And Returning Product Of Distillation Step To Distillation Zone Patents (Class 203/98)
  • Patent number: 5772851
    Abstract: Volatile components are eliminated from polyacrylate melts by distilling off the volatile components by a process in which the volatile components are distilled off under reduced pressure, entraining agents are added to the melts at above 100.degree. C. and the melts are simultaneously circulated.
    Type: Grant
    Filed: June 17, 1996
    Date of Patent: June 30, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Jurgen Barwich, Oral Aydin, Ulrich Erhardt, Walter Holtrup
  • Patent number: 5744010
    Abstract: The invention relates to a process for the preparation of acesulfam salts by reaction of salts of amidosulfonic acid with diketene to give a salt of acetoacetamidosulfonic acid (I), ring closure by the action of at least about an equivalent amount of SO.sub.3, at least this ring closure reaction being carried out in the presence of a halogenated, aliphatic hydrocarbon as an inert solvent, treatment of the cyclization product with water and conversion of the resulting acesulfam-H (II) into the form of a non-toxic salt, which comprises, in the work-up by distillation of the resulting crude solvent, after removal of water and low-boilers and recovery of solvent sufficiently pure for reuse in the preparation of compounds (I) and/or (II), directly returning :he remaining, solvent-containing distillation residue, without further purification, into the system downstream of the reaction vessel for carrying out the ring closure reaction.
    Type: Grant
    Filed: June 19, 1995
    Date of Patent: April 28, 1998
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Gunter Roscher, Heinz Litterer, Axel Engelmann, Wolf-Dietmar Kaufmann, Bernd Laugwitz, Hans-Dietmar Schnabel
  • Patent number: 5738762
    Abstract: An improved process for separating oil and water from an emulsion containing toxic light ends by flashing the heated and pressurized emulsion, condensing and separating the vaporized water and light ends, recovering the light ends, and recycling the condensed water. The resulting liquid water product has a reduced content of toxic light ends, such as benzene.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: April 14, 1998
    Inventor: Ernest O. Ohsol
  • Patent number: 5705040
    Abstract: A process for preparing a substantially pure aqueous solution of hydrogen peroxide is described. An impure hydrogen peroxide solution is vaporized in a vaporizer to form a vapor containing hydrogen peroxide and a concentrated hydrogen peroxide solution in equilibrium therewith. The solution also contains impurities. A substantially pure hydrogen peroxide solution is obtained by a partially condensing the vapor containing hydrogen peroxide. In addition to the solution, a residual vapor, in equilibrium with the solution and having a lower hydrogen peroxide concentration, can be condensed in a separate condenser. The concentration of the hydrogen peroxide solution obtained by the process can be regulated, for example, by regulating the condensation efficiency of the partial condensation.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: January 6, 1998
    Inventors: Pekka Johnsson, Tapio Mattila, Kari Saari
  • Patent number: 5693191
    Abstract: A process is provided for the recovery of hydrogen chloride in anhydrous form from a dry (containing less than about 500 parts per million by weight of water) mixture of hydrogen chloride with one or more non-condensable gases and which may also contain components heavier than hydrogen chloride, which process comprises distilling the mixture to produce an overheads stream containing the non-condensable gases and about 95 percent or more by weight of the hydrogen chloride in the mixture and a bottoms stream containing about 95 percent or greater by weight of all components heavier than hydrogen chloride, and compressing and refrigerating the overheads stream whereby a selected proportion of the hydrogen chloride in the overheads stream is produced in a liquid anhydrous form containing less than about 50 parts per million by weight of water.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: December 2, 1997
    Assignee: The Dow Chemical Company
    Inventors: Katherine A. Pividal, Tom C. Tsai
  • Patent number: 5681433
    Abstract: A process for the dehydration of a vaporous mixture. The basic process involves directing a predominantly condensable water vapor-containing vaporous mixture against the feed side of a membrane while maintaining the feed near saturation without condensing it, directing a condensable vapor sweep stream past the permeate side of the membrane in a countercurrent flow, thereby transporting water vapor in the vaporous mixture from the feed side to the permeate side of the membrane to form a noncondensed combined permeate side mixture of condensable vapor and transported water vapor.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: October 28, 1997
    Assignee: Bend Research, Inc.
    Inventors: Dwayne T. Friesen, David D. Newbold, Scott B. McCray, Roderick J. Ray
  • Patent number: 5637777
    Abstract: The invention concerns a process and an apparatus for preparing tertiary ethers. According to the process, C.sub.4 to C.sub.6 isoolefins and possibly heavier olefins contained in the feedstock are reacted with lower aliphatic alcohols, in particular methanol or ethanol, in a catalytic distillation reactor system in order to produce the corresponding ethers. According to the invention, the reaction between the isoolefins and the alcohols is essentially carried out in at least one reactor (5-7) of the kind, which is combined with a distillation column (3) intended for product separation, by conducting at least a part of the liquid flow of the column through the reactor and returning it to a lower tray than the one from which it was taken. At least half of cation exchange resin is placed in the side reactor (5-7). In the process according to the invention, the catalyst can be rapidly changed without stopping the process.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: June 10, 1997
    Assignee: Neste OY
    Inventors: Juhani Aittamaa, Isto Eilos, Juha Jakkula, Petri Lindqvist
  • Patent number: 5616217
    Abstract: In the manufacture of MTBE from TBA and methanol, acidic by-products formed during the etherification reaction are removed by fractionating the etherification reaction product in a first MTBE distillation column to provide a first lower boiling distillation fraction comprising isobutylene, MTBE, methanol and acidic by-products and a first higher boiling distillation fraction comprising methanol, TBA and water, fractionating the first higher boiling distillation fraction in a recycle distillation column to provide a lower boiling TBA recycle fraction and a higher boiling water fraction, recycling the higher boiling water fraction to the MTBE distillation column at a charge point above the charge point for the etherification reaction product, and adding aqueous sodium hydroxide to the recycled higher boiling water fraction in an amount sufficient to neutralize the acidic by-products charged to the MTBE distillation column.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: April 1, 1997
    Assignee: Texaco Chemical Inc.
    Inventor: Mark E. Taylor
  • Patent number: 5609734
    Abstract: A process for the separation of oxygenated compounds, containing mainly methanol and possibly a minor amount of water and/or dimethyl ether, from a mixture of hydrocarbons containing 3 to 8 carbon atoms containing said oxygenated compounds. The mixture is distilled in a distillation zone (D). A gaseous distillate (line 2) is taken overhead which contains methanol, possibly water, possibly dimethyl ether, and hydrocarbons. The gaseous distillate is separated in a separator (B) and at least one organic liquid phase is recovered (line 6) and sent as a reflux to the head of distillation zone D. An aqueous liquid phase (line 5) may possibly be recovered, also a gaseous phase (line 4). A phase (line 8) is extracted as a side stream from the distillation zone and sent to a permeation zone (PV) comprising at least one membrane which is selectively permeable to methanol; a permeation step is carried out on said phase.
    Type: Grant
    Filed: November 7, 1994
    Date of Patent: March 11, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Christian Streicher, Lionel Asselineau
  • Patent number: 5607557
    Abstract: A process for separating a mixture containing mainly ethyl tertio-butyl ether (ETBE), ethanol and C.sub.4 hydrocarbons includes introducing the mixture to be separated into a debutanizer from which the C.sub.4 hydrocarbons are recovered overhead with a fraction of the ethanol, and purified ETBE is recovered as a bottom product; a side stream of an ethanol-rich phase is extracted and sent to a permeation zone in which the dense film of the membrane is constituted by a N,N-dimethylaminoethyl methacrylate polymer (DMAEMA) or a copolymer of DMAEMA with N-vinylcaprolactam (NVCL) and/or with N-vinyl pyrrolidone (NVP); the ethanol-depleted retentate from this permeation zone is returned to the debutanizer and the permeate contains mainly separated ethanol.The process can be integrated into an ETBE production process, in which the ethanol separated during the permeation step is recycled to the etherification reactor. The debutanizer may be replaced by a catalytic distillation column.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: March 4, 1997
    Assignee: Institut Francais du Petrole
    Inventor: Christian Streicher
  • Patent number: 5589037
    Abstract: Tetranitromethane and other polynitrated methanes can be effectively removed from otherwise substantially organic-free nitric acid streams through the addition of substantially organic-free concentrated sulfuric acid and by, optionally, performing secondary operations such as sparging the mixed acid stream with a gas such as nitric oxide or with an oil.
    Type: Grant
    Filed: October 24, 1995
    Date of Patent: December 31, 1996
    Assignee: General Electric Company
    Inventors: Thomas L. Guggenheim, Sharon M. Fukuyama, Gregory L. Warner
  • Patent number: 5578173
    Abstract: A method of removing dimethyl terephthalate (DMT) from a vapor stream. The vapor stream includes dimethyl terephthalate (DMT), methylhydroxyethyl terephthalate (MHET), glycols and methanol. A distillation column is held under an elevated pressure of 100 to 500 kPag and at a temperature of at least 85.degree. C. It has (i) a plurality of distillation trays; (ii) methanol liquid sprays between the trays; (iii) a main spray zone below the trays and (iv) a liquid pool of methanol in the bottom of the column. The vapor stream is directed into the distillation column, above the liquid pool and below the main spray zone, thereby forming a stream of liquid and vapor. The stream of liquid is directed away from the distillation column walls and into the liquid pool at the bottom of the column.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: November 26, 1996
    Assignee: Eastman Kodak Company
    Inventors: Walter E. Toot, Jr., Brian L. Simpson, Bruce R. Debruin, Andrius A. Naujokas, William J. Gamble
  • Patent number: 5549794
    Abstract: An apparatus (10) for continuously extracting a solute from a carrier medium (102) is provided. The apparatus is formed from a vessel (12) including a convergent baffle (22) separating the vessel into a lower distillation chamber (24) and an upper extraction chamber (26). The convergent baffle is configured as an inverted funnel such that it defines a conduit riser (28) projecting upwardly into the extraction chamber and terminating in a vaporized solvent port (30) placing the distillation chamber in fluid-flow direct communication with the extraction chamber. A vapor rotating spheres-condenser (34) is mounted on the upper end of the vessel and opens into the extraction chamber. Solvent is placed in the distillation chamber while the carrier medium containing the solute is placed in the extraction chamber. Solvent is vaporized in the distillation chamber, rises upwardly through the conduit riser, and passes through the carrier medium, thereby extracting solute in a continuous linear-toroidal motion.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: August 27, 1996
    Assignee: H-O-H Research Inc.
    Inventor: Michael W. Mar
  • Patent number: 5535877
    Abstract: A method and apparatus for removing water from a solution of water and glycol solution. The apparatus finds application in recycling of glycol wherein a water and glycol solution having as much as a 95% water content when introduced to the apparatus leaves the apparatus with a water content in the order of 40% to 60%. The glycol concentrator has a packing medium made from glass shards that provide a labyrinth through which air is circulated in one direction and thin streams of glycol are circulated in generally the opposite direction. It is believed that mixing of the thin streams of solution and air flow steams in the labyrinth results in a thin film evaporation process. The glycol concentrator apparatus has reduced energy requirements when compared with a distilling process.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: July 16, 1996
    Inventors: Peter d. Eastcott, Nicole A. Truman, Peter Truman
  • Patent number: 5536375
    Abstract: A distiller for producing potable water employs a metal boiler tray having a cover member in which there is an inlet for raw water and which together form a steam chamber having an outlet for steam. The boiler tray bottom has a plurality of steps including a highest, an intermediate and a lowest level step which are all covered with water at the beginning of a distillation cycle. The temperature of the highest level step is monitored with a sensor. A rise in the temperature of the highest level step by a predetermined amount above the boiling temperature of water indicates that the highest and intermediate level steps have become dry. This results in a signal to a controller to open a valve and admit replenishment raw water whose amount is dependent on valve open time. Steam evolved from the boiler tray is conducted through a first check valve in the cover member to demister chamber when the mist or carryover water in the steam impinges on a baffle and is separated from the steam as condensate.
    Type: Grant
    Filed: September 29, 1994
    Date of Patent: July 16, 1996
    Assignee: Emerson Electric Co.
    Inventor: Jonathan C. Vogelman
  • Patent number: 5507919
    Abstract: An apparatus and method are provided for the defluorination of a liquid hydrocarbon mixture, containing organic fluorides, produced during the conversion of hydrocarbons using a fluorine-containing catalyst. In one embodiment, both a thermal means and a contacting material are used to effectuate a more complete defluorination. The liquid hydrocarbon mixture is extracted from a distillation column and heated sufficiently in the thermal means to decompose at least some of the organic fluorides. The effluent from the thermal means is separated into a vaporous and a liquid effluent. The liquid effluent is passed to the bottom of the distillation column where it undergoes further defluorination through contact with the contacting material.
    Type: Grant
    Filed: August 1, 1994
    Date of Patent: April 16, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Scott D. Love, Stone P. Washer
  • Patent number: 5507921
    Abstract: A method and apparatus for quenching a gas stream in the production of vinyl chloride monomer includes the use of a knock back condenser and a plurality of column fractional distillation trays disposed within the quench column, and a liquid stream of 1,2-dichloroethane, vinyl chloride, and hydrogen chloride may be removed from the bottom column fractional distillation tray.
    Type: Grant
    Filed: December 14, 1994
    Date of Patent: April 16, 1996
    Assignee: Westlake Monomers Corporation
    Inventor: James E. Best
  • Patent number: 5500095
    Abstract: A high efficiency batch sulfuric acid reprocessor system that is capable of producing high purity acid through distillation. Methods of use are also provided. The distillation is monitored and controlled in accordance with temperatures of the system, in particular, the temperature of the column and the temperature of the vapor in a condensing chamber. A stream splitter enables the invention to selectively collect high purity product as well as remove waste or recycle condensate as reflux.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: March 19, 1996
    Assignee: Athens Corporation
    Inventors: Robert T. Shinagawa, Susan M. Jordan, Christopher S. Blatt
  • Patent number: 5500098
    Abstract: Volatile acids containing metal salt impurities, such as metal pickling solutions-are regenerated by a process in which the acid is subjected to sulfuric acid distillation. Resulting volatile acid vapor is condensed and recycled to the pickle tank, while the residual acid mixture is treated in an acid sorption unit, preferably of the acid retardation type. Acid sorbed in the acid sorption unit is periodically eluted with water and recycled, while metal impurities are rejected in a deacidified by-product solution.
    Type: Grant
    Filed: August 5, 1993
    Date of Patent: March 19, 1996
    Assignee: Eco-Tec Limited
    Inventors: Craig J. Brown, Michael A. Sheedy
  • Patent number: 5498319
    Abstract: Illustrated by the purification of diphenyl carbonate (DPC), diaryl carbonates are purified and freed of contaminants such as inorganic and organic chlorides, metal ions, iron components and color bodies. The process is a two-stage procedure starting with a water wash of the molten carbonate followed by distillation. Crude DPC is charged to the wash tank and is washed in the molten state three times. Fresh steam condensate is used for each wash which consists of a period of agitation followed by decantation then water removal. After the third wash, the molten DPC is transferred to a still for distillation. The rag layer which is formed at the water/DPC interface during washing is purged and not allowed to pass through to the still. A flash distillation is carried out under constant vacuum. Three overhead cuts are taken--lights, intermediate and product DPC depending on the temperature of the overhead vapor.
    Type: Grant
    Filed: June 29, 1993
    Date of Patent: March 12, 1996
    Assignee: General Electric Company
    Inventor: Robert B. Ehlinger
  • Patent number: 5498317
    Abstract: An apparatus and method for treating chemical production plant process condensate such that a contaminant-rich stream and a relatively pure aqueous stream is separately recoverable from the condensate, wherein the contaminants are substantially removed from the condensate by steam stripping and subsequent rectification in a relatively low pressure stripping/rectification tower. The tower overhead is then condensed with a portion of the condensed overhead being returned to the top of the rectification section of the tower as reflux and the balance being withdrawn as a concentrated stream for reuse in the plant. In a second embodiment, separate stripping and rectification towers operate in series whereby the overhead of the stripping tower is delivered to the lower section of the rectification tower and the rectification bottoms are returned to the top of the stripping tower.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: March 12, 1996
    Assignee: Farmland Industries, Inc.
    Inventor: Allan D. Holiday
  • Patent number: 5487816
    Abstract: A process to separate in a fractionation zone an admixture comprising phenol, alpha-methylstyrene and water to produce an alpha-methylstyrene stream containing a minimum of phenol. The pH of the overhead aqueous phase is adjusted with a base to greater than about 6.
    Type: Grant
    Filed: June 24, 1994
    Date of Patent: January 30, 1996
    Assignee: UOP
    Inventors: Russell C. Schulz, Constante P. Tagamolila, Patrick J. Bullen
  • Patent number: 5445714
    Abstract: A concentrator for reducing the volume of a mixture containing a solvent and various dissolved and/or undissolved solids includes a chamber adapted to receive the mixture and a heater coupled to the chamber for applying heat to the mixture within the chamber, the heat being provided at a temperature sufficient to vaporize the solvent. A condensing tower receives the vapors from the chamber and including a first stage and at least one second stage. A plurality of walls included in each of the first stage and the second stage of the tower direct the vapors along a torturous path including at least one reversal of direction in each of the stages. A coolant is provided to cool the second stage of the tower but not the first stage in order to facilitate condensation of the vapors in the second stage but not in the first stage of the tower. The coolant may include water in order to facilitate the processing of aqueous solutions.
    Type: Grant
    Filed: June 20, 1991
    Date of Patent: August 29, 1995
    Assignee: Eco Stills, Inc.
    Inventor: Henry S. Myers
  • Patent number: 5435892
    Abstract: A distillation process is used to separate methanol from a mixture of methanol with methyl acrylate or methyl methacrylate, as well as from a mixture of methanol and water with methyl acrylate or methyl methacrylate with the use of an azeotropic solvent, which forms an azeotropic mixture with methanol. In distilling such a mixture by the use of a distillation column:(1) part of the condensate of vapors distilled over from the top of the distillation column top is returned to the top of the column;(2) the remaining condensate is separated into two layers;(3) the upper layer essentially composed of an azeotropic solvent from the two separated layers is fed to an intermediate portion of the distillation column;(4) the lower layer essentially composed of methanol from the above two separated layers is withdrawn from the distillation system; and(5) methyl acrylate or methyl methacrylate, or else, methyl acrylate or methyl methacrylate and water, are recovered from the bottom of the column.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: July 25, 1995
    Assignees: Mitsubishi Rayon Co., Ltd., Osaka Organic Chemical Ind. Co., Ltd.
    Inventors: Seiji Miyazaki, Yasutaka Nakashima, Toshihiro Satoh, Tadao Ida, Etsuji Sato, Akio Tani
  • Patent number: 5429720
    Abstract: A distillation process for separating spent organic solvents such as trichloroethane or d-limonene from their contaminants such as oil is improved by the addition of a perfluorinated alkane or mixture of such alkanes to permit more efficient separation of the solvents from the oil.
    Type: Grant
    Filed: January 26, 1994
    Date of Patent: July 4, 1995
    Assignee: The Dow Chemical Company
    Inventors: James A. Mertens, Felipe A. Donate
  • Patent number: 5395486
    Abstract: Dehydrated compositions are obtained by: combining a hydrous composition, e.g., a hydrous electrolyte salt, with inert fluorochemical liquid; heating the resulting mixture in a vessel to volatilize water and inert fluorochemical liquid therein until the water content of the mixture is reduced to a desired level; optionally treating the resulting dehydrated mixture with another chemical material, e.g., a polar organic solvent; and optionally subjecting the dehydrated mixture or the treated dehydrated mixture to further treatment, e.g., separation of the mixture. Liquid electrolytes suitable for use in battery applications can be prepared by this method.
    Type: Grant
    Filed: October 19, 1993
    Date of Patent: March 7, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Michael E. Killian, John C. Stone
  • Patent number: 5389209
    Abstract: A process for making a light color maple syrup from a water-containing sap. In a first step, the sap is boiled under normal pressure to evaporate part of the water contained therein in the form of steam, to form the maple syrup and to develop caramelized and sweet characteristics and give flavor and a tinted color to this maple syrup. In a second step, the sap is heated at a temperature lower than the boiling temperature of the sap and atomized through an air circulating column to evaporate another part of the water contained therein. This second step which can be carried out before the first one, permits to concentrate the sap, to increase its sugar content and to avoid further caramelization thereof. The sap which is so obtained with an increased sugar content, may be recycled as long as necessary until a desired sugar concentration corresponding to a predetermined Brix number is reached.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: February 14, 1995
    Inventor: Yvon A. Paquette
  • Patent number: 5376238
    Abstract: The process of this invention is directed to recovering diluted aqueous latex paint collected during cleaning of latex paint manufacturing equipment. The collected aqueous diluted latex paint is subjected to vacuum evaporation at temperatures between about 120.degree. F. and 170.degree. F. at reduced pressures of at least about 25 inches of mercury vacuum to produce a distillate containing above 99% by weight water and concentrated latex paint reusable as latex paint or as blend in latex paint products.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: December 27, 1994
    Assignee: The Glidden Company
    Inventor: John G. Zambory
  • Patent number: 5362365
    Abstract: Acetic acid and/or acetic anhydride containing methyl crotonate, vinyl acetate, or both as impurities, is contacted with ozone in an amount of excess molar to the carbon-carbon double bond in said methyl crotonate and/or vinyl acetate and the impurities produced by ozone-treatment are removed off by distillation. A large quantity of impurities such as aldehydes are produced after treatment by treating acetic acid and/or acetic anhydride containing much amount of unsaturated compounds as impurities with ozone. Distilling the ozone-treated acetic acid and/or acetic anhydride make it possible to remove methyl crotonate and vinyl acetate, which are unsaturated compounds difficult to remove by the conventional separation methods, to give high-quality acetic acid and/or acetic anhydride excellent in the residence time in the potassium permanganate test.
    Type: Grant
    Filed: July 6, 1993
    Date of Patent: November 8, 1994
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Hiroyuki Niijima, Kazuyuki Akita
  • Patent number: 5348623
    Abstract: An automatic water heating and distilling apparatus is provided having a hot water reservoir, an evaporator tank, a condenser, a distilled water reservoir and a control mechanism. Water is boiled within the evaporator tank generating steam which is condensed in the condenser to form distilled water. The heat rejected during condensation is transferred into the hot water reservoir. The distilled water reservoir has an input coupled to the condenser, an output for distilled water, and an overflow so that excess distilled water is returned to the evaporator tank. The control mechanism automatically regulates the operation of a heater within the evaporator to maintain the water in the hot water reservoir within a selected operating range. Various alternative embodiments are also described including a hot water heating apparatus utilizing an enclosed heat transfer device partially filled with liquid having a boiling point above the selected temperature for the water to be heated.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: September 20, 1994
    Assignee: Terrill Designs, Inc.
    Inventor: Michael E. Salmon
  • Patent number: 5344528
    Abstract: Phenol plant waste water containing small amounts of phenol and sodium sulfate is successfully distilled through the addition of recovered sodium sulfate to enhance the volatility of the phenol relative to water; at least a portion of the sodium sulfate is recycled, while a significant portion of the phenol can be returned to the phenol plant for recovery.
    Type: Grant
    Filed: August 4, 1993
    Date of Patent: September 6, 1994
    Assignee: Aristech Chemical Corporation
    Inventors: Thomas H. Bossler, Donald Glassman, Michael C. Grebinoski, Howard H. Morgan, Jr., Jennifer L. Voss
  • Patent number: 5336376
    Abstract: In a distillation column with vaporous sidestream removal, the vaporous product removed is condensed in a condenser. The vapor pipe provided for the removal of product opens into a dip tank of which the upper end is connected to the condenser while its lower end is connected to a discharge pump. Inert gas present in the condensate is returned to the column above the sidestream removal through an inert gas pipe arranged at the upper end of the condenser.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: August 9, 1994
    Assignee: Bayer Aktiengesellschaft
    Inventors: Siegfried Taurat, Heinrich Steude, Ludwig Deibele, Heinz-Jurgen Alpers
  • Patent number: 5334291
    Abstract: An apparatus for removing non-volatile residues and impurities from a used solvent includes a self-scrubbing heating distillation subassembly for separating purified solvent for reuse and a controlled waste collector subassembly for overflowing concentrated residues and impurities stripped from the used solvent into an easy-to-service container. The apparatus may be disposed in a parallel in-line relationship with a circulating solvent flow circuit, such as in a dry cleaning operation, to continuously withdraw and purify aliquot portions of the circulating solvent stream, returning good solvent back to the flow circuit and concentrating non-volatile residues and impurities to a removable, environmentally sound serviceable container.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: August 2, 1994
    Assignee: Safety-Kleen Corp.
    Inventors: Gilbert Gavlin, William M. Langdon, deceased, Boris Goltsin, Gunther Erlebacher, Douglas A. Larson
  • Patent number: 5330624
    Abstract: Sludge is removed from a reboiler while the reboiler is supplying heat to a fractionator, by using sludge removal apparatus added to the reboiler. The reboiler to which the sludge removal apparatus is added comprises an evaporative type shell and tube heat exchanger in which sludge can accumulate as a residue from evaporated liquid, and further in which unevaporated liquid is withdrawn from the reboiler as a product. Sludge removal is accomplished by drawing a relatively small liquid flush stream from the reboiler liquid product stream, pressuring the flush stream through a pump, and then recycling the flush stream to a sparger appropriately disposed in the heat exchanger shell. Sludge dislodged by the sparger is removed along with the reboiler liquid product in a flow path along the bottom surface of the shell through cut-outs provided in the lower edge of the weir and baffle plates in the reboiler which without the cut-outs would block the flow path for the sludge.
    Type: Grant
    Filed: December 27, 1991
    Date of Patent: July 19, 1994
    Assignee: Phillips Petroleum Company
    Inventor: John W. Ebert
  • Patent number: 5326436
    Abstract: A method of feeding to a fractionator a feed mixture having a wide-boiling range vapor-liquid mixture is provided. Also, provided is a fractionator feed section adapted to receive a two phase feed mixture and has operational stability when fed a feed mixture which generates significant volume of vapor in the feed section.
    Type: Grant
    Filed: November 19, 1992
    Date of Patent: July 5, 1994
    Assignee: Atlantic Richfield Company
    Inventors: Vijay R. Sampath, David E. Bachmann
  • Patent number: 5314587
    Abstract: A method and apparatus are disclosed wherein a standpipe mounted in an accumulator outside the operating zone of a distillation column is used in conjunction with a liquid level controller to measure condensate collected in the accumulator and to change the amount of energy provided to the distillation column in response to changes in the level of condensate collected in the accumulator.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: May 24, 1994
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Gerald L. Smith
  • Patent number: 5312524
    Abstract: A distillation system for recovery of volatile components of contaminated liquids used in an industrial process includes a tube assembly including outer tubes to which hot bottoms liquids are supplied and inner tubes to which process liquids are supplied for transfer of heat from the bottoms to the process liquids. From the tube assembly the two liquids are discharged into the still through separate, elongated, parallel discharge pipes. The process liquids discharge pipe is positioned above the bottoms liquids discharge pipe and an elongated, metal, angle plate is positioned as an inverted V between the two discharge pipes. Efficiency is improved over prior systems wherein process liquids are added to the still without being preheated by the bottoms fluids, and without the unique still intake manifold.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: May 17, 1994
    Assignee: Filter Tech, Inc.
    Inventor: Lyle B. Barcomb
  • Patent number: 5294303
    Abstract: A process is provided for separating trace amounts of water-immiscible, volatile organic liquids dissolved in aqueous media whereby the aqueous media are subjected to vapor stripping under vacuum at about ambient temperature in conjunction with a heat pump which indirectly recovers the energy of vaporization in its cold loop and returns such energy to the vaporization of the aqueous media in its hot loop. Inasmuch as the entire process is conducted at ambient temperature, there is little loss of energy to the environment and processing energy is recovered and reused to the application of a heat pump system.
    Type: Grant
    Filed: December 8, 1992
    Date of Patent: March 15, 1994
    Assignee: The Dow Chemical Company
    Inventor: Lanny A. Robbins
  • Patent number: 5271810
    Abstract: A distillation device for separating a liquid mixture from contaminants contained therein. The device partially cools, using an air radiator or equivalent passive heat-exchange device, a fluid of that contains at least one component of the mixture to be separated; the temperature of the fluid does not fall the ambient air temperature, thus preventing condensation on the heat exchanger. The partially cooled fluid is introduced into an aspirator and combined therein with a gaseous stream produced by heating the mixture to boiling in a separate chamber. Because of the high surface area of contact between vapor and aspirated liquid, the heat transfer is completely effective to condense the gaseous mixture, which settles into a pool. The components can then be separated mechanically or by gravity.
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: December 21, 1993
    Assignee: Environmental Solvents Corporation
    Inventors: Gene E. Keyser, Robert L. Klopfenstein
  • Patent number: 5264085
    Abstract: A method of continuously distilling off the components of a mixture containing phenols, water and methanol using a single distillation column, wherein methanol is recovered from the top of the column, water containing phenols is dragged as a side stream from a recovery section of the column, and phenols are recovered as a bottom product. The method permits efficient separation by the single distillation column of the three components with high purity and low utility energy.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: November 23, 1993
    Assignee: Mitsubishi Petrochemical Company, Ltd.
    Inventors: Masashi Inaba, Yoshikazu Higaki, Kimikatsu Jinno, Mitsugi Kataoka, Norio Sato, Masayuki Honda
  • Patent number: 5262014
    Abstract: A process for removing acetone from an acetone/methyl acetate/methyl iodide mixture utilizing extractive distillation with water being introduced to the distillation zone above the point of introduction of the mixture and acetic acid being introduced at or above the point of introduction of the mixture. In a preferred embodiment the mixture is subjected to an initial extraction with an aqueous extractant to remove most of the methyl iodide.The process is particularly applicable to removing acetone by-product in carbonylation processes for the production of acetic anhydride.
    Type: Grant
    Filed: June 12, 1992
    Date of Patent: November 16, 1993
    Assignee: The British Petroleum Company p.l.c.
    Inventors: Jeremy B. Cooper, John Dixon-Hall, Stephen J. Smith
  • Patent number: 5262013
    Abstract: A coolant recycling apparatus has a boiler and condenser for distilling a glycol and water from a used coolant. The glycol and water are recombined in a mixing tank to form a mixture having a desired ratio of water to glycol, and an inhibitor is added to the mixture to obtain a fresh coolant mixture ready for use in an engine cooling system. Contaminants in the used coolant are concentrated to form a sludge.
    Type: Grant
    Filed: July 17, 1991
    Date of Patent: November 16, 1993
    Assignee: Amalgamated Technologies, Inc.
    Inventors: Roy E. Beal, Scott A. McCracken
  • Patent number: 5259931
    Abstract: A system for removing volatile constituents (e.g., hydrocarbons) from a liquid (e.g., water) containing the same by which there is a continuous countercurrent contact between the liquid and a forced air flow. Water collected in a reservoir is continuously pumped to the top of a stripping tower where it is dispersed downwardly over packing material. A blower forces air upwardly in the tower so as to remove the volatile constituents that exit the tower with the exit air. Since the water flow is continuous, multiple passes occur through the tower to enhance separation efficiency. Water from the base of the tower returns to the reservoir via overflow from a standpipe. A lower liquid level sensor in the reservoir initiates operation of the water pump to the tower, and an upper liquid level sensor initiates operations of another pump for pressure discharge from the base of the tower to an exterior site.
    Type: Grant
    Filed: February 3, 1992
    Date of Patent: November 9, 1993
    Inventor: James R. Fox
  • Patent number: 5242548
    Abstract: An improved distillation device (1) which uses a combination of centrifugal and positive displacement pumps to purify raw liquid in an area of limited space. The device (1) includes evaporation assembly (2) having a boiling chamber (5), a valve and float switches (15, 16, 17) for maintaining the liquid level (20) in the boiling chamber (5) at a predetermined level, and connecting conduit (21) for directing vapor to a condensation apparatus (3). The condensation assembly (3) includes a condensation chamber (6), a collection chamber (7), and at least one bubble tube (22) connecting the two chambers (6, 7). Leading from the collection chamber (7) is first transfer conduit (50), a tube (51) for permitting vapor to bleed from the collection chamber (7) back to condensation chamber (6), and second transfer conduit (52) for returning only distillate from collection chamber (7) to condensation chamber (6) to cool condensation chamber (6).
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: September 7, 1993
    Inventor: Philip G. Youngner
  • Patent number: 5238540
    Abstract: The method of obtaining a pure aromatic hydrocarbon from a hydrocarbon starting mixture includes extractively distilling the hydrocarbon starting mixture with a selective solvent; feeding the sump product of the extractive distillation through a first and second auxiliary boilers connected in series to form a cooled sump product at a temperature from 105.degree. to 120.degree. C.
    Type: Grant
    Filed: September 26, 1991
    Date of Patent: August 24, 1993
    Assignee: Krupp Koppers GmbH
    Inventors: Luzian Skatulla, Hans-Christoph Schneider, Hans-Jurgen Vollmer
  • Patent number: 5236558
    Abstract: A method to recycle spent ethylene glycol in a continuous process for the manufacture of polyethylene terephthalate in at least one reactor vessel which includes:a. condensing the overhead vapor of spent ethylene glycol, water and other byproducts from the reactor vessel,b. feeding the condensed vapor to a single distillation column,c. removing only part of the water and other byproducts from ethylene glycol by distillation overhead in the column andd. feeding the resultant bottoms of the column back to the reactor vessel as recycle ethylene glycol along with virgin ethylene glycol, so that polyethylene terephthalate polymer being manufactured by the continuous process is essentially unaffected regarding polymer color and ability to be spun into high quality yarn, but with lower diethylene glycol content that polymer made from all virgin ethylene glycol.
    Type: Grant
    Filed: September 26, 1990
    Date of Patent: August 17, 1993
    Assignee: Allied-Signal Inc.
    Inventors: Edward J. Buyalos, David Pendlebury, Lon K. Bouknight, Neil F. Blake, Clarence McKeithan, Jr.
  • Patent number: 5234552
    Abstract: A vapor condensor connected to a glycol reboiler to prevent emissions of aromatic compounds from glycol dehydration from escaping into the atmosphere. Steam and vaporized hydrocarbons are directed into the vapor condenser where they are sprayed with 80 degree or below Fahrenheit water. The water spray cools the steam and vaporized hydrocarbons so that a substantial portion of the vapors are changed to a liquid phase which is collected in an accumulator located below the vapor condenser. A water jacket surrounding a central cylinder of the vapor condenser tends to keep the condensed vapors in the liquid phase. The remaining vaporized hydrocarbons which are not condensed are drawn out of the accumulator and burned in a burner connected to the glycol reboiler. The steam and vaporized hydrocarbons in the glycol reboiler have an initial temperature in range of 350 to 400 degrees Fahrenheit.
    Type: Grant
    Filed: September 10, 1991
    Date of Patent: August 10, 1993
    Inventors: Robert McGrew, John P. Broussard
  • Patent number: 5221440
    Abstract: A process for removing organic compounds, including nitro-hydroxy-aromatic compounds and amines, from alkaline wastewater, and in particular from wastewater generated in the production of nitrobenzene, dinitrobenzene, nitrotoluene and dinitrotoluene. The process involves distilling the alkaline wastewater steam at or near atmospheric pressure until it is concentrated five to twenty-five fold. The distillate includes water, which may be discharged to the environment, subjected to biological treatment, or recycled for use in the production process; and volatile organics, which are phase separated from the aqueous portion of the distillate and which may be recycled to the crude product stream. The concentrated residue from the distillation may be incinerated or subjected to biological treatment.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: June 22, 1993
    Assignee: Rubicon Inc.
    Inventors: Aki Miyagi, Walter Kraushaar, John B. Wilcoxon, Toby Gerhold
  • Patent number: 5209828
    Abstract: A system and method of concentrating spent caustic at a refinery has a multi-stage flash drum for separating a spent caustic stream into an overhead output stream including vaporized water and volatile organic compounds, and a concentrated spent caustic output stream. The system also has a condenser for condensing the overhead output stream, and a separator for separating the condensed overhead output stream into a volatile organic compound stream, a liquid hydrocarbon stream and a water stream. The system further has an ejector for applying a vacuum to the flash drum to vaporize the spent caustic stream at a reduced temperature, and to the separator to remove the volatile organic compound stream. The volatile organic compounds are removed from the overhead of the separator through the ejector to a burner of a fired heater.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: May 11, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Tai-Sheng Chou, Manuel Gonzalez
  • Patent number: RE35107
    Abstract: High purity isopropyl acetate and ethanol are recovered from a process stream containing isopropyl acetate, ethanol and water by a multiple step process including extracting substantially all of the ethanol from the stream using water as a solvent, stripping the extract stream to remove substantially all of the remaining isopropyl acetate as an overhead recycle stream, which is combined with the fresh feed stream prior to the extraction step, fractionating the ethanol-rich stripping column bottoms stream to produce a ethanol-water azeotropic overhead stream and using a portion of the fractionating column bottoms stream as the solvent for the extraction step.
    Type: Grant
    Filed: August 11, 1992
    Date of Patent: December 5, 1995
    Assignee: Harborchem
    Inventor: William J. Curry