WRR Environmental Services Co., Inc.
    Inventor: James L. Hager
  • Patent number: 5851362
    Abstract: 4-Methyl-2-pentanol cannot be separated from 3-methyl-1-butanol by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanol can be easily separated from 3-methyl-1-butanol by extractive distillation. Effective agents are dodecane, dimethylformamide and dimethylsulfoxide.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: December 22, 1998
    Inventor: Lloyd Berg
  • Patent number: 5840160
    Abstract: 3-Carene is difficult to separate from limonene by conventional distillation or rectification because of the proximity of their boiling points. 3-Carene can be readily separated from limonene by extractive distillation. Effective agents are o-cresol, 2,6-dimethyl-4-heptanone and triethylene glycol.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: November 24, 1998
    Inventor: Lloyd Berg
  • Patent number: 5834585
    Abstract: A method for separating hexamethylcyclotrisiloxane that does not require the use of a distillation set up adapted for use with solids and that collects the hexamethylcyclotrisiloxane in the form of an easy-to-handle solution. The method comprising inducing the ascent in the gaseous state of a hexamethylcyclotrisiloxane-containing mixture of polydimethylcyclosiloxanes in a distillation column provided with a sidestream element in the middle region of the column so as to induce the ascent of gaseous hexamethylcyclotrisiloxane to at least the level of the sidestream element, supplying into said distillation column solvent having a boiling point below that of hexamethylcyclotrisiloxane and capable of dissolving hexamethylcyclotrisiloxane, so as to form a liquid mixture of hexamethylcyclotrisiloxane and said solvent in the vicinity of the sidestream element, and withdrawing the said liquid mixture from the sidestream element.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: November 10, 1998
    Assignee: Dow Corning Toray Silicone Co., Ltd.
    Inventor: Toshi Nomura
  • Patent number: 5800681
    Abstract: Ethanol, isopropanol and water cannot be separated from each other by distillation or rectification because of minimum azeotropes. They are readily separated by extractive distillation. Effective agents are: dimethylsulfoxide for ethanol, phenol for isopropanol.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: September 1, 1998
    Inventor: Lloyd Berg
  • Patent number: 5795447
    Abstract: 2-Butanol cannot be separated from isobutanol by distillation or rectification because of the closeness of their boiling points. 2-Butanol is readily separated from isobutanol by extractive distillation. Effective agents are propylene glycol propyl ether, 2-methoxyethanol and ethyl acetate.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 18, 1998
    Inventor: Lloyd Berg
  • Patent number: 5776322
    Abstract: 4-Methyl-2-pentanol cannot be separated from 3-methyl-1-butanol by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanol can be easily separated from 3-methyl-1-butanol by azeotropic distillation. Effective agents are m-xylene and cumene.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: July 7, 1998
    Inventor: Lloyd Berg
  • Patent number: 5776321
    Abstract: 1-Propanol cannot be separated from t-amyl alcohol by distillation or rectification because of the closeness of their boiling points. 1-Propanol is readily separated from t-amyl alcohol by azeotropic distillation. Effective agents are heptane, ethyl acetate and tetrahydrofuran.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: July 7, 1998
    Inventor: Lloyd Berg
  • Patent number: 5772853
    Abstract: 1-Propanol and t-amyl alcohol cannot be separated by distillation or rectification because of the closeness of their boiling points. 1-Propanol is readily separated from t-amyl alcohol by extractive distillation. Effective agents are dipentene, amyl acetate and 1,4-dioxane.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: June 30, 1998
    Inventor: Lloyd Berg
  • Patent number: 5763695
    Abstract: 3-Methyl-1-butanol cannot be separated from 1-pentanol by distillation or rectification because of the closeness of their boiling points. 3-Methyl-1-butanol is readily separated from 1-pentanol by extractive distillation. Effective agents are butyl benzoate, 2-undecanone and diethylene glycol methyl ether.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: June 9, 1998
    Inventor: Lloyd Berg
  • Patent number: 5763694
    Abstract: 3-Methyl-1-butanol cannot be separated from 1-pentanol by distillation or rectification because of the closeness of their boiling points. 3-Methyl-1-butanol is readily separated from 1-pentanol by azeotropic distillation. Effective agents are methylcyclohexane, methyl formate and tetrahydrofuran.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: June 9, 1998
    Inventor: Lloyd Berg
  • Patent number: 5762764
    Abstract: Close boiling hydrocarbon impurities are separated from acetone by extractive distillation using a C.sub.9 -C.sub.14 alkane and/or a C.sub.8 -C.sub.12 aromatic hydrocarbon extractive distillation solvent.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: June 9, 1998
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Te Chang, Vijai P. Gupta
  • Patent number: 5759359
    Abstract: 2-Butanol cannot be separated from t-amyl alcohol by distillation or rectification because of the closeness of their boiling points. 2-Butanol is readily separated from t-amyl alcohol by azeotropic distillation. Effective agents are methyl acetate, ethyl propionate and octane.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: June 2, 1998
    Inventor: Lloyd Berg
  • Patent number: 5723024
    Abstract: 2-Methyl-1-propanol is difficult to separate from 1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-propanol can be readily separated from 1-butanol by extractive distillation. Effective agents are ethyl benzene, amyl acetate and propoxypropanol.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: March 3, 1998
    Inventor: Lloyd Berg
  • Patent number: 5693194
    Abstract: Butyraldehyde cannot be separated from ethanol by conventional distillation or rectification because they form a minimum boiling azeotrope. Butyraldehyde can be readily separated from ethanol by extractive distillation. Effective agents are 2-propanol, m-xylene and dimethylsulfoxide.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: December 2, 1997
    Inventor: Lloyd Berg
  • Patent number: 5660690
    Abstract: The invention relates to an improved distillation method wherein hexamethylcyclotrisiloxane is isolated from a crude blend thereof by mixing the crude blend with a hydrocarbon co-solvent having a normal boiling point of 125.degree. C. to 150.degree. C. and distilling the resulting mixture in an apparatus having a reboiler, a fractionating column and a condenser, whereby deposition of solid hexamethylcyclotrisiloxane in the condenser is eliminated.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: August 26, 1997
    Assignee: Dow Corning Corporation
    Inventors: Gerald Alphonse Gornowicz, Rocco Joseph Voci
  • Patent number: 5658436
    Abstract: 2-Methyl-1-butanol is impossible to separate from 3-methyl-l-butanol because they both boil at 130.degree. C. 2-Methyl-1-butanol can be readily separated from 3-methyl-1-butanol by extractive distillation. Effective agents are o-xylene, 3-carene and 1-methoxy-2-propanol.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: August 19, 1997
    Inventor: Lloyd Berg
  • Patent number: 5658435
    Abstract: 2-Methyl-1-propanol is difficult to separate from 2-butanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-propanol can be easily separated from 2-butanol by azeotropic distillation. Effective agents are sulfolane, acetonitrile and acetal.
    Type: Grant
    Filed: September 17, 1996
    Date of Patent: August 19, 1997
    Inventor: Lloyd Berg
  • Patent number: 5659095
    Abstract: A polymerization inhibitor composition for inhibiting the polymerization of aromatic vinyl monomers at elevated temperatures comprising:(a) a benzofuroxan derivative of the formula ##STR1## wherein R is C.sub.1 -C.sub.4 alkyl or alkoxy; R.sup.1 is a nitro group; and m and n are each independently 0, 1, or 2; and(b) a solvent selected from the group consisting of toluene, xylene, ethylbenzene, vinyltoluene, divinylbenzene, alpha-methylstyrene, and a C.sub.12 -C.sub.18 hydrocarbon,and methods for inhibiting the polymerization of aromatic vinyl monomers at elevated temperatures using this composition.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: August 19, 1997
    Assignee: Uniroyal Chemical Company, Inc.
    Inventors: Howard Stephen Friedman, Gerald John Abruscato, John Matthew DeMassa, Anthony Vincent Gentile, Anthony Vincent Grossi
  • Patent number: 5648573
    Abstract: The polymerization of a vinyl aromatic monomer such as styrene is inhibited by the addition of a composition of a benzoquinone derivative and a hydroxylamine compound.
    Type: Grant
    Filed: June 12, 1995
    Date of Patent: July 15, 1997
    Assignee: BetzDearborn Inc.
    Inventors: Graciela B. Arhancet, Inge K. Henrici
  • Patent number: 5645695
    Abstract: 2-Methyl-1-propanol is difficult to separate from 2-methyl-1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 2-Methyl-1-propanol can be readily separated from 2-methyl-1-butanol by azeotropic distillation. Effective agents are tetrahydrofuran, methyl acetate and toluene.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: July 8, 1997
    Inventor: Lloyd Berg
  • Patent number: 5582693
    Abstract: 3-Carene and limonene cannot be separated from each other by rectification because of the closeness of their boiling points. They are readily separated by azeotropic distillation. Effective agents are: cyclopentanol, 2-nitropropane, ethyl formate amyl acetate dimethyl carbonate, tetrahydrofuran, acetic acid and 2-amino-amethyl-1-propanol.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: December 10, 1996
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5580427
    Abstract: Butyraldehyde cannot be separated from ethanol by conventional distillation or rectification because they form a minimum boiling azeotrope. Butyraldehyde can be readily separated from ethanol by azeotropic distillation. Effective agents are ethyl formate, hexane and isopropyl ether.
    Type: Grant
    Filed: November 7, 1995
    Date of Patent: December 3, 1996
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5532283
    Abstract: Azeotropic compositions made up of from about 64 to about 80% by weight of 1,1,1,4,4,4-hexafluorobutane and from about 20 to about 36% by weight of 2-methyl butane have been found to be particularly useful as blowing agents for the production of polyurethane foams.
    Type: Grant
    Filed: March 24, 1995
    Date of Patent: July 2, 1996
    Assignee: Bayer Corporation
    Inventors: Joachim Werner, Scott A. Kane, Eric F. Boonstra, Herman P. Doerge
  • Patent number: 5501776
    Abstract: For the regeneration of a liquid desiccant, a stripping agent is used which is liquid at ambient temperature and pressure, and forms a heteroazeotrope with water, along with the following steps: (a) distillation of the water-laden liquid desiccant to form vapor and partially regenerated liquid desiccant; (b) reboil partially regenerated liquid desiccant; (c) stripping of partially regenerated liquid desiccant during (a) and (b), using vaporized stripping agent; (d) a condensing of vapor the exiting the distillation, the condensation producing two liquid phases, one mainly water and the other mainly stripping agent; (e) heating the stripping agent-rich liquid phase exiting step (d) to generate a vapor phase which is richer in water than said liquid phase and a water-depleted liquid phase; and (f) returning the vaporized liquid phase exiting step (e) to step (c).
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: March 26, 1996
    Assignees: Institut Francais du Petrole, Nouvelles Applications Technologiques (NAT)
    Inventors: Christophe Lermite, Jean-Claude Amande, Bernard Chambon, Joseph Larue
  • Patent number: 5456805
    Abstract: A purification process for cyclic formals, in which water is efficiently removed from a mixture of a cyclic formal and water which is difficult to be separated from the mixture, thereby obtaining a cyclic formal of high purity which contains only an extremely small amount of water.The purification process for cyclic formals is characterized by the steps of supplying a mixture of a cyclic formal and water into a distillation tower, effecting distillation while supplying n-pentane into the distillation tower and taking out a purified cyclic formal as a bottom liquid.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: October 10, 1995
    Assignee: Hoechst Celanese Corporation
    Inventor: Hubert H. Thigpen
  • Patent number: 5447608
    Abstract: 3-Methyl-2-butanol, 2-pentanol and 1-butanol are difficult to separate by conventional distillation or rectification because of the proximity of their boiling points. Mixtures of these three can be readily separated from each other by azeotropic distillation. Effective agents are hexyl acetate, hexane and 3-methyl pentane.
    Type: Grant
    Filed: August 1, 1994
    Date of Patent: September 5, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5445716
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by extractive distillation. Effective agents are dipentene, anisole and ethyl benzene.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: August 29, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5437770
    Abstract: Ethanol is difficult to separate from isopropanol by conventional distillation or rectification because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by azeotropic distillation. Effective agents are sec. butyl acetate, hexene-1 and 1,3-dioxolane.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: August 1, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5429720
    Abstract: A distillation process for separating spent organic solvents such as trichloroethane or d-limonene from their contaminants such as oil is improved by the addition of a perfluorinated alkane or mixture of such alkanes to permit more efficient separation of the solvents from the oil.
    Type: Grant
    Filed: January 26, 1994
    Date of Patent: July 4, 1995
    Assignee: The Dow Chemical Company
    Inventors: James A. Mertens, Felipe A. Donate
  • Patent number: 5425853
    Abstract: Propylene glycol is difficult to separate from ethylene glycol by conventional distillation or rectification because of the proximity of their boiling points. Propylene glycol can be readily separated from ethlene glycol by azeotropic distillation. Effective agens are m-diisopropyl benzene, 1-octene, 3-carene and myrcene.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: June 20, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5423955
    Abstract: Propylene glycol is difficult to separate from 1,2-butanediol by conventional distillation or rectification because of the proximity of their boling points. Propylene glycol can be readily separated from 1,2-butanediol by azeotropic distillation. Effective agents are 2,2-dimethyl butane, 3-carene and diethyl benzene.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: June 13, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5421965
    Abstract: Glycerine is difficult to separate from bis(hydroxymethyl)tetrahydrofuran by conventional distillation or rectification because of the proximity of their boiling points. Glycerine can be readily separated from bis(hydroxymethyl)tetrahydrofuran by azeotropic distillation. Effective agents are m-xylene, beta-pinene and dicyclopentadiene.
    Type: Grant
    Filed: August 1, 1994
    Date of Patent: June 6, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5417813
    Abstract: 1-Butanol is difficult to semarate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 1-Butanol can be readily separated from 2-pentanol by azeotropic distillation. Effective agents are 1-octene, hexane and methyl cyclohexane.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: May 23, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5407540
    Abstract: 3-Methyl-2-butanol is difficult to separate from 1-butanol by conventional distillation or rectification because of the proximity of their boiling points. 3-Methyl-2-butanol can be readily separated from 1-butanol by extractive distillation. Effective agents are ethyl n-valerate, dimethylacetamide and dimethylsulfoxide.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: April 18, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5407541
    Abstract: 3-Methyl-2-butanol is difficult to separate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 3-Methyl-2-butanol can be readily separated from 2-pentanol by azeotropic distillation. Effective agents are pentane, 2,2-dimethyl butane and dioxane.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: April 18, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5401366
    Abstract: 1-Butanol is difficult to separate from 2-pentanol by conventional distillation or rectification because of the proximity of their boiling points. 1-Butanol can be readily separated from 2-pentanol by extractive distillation. Effective agents are ethyl benzene, d-limonene and terpinolene.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: March 28, 1995
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5384413
    Abstract: The present invention relates to a process for the preparation of tetrafluorophthalic acid and/or tetrafluorophthalic anhydride by reacting a compound of the formula ##STR1## in which X is a radical ##STR2## which is optionally mono- or polysubstituted on the aromatic nucleus by fluorine and/or chlorine and/or alkyl groups having 1 to 4 carbon atoms, or is a radical ##STR3## in which R.sub.1, R.sub.2 and R.sub.3 are as defined, with water, and subsequently removing the water still present by azeotropic distillation or extracting the tetrafluorophthalic acid and/or its anhydride with a water-insoluble solvent or solvent mixture.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: January 24, 1995
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Ralf Pfirmann, Theodor Papenfuhs