Plural Cells Patents (Class 204/253)
  • Patent number: 8282811
    Abstract: Disclosed are methods and systems for generating hydrogen gas at pressures high enough to fill a hydrogen storage cylinder for stationary and transportation applications. The hydrogen output of an electrochemical hydrogen gas generating device, a hydrogen-producing reactor, or a diluted hydrogen stream is integrated with an electrochemical hydrogen compressor operating in a high-differential-pressure mode. The compressor brings the hydrogen produced by the hydrogen generating device to the high pressure required to fill the storage cylinder.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: October 9, 2012
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: John A. Kosek, José Giner, Anthony B. LaConti
  • Patent number: 8277620
    Abstract: Embodiments of the present techniques provide electrolyzers made using thermoformed electrode assemblies and diaphragm assemblies. Each electrode assembly is made from two plastic rings and an electrode plate using a twin sheet thermoforming technique. A first plastic ring is laid in a mold having the appropriate shape to form the electrode assembly. The electrode plate is laid on top of the first plastic ring and is generally centered on the ring. The second plastic ring is laid over the electrode plate, and is generally centered over the electrode plate. The plastic is heated to soften the plastic, and a vacuum is pulled on the mold to pull the softened plastic into the shape of the mold. The mold is closed over the assembly to seal the two plastic rings together. After cooling, the molded part may be removed, resulting in a hollow plastic rim surrounding an electrode plate.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 2, 2012
    Assignee: General Electric Company
    Inventor: Richard Scott Bourgeois
  • Publication number: 20120237848
    Abstract: An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires.
    Type: Application
    Filed: November 16, 2011
    Publication date: September 20, 2012
    Inventors: Cortney K. Mittelsteadt, Castro S.T. Laicer, Katherine E. Harrison, Bryn M. McPheeters
  • Publication number: 20120237846
    Abstract: The invention relates to an apparatus (1) for converting chemical energy into electrical energy and/or electrical energy into chemical energy with a housing (2, 3, 3a), which is open towards at least one side (6) and in which a pressure chamber (4) is formed, and with at least one electrochemically active cell (5) for energy conversion, which extends from the open side (6) of the housing (2, 3, 3a) into the housing (2, 3, 3a), wherein the open side (6) is closed by a plate (7, 31), which holds and/or supplies power to the cell (5). A sealing element (8, 9) is arranged between the housing (2, 3, 3a) and the plate (7, 31), closes the open side (6) of the housing (2, 3, 3a) in a fluid-tight and/or gas-tight manner so as to form the pressure chamber (4) and is formed at least partially from an elastic material.
    Type: Application
    Filed: December 6, 2010
    Publication date: September 20, 2012
    Inventors: Michael Brodmann, Martin Greda, Cristian Mutascu, Jeffrey Roth
  • Publication number: 20120222955
    Abstract: A high-pressure hydrogen producing apparatus includes a first cell device and a second cell device. The first cell device includes an electrolyte membrane, an anode electrode catalyst layer and an anode current collector provided on a first surface of the electrolyte membrane, and a cathode electrode catalyst layer and a cathode current collector provided on a second surface of the electrolyte membrane. The second cell device includes an electrolyte membrane, an anode current collector provided on a first surface of the electrolyte membrane of the second cell device, and a cathode current collector provided on a second surface of the electrolyte membrane of the second cell device.
    Type: Application
    Filed: February 14, 2012
    Publication date: September 6, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Jun TAKEUCHI, Kenji Taruya
  • Publication number: 20120193242
    Abstract: A membrane electrode assembly (MEA) comprises substantially concentric and tubular-shaped layers of a cathode, an anode and an ion-exchange membrane. The MEAs of the invention can be used in an electrochemical cell, which comprises the following layers which are tubular-shaped, arranged substantially concentrically, and listed from the inner layer to the outer layer; (i) a cylindrical core; (ii) one of the electrodes; (iii) a membrane; (iv) the other of the electrodes; and (v) an outer cylindrical sleeve.
    Type: Application
    Filed: September 15, 2010
    Publication date: August 2, 2012
    Inventor: Frederic Marchal
  • Patent number: 8182659
    Abstract: Electrochemical cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. An electrically-conductive, compressible, spring-like, porous pad for defining a fluid cavity is placed in contact with the outer face of the cathode or the outer face of the anode. The porous pad comprises a particulate or mat of one or more doped- or reduced-valve metal oxides, which are bound together with one or more thermoplastic resins.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 22, 2012
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: Anthony B. LaConti, Larry L. Swette
  • Patent number: 8173006
    Abstract: An electrolyzed water production apparatus and method safely and simply produce electrolyzed water having a sterilizing action, having a physiologically neutral pH value, and, in addition, simultaneously with strong acidic electrolyzed water and strong alkaline electrolyzed water depending upon the structure. The electrolyzed water production apparatus has an electrolyzer tank with an end that receives or stores raw water, and a power supply. The interior portion of the electrolyzer tank is partitioned by a plurality of diaphragms into a plurality of regions. An anode and a cathode (constituting an electrode pair) are positioned on either side of the diaphragm. In a certain region of the electrolyzer tank, an anode and a cathode are arranged so as to face each other without a diaphragm sandwiched between them. When raw water for electrolysis is electrolyzed, electrolyzed water having a desired pH of a neutral range is produced during electrolysis.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 8, 2012
    Assignee: Osaka Electro-Communication University
    Inventors: Koichi Umimoto, Shunji Nagata
  • Publication number: 20120103829
    Abstract: This invention relates to a device for the electrolytic production of hydrogen which can operate discontinuously or associated to strong power fluctuations and provide dry pressurized directly hydrogen, with high purity.
    Type: Application
    Filed: July 9, 2010
    Publication date: May 3, 2012
    Inventors: Alessandro Tampucci, Paolo Bert
  • Patent number: 8157980
    Abstract: A method and apparatus for achieving high output efficiency from an electrolysis system (100) using a plurality of electrolysis cells all located within a single electrolysis tank (101) is provided. Each individual electrolysis cell includes a membrane (105A) and at least one pair of low voltage electrodes of different polarity (115A/116A). The electrolysis system also includes at least one pair of high voltage electrodes (119A/120A). In at least one embodiment, the low voltage electrodes within each electrolysis cell are comprised of at least one pair of low voltage electrodes of a first type (115A/116A) and at least one pair of low voltage electrodes of a second type (117A/118A). In at least one other embodiment, the low voltage electrodes within each electrolysis cell are comprised of at least one pair of low voltage electrodes (701A/702A). The voltage applied to the electrodes is pulsed.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 17, 2012
    Inventor: Nehemia Davidson
  • Publication number: 20120037511
    Abstract: A super-capacitor desalination device is described and includes a pair of terminal electrodes and at least one bipolar electrode located between the terminal electrodes. The at least one bipolar electrode has an ion exchange material disposed on opposing surfaces thereof The ion exchange material is a cation exchange material or an anion exchange material. A method for super-capacitor desalination is also provided.
    Type: Application
    Filed: February 24, 2011
    Publication date: February 16, 2012
    Inventors: Rihua Xiong, Hai Yang, Wei Cai
  • Patent number: 8070922
    Abstract: An oxygen generator includes a monolithic body having first and second channels extending longitudinally therein. An electrode is operatively disposed in the first channels and a counter-electrode is operatively disposed in the second channels. The second channels are formed in the monolithic body so each second channel is electrically isolated from, yet adjacent to a first channel, resulting in an alternating configuration of first and second channels. The first channels have fluid or oxygen flowing therethrough, while the second channels have the other of oxygen or fluid flowing therethrough. An output manifold, having an oxygen collection area separated from a fluid collection area, operatively engages with the monolithic body. The oxygen collection area receives substantially pure oxygen from one of the second or first channels, and the fluid collection area receives oxygen-depleted fluid from the other of the first or second channels.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: December 6, 2011
    Assignee: Oxus America, Inc.
    Inventors: David E. Nelson, Gerald R. Stabel, Joshua J. Titus, Alfred R. Webster
  • Publication number: 20110266159
    Abstract: An electrolyzed water production apparatus and method safely and simply produce electrolyzed water having a sterilizing action, having a physiologically neutral pH value, and, in addition, simultaneously with strong acidic electrolyzed water and strong alkaline electrolyzed water depending upon the structure. The electrolyzed water production apparatus has an electrolyzer tank with an end that receives or stores raw water, and a power supply. The interior portion of the electrolyzer tank is partitioned by a plurality of diaphragms into a plurality of regions. An anode and a cathode (constituting an electrode pair) are positioned on either side of the diaphragm. In a certain region of the electrolyzer tank, an anode and a cathode are arranged so as to face each other without a diaphragm sandwiched between them. When raw water for electrolysis is electrolyzed, electrolyzed water having a desired pH of a neutral range is produced during electrolysis.
    Type: Application
    Filed: September 30, 2010
    Publication date: November 3, 2011
    Applicant: OSAKA ELECTRO-COMMUNICATION UNIVERSITY
    Inventors: Koichi UMIMOTO, Shunji NAGATA
  • Publication number: 20110259735
    Abstract: An electrolysis cell provided with a separator, suitable for chlor-alkali electrolysis, has a planar flexible cathode kept in contact with the separator by an elastic conductive element pressed by a current distributor and an anode consisting of a punched sheet or mesh supporting the separator suitable for being individually pre-assembled and used as elementary unit of a modular arrangement to form an electrolyser whose terminal cells only are connected to the electric power supply; the electrical continuity between adjacent cells being assured by conductive contact strips secured to the external anodic walls of the shells delimiting each cell with the stiffness of the cathode current distributor and of the anodic structure and the elasticity of the conductive element cooperate in maintaining a uniform cathode to separator contact with a homogeneous pressure distribution meanwhile ensuring a suitable mechanical load on the contact strips.
    Type: Application
    Filed: November 16, 2009
    Publication date: October 27, 2011
    Inventors: Angelo Ottaviani, Fulvio Federico, Antonio Pasquinucci, Dario Oldani, Michele Perego
  • Publication number: 20110253548
    Abstract: An electrolyte plate for an electrochemical system including a first and a second face opposite to each other of larger surface areas, both faces being separated by a given distance. The first face includes linear protrusions and the second face includes linear recesses, the protrusions and the recesses being substantially parallel to each other. Each protrusion is superposed to a recess along a direction substantially orthogonal to a mean plane of the plate, the distance separating a bottom of each recess from a vertex of the superposed protrusion being substantially equal to the distance between the first and the second face so that the electrolyte plate has a substantially constant thickness.
    Type: Application
    Filed: October 28, 2009
    Publication date: October 20, 2011
    Applicant: Comm. A L'Energie Atomique et Aux Energies Alt.
    Inventors: Stephane Di Iorio, Thibaud Delahaye
  • Patent number: 8034219
    Abstract: Disclosed herein are a system and a method for the production of hydrogen. The system advantageously combines an independent high temperature heat source with a solid oxide electrolyzer cell and a heat exchanger located between the cathode inlet and the cathode outlet. The heat exchanger is used to extract heat from the molecular components such as hydrogen derived from the electrolysis. A portion of the hydrogen generated in the solid oxide electrolyzer cell is recombined with steam and recycled to the solid oxide electrolyzer cell. The oxygen generated on the anode side is swept with compressed air and used to drive a gas turbine that is in operative communication with a generator. Electricity generated by the generator is used to drive the electrolysis in the solid oxide electrolyzer cell.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: October 11, 2011
    Assignee: General Electric Company
    Inventors: Andrew Maxwell Peter, Stephane Renou, James Anthony Ruud, Leah Diane Crider, Kenneth Walter Browall, Chellappa Balan
  • Patent number: 8021525
    Abstract: A PEM based water electrolysis stack consists of a number of cells connected in series by using interconnects. Water and electrical power (power supply) are the external inputs to the stack. Water supplied to the oxygen electrodes through flow fields in interconnects is dissociated into oxygen and protons. The protons are transported through the polymer membrane to the hydrogen electrodes, where they combine with electrons to form hydrogen gas. If the electrolysis stack is required to be used exclusively as an oxygen generator, the hydrogen gas generated would have to be disposed off safely. The disposal of hydrogen would lead to a number of system and safety related issues, resulting in the limited application of the device as an oxygen generator. Hydrogen can be combusted to produce heat or better disposed off in a separate fuel cell unit which will supply electricity generated, to the electrolysis stack to reduce power input requirements.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: September 20, 2011
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Sarbjit Singh Giddey, Fabio T. Ciacchi, Sukhvinder P. S. Badwal
  • Publication number: 20110180398
    Abstract: Each unit cell of a water electrolysis apparatus includes a pair of an anode separator and a cathode separator and a membrane electrode assembly interposed between the pair of separators. The anode separator has a first seal groove extending annularly around an anode current collector, a first seal member being disposed in the first seal groove. The cathode separator has a second seal groove extending annularly around a cathode current collector, a second seal member being disposed in the second seal groove. The first seal groove and the second seal groove are located across the solid polymer electrolyte membrane from each other respectively at different positions with respect to a stacking direction of the separators.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 28, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Koji NAKAZAWA, Kenji TARUYA, Eiji HARYU, Masanori OKABE, Nobuyuki KAWASAKI
  • Patent number: 7892408
    Abstract: A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: February 22, 2011
    Assignee: Lynntech, Inc.
    Inventors: Christopher P. Rhodes, Charles L. K. Tennakoon, Waheguru Pal Singh, Kelvin C. Anderson
  • Patent number: 7891046
    Abstract: An apparatus is provided, which includes a sparging device and a functional generator. The functional generator is in fluid communication with the sparging device and includes an anode chamber and a cathode chamber separated by an ion exchange membrane.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 22, 2011
    Assignee: Tennant Company
    Inventors: Bruce F. Field, Patrick J. Gronlund
  • Publication number: 20110036728
    Abstract: A low energy method and system of removing H+ from a solution in an electrochemical cell wherein on applying a voltage across an anode in a first electrolyte and a cathode in second electrolyte, H+ are transferred to second electrolyte through a proton transfer member without forming a gas, e.g., oxygen or chlorine at the electrodes.
    Type: Application
    Filed: December 23, 2008
    Publication date: February 17, 2011
    Inventor: Kasra FARSAD
  • Publication number: 20110024295
    Abstract: An electrochemical cell having two or more diffusion bonded layers, which demonstrates a high degree of ruggedness, reliability, efficiency and attitude insensitiveness, is provided. The novel cell structure simplifies construction and operation of these cells. Also provided is a method for passive water removal from these cells. The inventive cell, as well as stacks made using these cells, is suitable for use in applications such as commercial space power systems, long endurance aircraft, undersea power systems, remote backup power systems, and regenerative fuel cells.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Inventors: Christopher Callahan, James F. McElroy, Alfred Meyer, William F. Smith
  • Patent number: 7879207
    Abstract: An electrochemical cell stack and method are provided with use the generated hydrogen gas to pressurize a chamber. The electrochemical cell stack includes a plurality of cells mounted between a first static endplate and a dynamic endplate. A pressure chamber is formed between a second static endplate and the dynamic endplate. The chamber acts upon a dynamic endplate to increase the loading on a plurality of cells as the generated gas pressure increases.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: February 1, 2011
    Assignee: Proton Energy Systems, Inc.
    Inventors: Luke Thomas Dalton, Benjamin Michael Piecuch, Gregory A. Hanlon
  • Patent number: 7842172
    Abstract: It is described a bipolar plate consisting of a single wall and a perimetrical sealing frame obtained by folding and provided with a planar abutment surface for the frame-to-wall welding. The wall is further provided with projections on one face thereof preferably obtained by moulding, and with supports on the other face consisting of sheet strips housed in the recesses formed by the concave part of the projections. The projections substantially extend along the entire length of the bipolar plate. The projections and supports are connected to electrodes or current distributors. The projections, the supports, the single wall and the perimetrical frame are made of the same metal or alloy. The electrode or current distributor supported by the projections, the same projections and the supports are welded together by a single pass of arc-welding or preferably laser-welding.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: November 30, 2010
    Assignee: Uhdenora S.p.A.
    Inventors: Fulvio Federico, Leonello Carrettin, Dario Oldani, Corrado Mojana
  • Patent number: 7785450
    Abstract: Systems are described for the “on-site” production of substantial amounts of carbon dioxide and hydrogen. The systems include a stack of multiple electrochemical cells, which decompose organic carboxylated compounds into CO2 and H2 without leaving any residue. From a bench-top small generator, producing about 1 lb of CO2 per day to a large-scale generator producing 1 ton of CO2 per day, the process is essentially identical. Oxalic acid, either anhydrous or in its dihydrate form, is used to efficiently generate the gases. The energy required is less than 0.3 Kilowatt-hours per lb of CO2 generated. Individual cells operate at less than 1.2 volts at current densities in excess of 0.75 amps/cm2. CO2 production rates can be controlled either through voltage or current regulation. Metering is not required since the current sets the gas production rate. These systems can competitively replace conventional compressed CO2 gas cylinders.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: August 31, 2010
    Assignee: Med-E-Cell
    Inventor: Henri J. R. Maget
  • Publication number: 20100200425
    Abstract: Disclosed is an electrolyzed water manufacturing method and electrolyzed water manufacturing device capable of producing efficiently weakly acidic through weakly alkaline electrolyzed water, and capable of producing said electrolyzed water on a large scale. The electrolyzed water manufacturing device 10 comprises: an anode chamber 20 that is provided with an anode electrode 22; a cathode chamber 30 that is provided with a cathode electrode 32; a middle chamber 40 for containing an aqueous electrolytic solution, disposed between the anode chamber 20 and the cathode chamber 30; an anion exchange membrane 24 for partitioning between the anode chamber 20 and the middle chamber 40; and a cation exchange membrane 34 for partitioning between the cathode chamber 30 and the middle chamber 40. The anode chamber 20 and the cathode chamber 30 are connected by a connecting hole 52 provided in a partitioning wall 50.
    Type: Application
    Filed: April 11, 2008
    Publication date: August 12, 2010
    Inventor: Yusho Arai
  • Patent number: 7767360
    Abstract: An electrochemical cell apparatus is disclosed. The electrochemical cell apparatus includes a membrane-electrode assembly (MEA) having a membrane with a first side and a second side opposite the first side, a first electrode in contact with the first side, and a second electrode in contact with the second side. The apparatus further includes a flow field member and a protector member having a boundary partially defined by a first surface facing toward a center of the MEA. The second electrode has a boundary partially defined by a second surface facing away from the center of the MEA. A first distance from the center of the MEA to the first surface is greater than a correspondingly oriented second distance from the center of the MEA to the second surface, thereby defining a gap between the first surface and the second surface.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: August 3, 2010
    Assignee: Proton Energy Systems, Inc.
    Inventor: Jacob Friedman
  • Patent number: 7754058
    Abstract: An ion exchange membrane electrolyzer comprises electrodes at least either of which is held in contact with leaf springs formed integrally with a leaf spring holding member arranged in an electrode chamber so as to extend toward the electrode and remain electrically energized at the respective electrode touching sections thereof, each of the leaf springs having a crooked section arranged at a position separated from its connecting section connecting itself to the leaf spring holding member and adapted to be bent toward the leaf spring holding member when the electrode touching section is pressed toward the leaf spring holding member side.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: July 13, 2010
    Assignee: Chlorine Engineers Corp., Ltd.
    Inventor: Kiyohito Asaumi
  • Patent number: 7736485
    Abstract: Nanoplatelet forms of metal hydroxide and metal oxide are provided, as well as methods for preparing same. The nanoplatelets are suitable for use as fire retardants and as agents for chemical or biological decontamination.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: June 15, 2010
    Assignee: Aqua Resources Corporation
    Inventor: Orville Lee Maddan
  • Patent number: 7718302
    Abstract: A fuel stabilization device reduces the amount of dissolved oxygen within a fuel stream utilizing the combination of an electrochemical device to produce hydrogen gas and water and a catalyst that promotes the formation of water utilizing dissolved oxygen within the fuel and hydrogen gas generated by the electrochemical device.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: May 18, 2010
    Assignee: United Technologies Corporation
    Inventor: Ned E. Cipollini
  • Patent number: 7710371
    Abstract: Cells can include variable volumes defined between a flexible structure, such as a polymer layer, and a support surface, with the flexible structure and support surface being attached in a first region that surrounds a second region in which they are unattached. Various adhesion structures can attach the flexible structure and the support surface. When unstretched, the flexible structure can lie in a flat position on the support surface. In response to a stretching force away from the support surface, the flexible structure can move out of the flat position, providing the variable volume. Electrodes, such as on the flexible structure, on the support surface, and over the flexible structure, can have charge levels that couple with each other and with the variable volume. A support structure can include a device layer with signal circuitry that provides a signal path between an electrode and external circuitry. One or more ducts can provide fluid communication with each cell's variable volume.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: May 4, 2010
    Assignee: Xerox Corporation
    Inventors: Ping Mei, Jurgen Daniel, James B. Boyce, Kathleen Dore Boyce, legal representative, Jackson Ho, Rachel Lau, Yu Wang
  • Patent number: 7704627
    Abstract: Electrolysis cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. An electrically-conductive, compressible, spring-like, porous pad for defining a fluid cavity is placed in contact with the outer face of the cathode. The porous pad comprises a mat of carbon fibers bound together with one or more, preferably thermoplastic, resins, the mat having a density of about 0.2-1.5 g/cm3. Cell frames are placed in peripheral contact with the metal screen and the compression pad for peripherally containing fluids present therewithin. Electrically-conductive separators are placed in contact with the metal screen and the compression pad for axially containing fluids present therewithin. A plurality of the cells may be arranged in series in a bipolar configuration without requiring a separate compression pad between cells (for gas pressure differentials up to about 400 psi or greater).
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 27, 2010
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: Anthony B. LaConti, William A. Titterington, Larry L. Swette, Ricardo Leon, Kwang S. Kim
  • Patent number: 7704353
    Abstract: The invention relates to an electrode assembly for the electrochemical treatment of liquids with a low conductivity. Said assembly comprises electrodes (1, 2), between which a polymer solid electrolyte (3) is situated. The electrodes are pressed against one another by means of a compression device (9, 10; 91) and are configured in such a way that the assembly can be traversed by the liquid. To produce said assembly simply and to ensure that it is flexible and easy to use, the compression device (9, 10; 91) is supported on the electrodes (1, 2).
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: April 27, 2010
    Assignee: Condias GmbH
    Inventors: Manuela Stadelmann, Manfred Blaschke, Maja Wuensche, Helmut Petzer, Alexander Kraft, Thorsten Matthee, Matthias Fryda
  • Patent number: 7704355
    Abstract: The invention describes an improved anode suitable for being installed in chlor-alkali electrolysis cells intercalated to cathode elements provided with a diaphragm. In operation, the anode of the invention is in direct contact with the diaphragm so as to form mutually equivalent vertical channels defined by the surfaces of the plates, of the supporting sheets and of the diaphragm, allowing a predefined and controlled upward motion of the chlorine-brine biphasic mixture.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: April 27, 2010
    Assignee: Industrie De Nora S.p.A.
    Inventor: Giovanni Meneghini
  • Publication number: 20100095580
    Abstract: An emulsion fuel of high quality that can be handled and used in the same manner as for ordinary fuel oil and that can maintain a very good emulsion condition over a prolonged period of time. There is provided an emulsion fuel consisting of a liquid of mixture composed of 40 to 95 vol. % of fuel oil, 60 to 5 vol. % of reduced water with a redox potential of +100 mV or below and 0.1 to 10 wt. %, based on the weight of fuel oil, of emulsifier. Electrolyzed-reduced water obtained by electrolysis of water is preferred as the reduced water. Preferably, the emulsion fuel is obtained by using, as the electrolyzed-reduced water, electrolyzed-reduced water produced by electrolysis of water with the use of diaphragm cell with a positive electrode and negative electrode disposed apart while applying ultrasonic waves by means of ultrasonic wave generating means. In the electrolysis, preferably, an electrode of hydrogen storing metal or alloy is used as the negative electrode.
    Type: Application
    Filed: June 15, 2007
    Publication date: April 22, 2010
    Inventor: Kenji Suzuki
  • Publication number: 20100078317
    Abstract: The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: General Electric Company
    Inventor: Richard Scott Bourgeois
  • Publication number: 20090301868
    Abstract: The present techniques provide systems and methods for assembling electrolyzers from parts which have internal structures that form fluid flow channels when placed adjacent to one another. In a contemplated embodiment, the assembly technique may use alignment bars, inserted through openings in the individual parts to hold the parts in alignment, while other structures apply pressure to hold the structure together. In another contemplated embodiment, the parts may be aligned by having ridges, or other protrusions, formed on the parts that mate with openings on adjacent parts. The applied pressure seals fluid flow channels formed in the electrolyzer and extending through the joined parts. The use of pressure to hold the structure together allows for the servicing and replacement of individual parts.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Applicant: General Electric Company
    Inventor: Dana Ray Swalla
  • Patent number: 7591932
    Abstract: A pressure electrolyzer having an electrolytic cell block that contains a number of electrolytic cells combined to form a stack, each electrolytic cell having an anode and a cathode. The electrolytic cell block has a sealed housing formed by a number of stacked cell frames of the electrolytic cells, the cell frames being composed at least partially of a material that is elastic at least in a longitudinal direction of the electrolytic cell block and seals adjacent cell frames from each other. End plates are provided so as to hold the electrolytic cell block in place between the end plates under compression of the elastic material. Each of the cell frames has a rigid element that runs in a circumferential direction of the frame so as to mechanically stabilize the cell frame.
    Type: Grant
    Filed: December 13, 2003
    Date of Patent: September 22, 2009
    Assignee: Hydrogen Technologies
    Inventors: Marko Ramisch, Pietro d'Erasmo
  • Publication number: 20090211918
    Abstract: The invention relates to an electrochemical cell comprising an arrangement of anode/cathode pairs, in which the accumulation of scales or similar fouling phenomena are prevented by alternatively operating either the anode or the cathode of one pair and the corresponding counterelectrode of the adjacent pair, the non-operated electrode of each pair being at open circuit. The electrolyte dissolves the scale deposits on the electrodes at open circuit, without resorting to harmful current reversal.
    Type: Application
    Filed: March 19, 2008
    Publication date: August 27, 2009
    Applicant: Industrie De Nora S.p.A.
    Inventor: Kenneth L. Hardee
  • Patent number: 7560010
    Abstract: A diaphragm electrolytic cell is composed of two or more overlaid modules; at least the upper modules having U-shaped anodes with diaphragm-coated cathodes housed within, allowing for a reduced electrode pitch.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: July 14, 2009
    Assignee: De Nora Elettrodi S.p.A.
    Inventor: Giovanni Meneghini
  • Publication number: 20090145781
    Abstract: One embodiment of the invention includes an electrochemical cell including a proton exchange membrane and a method of treating nanoparticles using the same.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 11, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Junliang Zhang, Susan G. Yan, Frederick T. Wagner
  • Publication number: 20090114532
    Abstract: A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.
    Type: Application
    Filed: November 6, 2007
    Publication date: May 7, 2009
    Inventors: Christopher P. Rhodes, Charles L.K. Tennakoon, Waheguru Pal Singh, Kelvin C. Anderson
  • Patent number: 7513980
    Abstract: An electrolytic cell 1 comprises electrolysis chambers 5 and 6 arranged opposite to each other through a diaphragm 11, raw water feed means 8 and 7, electrodes 12a and 12b arranged in the electrolysis chambers 5 and 6 in a manner sandwiching the diaphragm 11, and electrolyzed water take-out means 9 and 10 for taking out electrolyzed water obtained by electrolyzing raw water. The electrolytic cell 1 comprises a membrane-electrode assembly 2 formed so as to cause the electrodes 12a and 12b to respectively adhere to both surfaces of the diaphragm 11, mesh current collectors 13 and 14 respectively arranged opposite to the electrodes 12a and 12b, and a plurality of protrusions 15 and 16.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: April 7, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kohichi Miyashita, Go Muto
  • Patent number: 7507493
    Abstract: An electrochemical cell having a membrane electrode assembly (MEA), and a gas diffusion layer (GDL) disposed proximate a side of the MEA with an edge of the GDL disposed inboard of an edge of the MEA is disclosed. A sealing member is disposed proximate the edge of the GDL and extends outward toward the edge of the MEA, thereby defining a discontinuity between the GDL and the sealing member. A protector member is disposed between the MEA and the GDL such that the protector member traverses the discontinuity.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: March 24, 2009
    Assignee: Froton Energy Systems, Inc.
    Inventors: Jacob Friedman, Greg Hanlon
  • Patent number: 7491309
    Abstract: Disclosed herein are a system and a method for the production of hydrogen. The system advantageously combines an independent high temperature heat source with a solid oxide electrolyzer cell and a heat exchanger. The heat exchanger is used to extract heat from the molecular components such as hydrogen derived from the electrolysis. A portion of the hydrogen generated in the solid oxide electrolyzer cell is recombined with steam and recycled to the solid oxide electrolyzer cell. The oxygen generated on the anode side is swept with compressed air and used to drive a gas turbine that is in operative communication with a generator. Electricity generated by the generator is used to drive the electrolysis in the solid oxide electrolyzer cell.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: February 17, 2009
    Assignee: General Electric Company
    Inventors: Andrew Maxwell Peter, Chellappa Balan, James Anthony Ruud, Stephane Renou, Kenneth Walter Browall
  • Publication number: 20080296167
    Abstract: A method and apparatus for achieving high output efficiency from an electrolysis system (100) using a plurality of electrolysis cells all located within a single electrolysis tank (101) is provided. Each individual electrolysis cell includes a membrane (105A) and at least one pair of low voltage electrodes of different polarity (115A/116A). The electrolysis system also includes at least one pair of high voltage electrodes (119A/120A). In at least one embodiment, the low voltage electrodes within each electrolysis cell are comprised of at least one pair of low voltage electrodes of a first type (115A/116A) and at least one pair of low voltage electrodes of a second type (117A/118A). In at least one other embodiment, the low voltage electrodes within each electrolysis cell are comprised of at least one pair of low voltage electrodes (701A/702A). The voltage applied to the electrodes is pulsed.
    Type: Application
    Filed: May 6, 2008
    Publication date: December 4, 2008
    Applicant: Kuzo Holding Inc.
    Inventor: Nehemia Davidson
  • Publication number: 20080296169
    Abstract: A method and apparatus for achieving high output efficiency from an electrolysis system (100) using a plurality of electrolysis cells all located within a single electrolysis tank (101) is provided. Each individual electrolysis cell includes a membrane (105-107), a plurality of metal members comprised of at least a first and second metal member (117/118; 125/126) and at least a third and fourth metal member (121/122; 129/130), and a plurality of high voltage electrodes comprised of at least an anode (119; 127) and a cathode (123; 131). Within each cell, the high voltage anode is interposed between the first and second metal members and the high voltage cathode is interposed between the third and fourth metal members. The high voltage applied to the high voltage electrodes is pulsed.
    Type: Application
    Filed: May 7, 2008
    Publication date: December 4, 2008
    Applicant: Kuzo Holding Inc.
    Inventor: Nehemia Davidson
  • Publication number: 20080296171
    Abstract: A method and apparatus for achieving high output efficiency from an electrolysis system (100) using a plurality of electrolysis cells all located within a single electrolysis tank (101) is provided. Each individual electrolysis cell includes a membrane (105-107), a plurality of low voltage electrodes comprised of at least a first and second anode (117/118; 125/126) and at least a first and second cathode (121/122; 129/130), and a plurality of high voltage electrodes comprised of at least an anode (119; 127) and a cathode (123; 131). Within each cell, the high voltage anode is interposed between the first and second low voltage anodes and the high voltage cathode is interposed between the first and second low voltage cathodes. The low voltage applied to the low voltage electrodes and the high voltage applied to the high voltage electrodes is pulsed with the pulses occurring simultaneously.
    Type: Application
    Filed: May 6, 2008
    Publication date: December 4, 2008
    Applicant: Kuzo Holding Inc.
    Inventor: Nehemia Davidson
  • Publication number: 20080283392
    Abstract: An electrolyte electrolyzer adapted to create hydrogen and oxygen from electrolyte fluid at or near atmospheric pressure. The electrolyzer is comprised in a preferred form of a plurality of cells which collectively create oxygen and hydrogen chambers separated by an ion permeable membrane. The electrolyzer is further defined by a passive electrode that is electrically interposed between a charged anode and cathode. The chambers defined by the cells are in communication with oxygen and hydrogen supply lines to transfer the hydrogen gas from the unit.
    Type: Application
    Filed: November 19, 2007
    Publication date: November 20, 2008
    Inventor: Tadeusz Karabin
  • Publication number: 20080277273
    Abstract: A system for hydrogen gas generation is provided according to the present invention which includes a hydrogen gas electrode assembly including a first anode in electrical communication with a first cathode; a microbial fuel cell electrode assembly including a second anode in electrical communication with a second cathode, the microbial fuel cell electrode assembly in electrical communication with the hydrogen gas electrode assembly for enhancing an electrical potential between the first anode and the first cathode. A single chamber housing contains the hydrogen gas electrode assembly at least partially in the interior space of the housing.
    Type: Application
    Filed: June 25, 2008
    Publication date: November 13, 2008
    Inventor: Bruce Logan