With Programmed, Cyclic, Or Time Responsive Control Means Patents (Class 204/196.05)
  • Patent number: 11519077
    Abstract: A hybrid sacrificial galvanic anode, an anodic system including the hybrid sacrificial anode, and a method of cathodically protecting steel reinforcement in concrete structures is provided. The hybrid anode provides initial steel polarization followed by long term galvanic protection without the use of batteries or external power supplies.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: December 6, 2022
    Assignee: Construction Research & Technology GmbH
    Inventor: Frederick R. Goodwin
  • Patent number: 11021386
    Abstract: In embodiments, a method for operating a glass manufacturing apparatus may include heating a delivery conduit with resistive windings positioned around an exterior surface of the delivery conduit, the delivery conduit extending between a mixing vessel and a delivery vessel. The method may also include injecting electric current through the delivery conduit while heating the delivery conduit with resistive windings and prior to flowing molten glass through the delivery conduit thereby increasing a temperature of the of the delivery conduit, wherein an input heat flux into the delivery conduit is greater than an output heat flux away from the delivery conduit prior to flowing molten glass through the delivery conduit.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: June 1, 2021
    Assignee: Corning Incorporated
    Inventors: Brad Steven Barnett, Brian Douglas Burns, Timothy Joseph Helmers, Andrea Ha Oac, Kimberly Denise Smith
  • Patent number: 10982338
    Abstract: A electronic corrosion protection (ECP) device includes a physical interface for connecting to an on-board diagnostic port of a vehicle. The ECP device can be easily and safely installed in a vehicle and provide corrosion protection to metal components of the vehicle.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 20, 2021
    Assignee: Auto Saver Systems, Inc.
    Inventor: Warren Camp
  • Patent number: 10494723
    Abstract: The present invention provides a system and a method for providing corrosion protection of a metallic structure using time varying electromagnetic wave. The system comprises: a generator for generating electromagnetic wave having a time varying frequency, said generator having at least two output terminals in electrical connection respectively with first and second excitation sites positioned in a spaced manner on the metallic structure, allowing for subjecting the metallic structure to the electromagnetic wave; and an electric power source connected to the generator for applying a driving voltage to the generator to drive the generation of the electromagnetic wave; wherein the driving voltage and/or the frequency of the electromagnetic wave are selected such that the metallic structure is energized to form in-situ a passive oxidized species of the metal on a surface of the metallic structure, which species is insusceptible to corrosion.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 3, 2019
    Assignee: Sembcorp Marine Repairs & Upgrades Pte. Ltd.
    Inventor: Hwee Hong Chew
  • Patent number: 9657965
    Abstract: A water heater is provided which comprises a water storage tank made of enameled metal, an anode electrode (e.g. an anode rod) at least partly inside the water storage tank and a corrosion protection unit configured to impress current into the anode to provide a corrosion protection for the water storage tank. The corrosion protection unit further comprises a microprocessor configured to control the impressing of the current to the anode electrode during impression process cycles and to control the operation of the corrosion protection. The corrosion protection unit furthermore comprises a battery unit or an accumulator unit configured to supply energy to the microprocessor during grid power outages. The microprocessor is configured to activate the power saving mode during grid power outages during which an amount of impressed current and/or an impression process cycle is reduced.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: May 23, 2017
    Assignee: Stiebel Eltron GmbH & Co. KG
    Inventors: Hubert Nolte, Frank Stiebel
  • Patent number: 9638667
    Abstract: A method for in-situ detection of coating defects on a buried pipeline. The pipeline is under cathodic protection or otherwise carries a current applied to its pipe walls. A magnetic field sensor array is placed within the pipeline and moved along its length. As the sensor array travels, it detects the magnetic fields within the pipeline. The sensor output is compared with “expected” data, which represents interior magnetic fields of the pipeline without coating defects. Because electrical current leaks through a coating defect, the current is altered on the pipe wall at the defect. This in turn alters the interior magnetic fields, and a change in the interior magnetic fields indicates a coating defect.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: May 2, 2017
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Jay L. Fisher, Pavan K. Shukla
  • Patent number: 9005423
    Abstract: Communications systems are provided for use with an impressed current cathodic protection (ICCP) system having single or multiple ICCP components. A pipeline may be provided by connecting multiple pipeline sections together as an integrated pipeline where each section has an associated ICCP system. A communications signal comprising an AC signal is impressed on the pipeline and received by receivers associated with power supplies associated with each ICCP system. Upon reception of the AC signal, a controllable switch is operated within the power supplies to synchronously disconnect them from their power source and thereby enable accurate testing of the ICCP system.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: April 14, 2015
    Assignee: Itron, Inc.
    Inventor: Barry Cahill-O'Brien
  • Publication number: 20130292263
    Abstract: The invention is a multiple-structure cathodic protective system that includes multiple voltage-controlled outputs to protect multiple structures with a common ground bed, or a single structure with multiple anode ground beds. Each output feeds an individual cable that is powered by independent pulse-width-modulated voltage power supplies. Current through the cables is monitored and the PWM control compensates to maintain the correct amount of current for maximum protection and long life.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Applicant: ION PROTECTIVE SERVICES, L.L.C.
    Inventor: Brandon Carr
  • Patent number: 8361285
    Abstract: An electrochemical antifouling system for preventing fouling organisms from adhering to seawater-wetted structures includes a direct current circuit for creating an electrolytic environment in seawater, the direct current circuit having an adjustable direct current source, a lattice electrode having a single metallic component so as to provide a dimensionally stable lattice structure, the lattice electrode electrically insulated from a surface of a seawater-wetted structure, at least one corrosion-resistant counter electrode having polarity opposite to the lattice electrode and disposed at a distance therefrom, and a switching device configured to alternatively switch the lattice electrode to (a) a continuous operating mode, and (b) a temporary depletion mode, wherein the lattice electrode is disposed in a distance range from the surface of the seawater-wetted structure so that the surface lies within an area of influence of an increase in pH value of the seawater caused by electrolysis.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: January 29, 2013
    Assignee: Stiftung Alfred-Wegener-Institut fuer Polar-und Meeresforschung
    Inventors: Roland Krone, Markus Paster
  • Patent number: 7901546
    Abstract: The present invention includes systems, methods and apparatus for continuously, independently and in some cases remotely monitoring the operation of a current interrupter used to test a cathodic protection system, or the cathodic protection system itself, for verification of proper operation. Embodiments of the invention include electronic devices that may be temporarily attached to a current interrupter that is being used to test a cathodic protection system, or directly to the cathodic protection system itself. Embodiments of the invention monitor the activity of an interrupter by sampling the output (voltage and time) to identify the cycle(s) of the interrupter. The invention provides truly independent verification since it does not need to know in advance the sequence or cycle times of the current interrupter being monitored. The information obtained by the invention is output so that it may be provided to a user, displayed, downloaded or stored for future reference.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: March 8, 2011
    Assignee: M.C. Miller Co.
    Inventors: Melvin C. Miller, Marcelo Jakubzick, Juan Pablo Gutierrez
  • Publication number: 20090260978
    Abstract: A decontaminating system 200 is provided that includes: (a) a decontaminating apparatus 100 including (i) an electrically conductive scrubbing shoe 104 having an inlet 204 for a gel-like material and (ii) an insulating standoff 116 positioned between the scrubbing shoe 104 and a surface 120 to be decontaminated to maintain a desired distance between the scrubbing shoe 104 and the surface 120; (b) a reservoir 216 for the gel-like material 124, the reservoir 216 being in communication with the inlet 204; and (c) a voltage source 224 in communication with the electrically conductive scrubbing shoe 104, whereby a current is passed through the gel-like material 124 applied to the surface 120, thereby removing contaminants from the surface 120.
    Type: Application
    Filed: February 4, 2009
    Publication date: October 22, 2009
    Inventors: Bradley D. Veatch, Zinaida Ibrisagic, Amanda K. Kimball, Thomas E. Broderick
  • Patent number: 7410563
    Abstract: A method for preventing corrosion of a contact, includes comparing a potential of a signal line connected to the contact with a predetermined potential corresponding to the corrosion of the contact; flowing a corrosion-prevention current into the contact when a result of the comparing shows that the contact is corroded; inputting into the signal line a signal used for judging a logical value of a connection state of the contact; and in the magnitude relation, setting the predetermined potential on another side of a threshold level used in the judging of the logical value of the connection state of the contact.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: August 12, 2008
    Assignee: Fujitsu Ten Limited
    Inventors: Kazuhiro Komatsu, Masahiko Fujimoto, Kouji Oonishi, Keisuke Kido, Junichi Sawada
  • Patent number: 7241374
    Abstract: An electrode system for preventing biofouling of a surface either is applied directly onto the surface of an aquatic vehicle or structure, if the surface is non-conducting; or is applied onto an insulating paint layer on the surface, if the surface is conducting; or is embedded in a layer of electrically non-conducting material. The electrode system includes two alternating sets of electrodes in the form of spaced, parallel strips made from any conductive material, preferably a conductive coating, the first set being provided with a number n of parallel electrodes, and the second set being provided with a number n?1 of parallel electrodes, with the positions of the electrodes of the first set alternating with the positions of the electrodes of the second set. The geometry of the electrodes is such that when the voltage is applied, the electric field radiates outwardly parallel to the surface of the structure.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: July 10, 2007
    Assignee: Unitech, LLC
    Inventors: Robert C. Boyd, Wayne B. Legrande
  • Patent number: 7238263
    Abstract: A portable, handheld, automatic protection level interpreting cathodic protection meter for testing the level of protection being afforded to metallic structures protected by either sacrificial anode or impressed current cathodic protection systems, or both. The meter is suitable over a variety of environments including salt water, freshwater, and soil. The operator can select both the type of metal to be tested as well as the type of reference electrode that is being used. The meter automatically calibrates data interpretation of the level of protection based on the operator's selections and eliminates any voltage drop error existing between a reference electrode and the structure being protected.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: July 3, 2007
    Assignee: California Corrosion Concepts, Inc.
    Inventors: J. Darby Howard, Jr., Mohammed Ali, Chris Lisson
  • Patent number: 6871014
    Abstract: A water heater comprising a housing defining a water heating chamber, at least a portion of the housing being metallic, and a metallic heating element disposed in the housing for heating the water, wherein the metallic portion of the housing and a metallic heating element are electrically connected such that the metallic portion of the housing is cathodic and the metallic heating element is anodic and current flows from the metallic heating element, through the water, to the metallic portion of the housing. A system for treating water is also disclosed and comprises the water heater and a collector disposed in the housing for collecting solid precipitates deposited from the water. Methods for heating and treated water are also disclosed.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: March 22, 2005
    Assignee: The Coca-Cola Company
    Inventor: Christian Pierre
  • Publication number: 20040112762
    Abstract: The present invention relates to a method for protecting surfaces (S) which are in contact or come into contact with a water-containing medium (M) against biological macro-fouling, wherein 1) S is electrically conducting and 2) such a potential (P) fluctuating over time is applied to S that it inhibits the growth of organisms that live in M and/or propagate therein and which have the tendency to form deposits on S, characterised in that P does not assume values that are higher than the corrosion potential of S in M and the average value of P is lower than the said corrosion potential.
    Type: Application
    Filed: February 5, 2004
    Publication date: June 17, 2004
    Inventors: Marc Erwin Wilms, Hendrik Jacobus Arie Breur
  • Publication number: 20020108849
    Abstract: A titanium sheet (4) serving as an anode-forming member is fixed on a tube plate (1a) of a heat exchanger (1) via a insulting sheet (5) and an insulating adhesive (6). The sheet (4) is coated with a film (3) of an electrochemically active, stable electrical catalyst. A dc power unit (7) has a positive electrode (7a) electrically connected to the sheet (4), and a negative electrode (7b) electrically connected to the tubes (1b). The inner surfaces of the tubes (1b) are used as a cathode for electrolysis for oxygen generation. An automatic potential controller (7c) adjusts potential difference between the electrodes (7a, 7b) such that oxygen is generated in seawater while generation of chlorine in seawater is suppressed. An external dc power unit (40) and a cathodic protection electrode (41) supply a cathodic protection current to the tubes (1b).
    Type: Application
    Filed: November 29, 2001
    Publication date: August 15, 2002
    Inventors: Shuichi Inagaki, Shigeru Sakurada, Shoji Nakashima, Tadahiko Ooba
  • Patent number: 6419816
    Abstract: Combining an electroosmosis direct current (EP) applied at less than 1 mA/Mcm3 (milliamp per 1000 cm3 of concrete) with an anode placed adjacent an outer surface of reinforced concrete soaked with a substantially neutral saline solution, effectively depletes corrosive anions in the concrete even when the direct current is in the range from 0.01 mA to less than 1 mA and at a voltage less than 100 V. Further, using such electroosmotic treatment as a first treatment, and promptly following it with cathodic protection, preferably by an impressed cathodic current (CP) at a comparably low voltage, the current density of CP required for cathodic protection is unexpectedly reduced. This decrease in the required current density of impressed current CP, coupled with low installation and operational costs of the novel system, improves the efficiency of a conventional cathodic protection system, whether by impressed current or with sacrificial anodes, several fold, as high as by a factor of 3 to 30 times.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: July 16, 2002
    Assignee: Cor/Sci, LLC.
    Inventor: Efim Ya. Lyublinski
  • Patent number: 6197168
    Abstract: An electrochemical stain prevention apparatus of a submerged structure comprising a submerged structure of which at least the stain prevention surface is formed of a conductive film that does not generate chlorine even by applying a potential of 5 V vs. SCE or less, a counter electrode located so as not to contact with the submerged structure, and a power supply unit for passing a direct current through the submerged structure having the conductive film formed thereon and the counter electrode. Aquatic organisms adhered to the surface of the conductive film can effectively be controlled by applying a potential of from 0.1 to 5 V vs. SCE to the submerged structure of such a stain prevention apparatus without generating chlorine. A potential applied to the conductive film of the submerged structure can be controlled with good accuracy by disposing a reference electrode between the submerged structure and the counter electrode.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: March 6, 2001
    Assignees: Pentel Kabushiki Kaisha
    Inventors: Tadashi Matsunaga, Tsuruo Nakayama, Hitoshi Wake, Kin-ichi Ozawa, Noriyuki Nakamura, Nobuyuki Murakami, Hiromichi Takahashi, Toshihiro Takimoto, Hideo Kadoi
  • Patent number: 6173669
    Abstract: A marine fouling prevention system comprises two conductive surfaces and a device that alternates the direction of electric current between the two surfaces. The current is caused to flow through sea water in which the two surfaces are submerged or partially submerged. A monitor measures the current flowing from one of the two conduction surfaces and compares it to the current flowing into the other conduction surface to assure that no leakage of current of substantial quantity exists. The system applies a low magnitude current density, of approximately 0.10 to 0.50 milliamperes per square foot, for an extended duration of time of approximately 10 to 20 minutes. By alternating current direction between the two surfaces, both surfaces can be provided with sufficient chlorine gas bubbles to prevent marine growth from attaching to the surfaces.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: January 16, 2001
    Assignee: Brunswick Corporation
    Inventor: Richard E. Staerzl