Diaphragms Patents (Class 204/295)
  • Patent number: 8147663
    Abstract: A scaffold holding one or more ion-conductive ceramic membranes for use in an electrochemical cell is described. Generally, the scaffold includes a thermoplastic plate defining one or more orifices. Each orifice is typically defined by a first, second, and third aperture, wherein the second aperture is disposed between the first and third apertures. The diameter of the second aperture can be larger than the diameters of the first and third apertures. While at an operating temperature the diameter of the ceramic membrane is larger than the diameters of the first and third apertures, heating the scaffold to a sufficient temperature and for a sufficient time causes the third aperture's diameter to become larger than the membrane's diameter. Thus, heating the scaffold may allow the membrane to be inserted into the orifice. Cooling the scaffold can then cause the third aperture's diameter to shrink and trap the membrane within the orifice.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 3, 2012
    Assignee: Cekamatec, Inc
    Inventors: Scott Suarez, Steven Matthew Quist
  • Publication number: 20120024697
    Abstract: Process for manufacturing a composite membrane comprising a porous support and a polymeric separation layer having acidic or basic groups comprising the steps of: (i) applying a composition to a porous support; and (ii) curing the composition to form the polymeric separation layer thereon; wherein the composition comprises the components (a) a compound having one ethylenically unsaturated group; and (b) a crosslinking agent having an acrylamide group; and wherein the curing is achieved by irradiating the composition for less than 30 seconds. The membranes are useful in reverse electrodialysis e.g. for generating blue energy and have good resistance to deterioration, even under hot and high pH conditions.
    Type: Application
    Filed: March 16, 2010
    Publication date: February 2, 2012
    Applicant: Fujifilm Manufacturing Europe B.V.
    Inventors: Harro Antheunis, Dana Manuela Sterescu
  • Patent number: 8075748
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8075749
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising: a containment vessel configured for pressurization; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a first gas, wherein the first gas is formed during electrolysis at or near the first electrode; a second gas, wherein the second gas is formed during electrolysis at or near the second electrode; a separator; a first gas collection vessel; and a second gas collection vessel, wherein the separator includes a first inclined surface to direct flow of the electrolyte and the first gas due to a difference between density of the electrolyte and combined density of the electrolyte and the first gas such that the gas substantially flows in a direction distal the second electrode and towards the first gas collection vessel, and wherein the separa
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Publication number: 20110287340
    Abstract: A partly oxidized substrate, obtained by subjecting a substrate made of a porous metal or metal alloy comprising particles of at least one metal or metal alloy bound by sintering, said substrate comprising a first main surface and a second main surface, and said substrate having a porosity gradient from the first main surface to as far as the second main surface; to partial oxidation by an oxidizing gas such as oxygen and/or air. Method for preparing said substrate and high temperature electrolyzer cell (<<HTE>>) comprising said substrate.
    Type: Application
    Filed: November 12, 2009
    Publication date: November 24, 2011
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Julie Mougin, Thomas Pietri
  • Publication number: 20110278160
    Abstract: The invention relates to a hydrogen generator comprising a stack (1) of least one functional element with an anode (2) for the production of oxygen, a cathode (3) for the production of hydrogen and a membrane (4) positioned between the anode (2) and the cathode (3). In said generator the anode (2) is communicated with an anode separator (5) and the cathode (3) is communicated with a cathode separator (6), said separators (5, 6) having a free variable volume. The aforementioned stack (1) is located inside a sealed chamber (7) into which a gas is introduced via a gas inlet (8) in order to pressurise the interior of the chamber (7). The invention also includes a processor which maintains the ratio between the anode and cathode pressures and between the free variable volume of the cathode separator (6) and the free variable volume of the anode separator (5) greater than or equal to 2:1.
    Type: Application
    Filed: January 18, 2010
    Publication date: November 17, 2011
    Applicant: HYDROGEN WORKS, S.L.
    Inventors: Ricardo Blach Vizoso, Antonio Gomez Rivas
  • Patent number: 8016984
    Abstract: An ion-permeable diaphragm comprises a membrane material containing a calcium phosphate compound or calcium fluoride as a hydrophilic inorganic material. The calcium phosphate compound is preferably fluoroapatite or hydroxyapatite. The membrane material is obtained by incorporating a stretched organic fiber fabric into a membrane-forming mixture formed by the hydrophilic inorganic material and an organic binding material selected from among polysulfone, polypropylene, polyvinylidene fluoride or the like. As a result, there can be provided an ion-permeable membrane of low electric resistance for use in alkaline water electrolysis devices.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: September 13, 2011
    Assignee: Kurita Water Industries Ltd.
    Inventors: Syogo Anzai, Noriko Tsujinaka
  • Publication number: 20110180399
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Application
    Filed: December 15, 2010
    Publication date: July 28, 2011
    Inventors: Gervase Maxwell Christie, Jamie Robyn Wilson, Bart Antonie van Hassel
  • Publication number: 20110168572
    Abstract: The present disclosure relates to a system for carbon dioxide seperation and capture. The system includes a porous metal membrane comprising Ni, Ag, or combinations thereof and having molten carbonate within the pores. A CO2 containing flue gas input stream is separated from a reactant gas input stream by the membrane. The CO2 is removed from the flue gas input stream as it contacts the membrane resulting in a CO2 free flue gas output stream and a CO2 containing reactant gas output stream.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 14, 2011
    Applicant: UNIVERSITY OF SOUTH CAROLINA
    Inventor: Kevin Huang
  • Publication number: 20110168551
    Abstract: Provided are fabrication, characterization and application of a nanodisk electrode, a nanopore electrode and a nanopore membrane. These three nanostructures share common fabrication steps. In one embodiment, the fabrication of a disk electrode involves sealing a sharpened internal signal transduction element (“ISTE”) into a substrate, followed by polishing of the substrate until a nanometer-sized disk of the ISTE is exposed. The fabrication of a nanopore electrode is accomplished by etching the nanodisk electrode to create a pore in the substrate, with the remaining ISTE comprising the pore base. Complete removal of the ISTE yields a nanopore membrane, in which a conical shaped pore is embedded in a thin membrane of the substrate.
    Type: Application
    Filed: November 18, 2010
    Publication date: July 14, 2011
    Applicant: THE UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Henry S. White, Bo Zhang, Ryan J. White, Eric N. Ervin, Gangli Wang
  • Publication number: 20110132772
    Abstract: The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite structure with a crystal size of about 1 to 100 nm, and a method for producing same.
    Type: Application
    Filed: August 29, 2008
    Publication date: June 9, 2011
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Vang Hendriksen, Mogens Mogensen, Wei Guo Wang, Bjarke Thomas Dalslet
  • Publication number: 20110111323
    Abstract: An electrolyte membrane for electrochemical cells, that has oxide ion permeability properties, and methods for producing the same, is made of an oxide ion conductor having a component composition expressed by a general formula: La1-XSrXGa1-YMgYO3 (where X=0.05 to 0.3, and Y=0.025 to 0.3), and having a perovskite type crystal structure, wherein the electrolyte membrane has a thickness of 1 to 10 ?m and a columnar crystal structure grown to a membrane surface in a direction perpendicular to a membrane face, and wherein the perovskite type crystal structure of the electrolyte membrane having the columnar crystal structure grown to the membrane surface, has a crystal structure with [112] direction oriented perpendicularly to the membrane face.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 12, 2011
    Inventors: Tatsumi ISHIHARA, Takashi YAMADA
  • Patent number: 7938940
    Abstract: A support for an oxygen separation membrane element to support a dense and cylindrical electrolytic membrane having oxygen ion permeability, comprises a base axially extending and having a cylindrical surface extending axially, and a plurality of ribs formed on the cylindrical surface of the base, radially projecting and axially extending, for supporting the electrolytic membrane at their ends being radially distant from the cylindrical surface of the base.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: May 10, 2011
    Assignees: Noritake Co., Limited, Chubu Electric Power Co., Inc.
    Inventors: Akihiro Kawahara, Shigeo Nagaya, Hiroshi Seo
  • Publication number: 20110068002
    Abstract: Highly energy efficient electrodialysis membranes having low operating costs and a novel process for their manufacture are described herein. The membranes are useful in the desalination of water and purification of waste water. They are effective in desalination of seawater due to their low electrical resistance and high permselectivity. These membranes are made by a novel process which results in membranes significantly thinner than prior art commercial electrodialysis membranes. The membranes are produced by polymerizing one or more monofunctional ionogenic monomers with at least one multifunctional monomer in the pores of a porous substrate.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 24, 2011
    Inventors: Juchui Ray Lin, George Y. Gu
  • Patent number: 7897023
    Abstract: The invention relates to chemical engineering, in particular to devices for electrolyzing aqueous solutions of alkali or alkali-earth metal chlorides and for obtaining gaseous electrolytic products such as chlorine and oxygen. It can be used for water purifying and disinfecting processes and for electrochemically producing some chemical products. The inventive device includes at least one electrochemical reactor (1) comprising from 2 to 16 electrochemical cells. Lines for supplying and discharging cathode and anode chambers are embodied in the form of pipelines having an inner diameter equal to or less than 0.5 of the interelectrode distance and lengths which are equal to or greater than 2 Ld, wherein the interelectrode distance is an anode-to-cathode distance and Ld is the cathode length.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: March 1, 2011
    Inventors: Vitold Mikhailovich Bakhir, Yury Georgievich Zadorozhny
  • Publication number: 20100316918
    Abstract: In various aspects, provided are substantially single phase ceramic membranes, gas separation devices based thereon, and methods of making the membranes. In various embodiments, the membranes and devices can be used for hydrogen production, such as in a fuel-cell.
    Type: Application
    Filed: April 9, 2007
    Publication date: December 16, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Shriram Ramanathan, Annamalai Karthikeyan
  • Patent number: 7850832
    Abstract: The present invention relates to an inert, non-asbestos separator and method of making same, the separator comprising an inorganic/polymer fibrid and agglomeration composite material containing from about 5 weight percent to about 70 weight percent of organic halocarbon polymer fibers together with from about 30 wt percent to about 95 weight percent of a finely divided non-organic particulate, which non-organic particulate is firmly bound in said composite fibrids and agglomerates; a natural gum thickening agent in an amount to provide a viscosity of about 6270 to about 590 cP at 0.22 sec?1; and an inert inorganic particulate powder whereby the inert inorganic particulate remains unbound from the inorganic/polymer fibrid and agglomeration composite, the inorganic particulate powder having a mean particle size of not greater than 1.0 ?m and being present in an amount to provide a ratio of polymer fiber composite to unbound inorganic particulate in a range from about 1 to 25.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: December 14, 2010
    Assignee: Industrie de Nora S.p.A.
    Inventors: Nick J. Tomba, Michael S. Moats, Richard L. Romine, Thomas F. Florkiewicz, Douglas J. Waskovich, Edward S. Kazimir
  • Patent number: 7849581
    Abstract: Provided are fabrication, characterization and application of a nanodisk electrode, a nanopore electrode and a nanopore membrane. These three nanostructures share common fabrication steps. In one embodiment, the fabrication of a disk electrode involves sealing a sharpened internal signal transduction element (“ISTE”) into a substrate, followed by polishing of the substrate until a nanometer-sized disk of the ISTE is exposed. The fabrication of a nanopore electrode is accomplished by etching the nanodisk electrode to create a pore in the substrate, with the remaining ISTE comprising the pore base. Complete removal of the ISTE yields a nanopore membrane, in which a conical shaped pore is embedded in a thin membrane of the substrate.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: December 14, 2010
    Assignee: University of Utah Research Foundation
    Inventors: Henry S. White, Bo Zhang, Ryan J. White, Eric N. Ervin, Gangli Wang
  • Patent number: 7811362
    Abstract: An oil gas separation membrane combines a gas permeable yet oil and temperature resistant bulk polymer membrane such as poly(tetrafluoroethylene) and poly(tetrafluoroethylene-co-hexafluoropropylene); a porous metal support such as sintered metal frit disk made with stainless steel, bronze or nickel; and an highly gas permeable adhesive that bonds firmly the bulk polymer membrane and the metal frit surface together. The adhesive is either a homogenous polymer that has desirable gas permeability, or a coalescent porous polymer particulates network. A gas sensor employing the oil gas separation membrane for detecting and monitoring fault gases of oil filled electrical equipment requires no mechanical wearing or moving part such as pump and valve and the gas sensor is operated normally under various temperature and pressure conditions.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: October 12, 2010
    Inventor: RenYan Qin
  • Publication number: 20100252428
    Abstract: The present invention relates to planar electrochemical sensors with membrane coatings used to perform chemical analyses. The object of this invention is to provide unit-use disposable sensors of very simple and inexpensive construction, preferably with only a single membrane coating on an electrode. The invented devices are potentiometric salt-bridge reference electrodes and dissolved gas sensors constructed with a heterogeneous membrane coating of a conductor. The heterogeneous membrane, which is an intimate admixture of a hydrophobic and a hydrophilic compartment, concurrently supports constrained transport of non-volatile species through its hydrophilic compartment and rapid gas and water vapor transport through its hydrophobic compartment.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 7, 2010
    Applicant: EPOCAL INC.
    Inventors: Imants LAUKS, Anca VARLAN, Alexandra OUSSOVA, Michael BALES
  • Publication number: 20100233551
    Abstract: An ion conductor includes: an inorganic porous film which includes multiple fine pores of which surfaces are bonded to multiple proton-donor functional groups; and an electrolyte material which is held in the fine pores of the inorganic porous film, and includes a cation component and an anion component.
    Type: Application
    Filed: May 17, 2007
    Publication date: September 16, 2010
    Inventors: Hiroshi Ogawa, Toshihiro Takekawa, Kiyoshi Kanamura
  • Publication number: 20100219069
    Abstract: A gas diffusion layer having a layer (2) comprising fibers (1), whereby the fibers (1) are partially provided with a coating material (3), whereby the fibers (1) lie against each other at contact sites (4) and whereby the layer (2) has boundary surfaces (5) facing the surroundings—in terms of achieving the envisaged objective of ensuring an optimal electric conductivity—is characterized in that the fibers are freed of coating material (3) at the contact sites and/or at the boundary surfaces. Furthermore, a method is proposed for the production of a gas diffusion layer, said method comprising the step that the coating material (3) is selectively removed from the fibers (1) in certain areas.
    Type: Application
    Filed: August 9, 2006
    Publication date: September 2, 2010
    Applicant: Carl Freudenberg KG
    Inventors: Klaus-Dietmar Wagner, Achim Bock, Karim Salama, Achim Weller
  • Publication number: 20100187103
    Abstract: An ion-permeable diaphragm comprises a membrane material containing a calcium phosphate compound or calcium fluoride as a hydrophilic inorganic material. The calcium phosphate compound is preferably fluoroapatite or hydroxyapatite. The membrane material is obtained by incorporating a stretched organic fiber fabric into a membrane-forming mixture formed by the hydrophilic inorganic material and an organic binding material selected from among polysulfone, polypropylene, polyvinylidene fluoride or the like. As a result, there can be provided an ion-permeable membrane of low electric resistance for use in alkaline water electrolysis devices.
    Type: Application
    Filed: January 29, 2009
    Publication date: July 29, 2010
    Applicant: KURITA WATER INDUSTRIES LTD.
    Inventors: Syogo Anzai, Noriko Tsujinaka
  • Publication number: 20100187127
    Abstract: Embodiments include membrane restoration process. A membrane can be restored by replacing an anolyte and a catholyte of a cell with a solution having an organic acid. The cell can include an anode, a cathode and a membrane fouled with a metal. A cheleate can be formed with the metal and the organic acid of the solution and an electric current can be provided between the anode and the cathode of the cell to protect the cell from corrosion while forming the chelate.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 29, 2010
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventor: Jianqing Zhou
  • Publication number: 20100181189
    Abstract: A scaffold holding one or more ion-conductive ceramic membranes for use in an electrochemical cell is described. Generally, the scaffold includes a thermoplastic plate defining one or more orifices. Each orifice is typically defined by a first, second, and third aperture, wherein the second aperture is disposed between the first and third apertures. The diameter of the second aperture can be larger than the diameters of the first and third apertures. While at an operating temperature the diameter of the ceramic membrane is larger than the diameters of the first and third apertures, heating the scaffold to a sufficient temperature and for a sufficient time causes the third aperture's diameter to become larger than the membrane's diameter. Thus, heating the scaffold may allow the membrane to be inserted into the orifice. Cooling the scaffold can then cause the third aperture's diameter to shrink and trap the membrane within the orifice.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 22, 2010
    Inventors: Scott R. SUAREZ, Steven Matthew Quist
  • Publication number: 20100170784
    Abstract: An integrated electrode-current collector sheet includes a current collector including uneven portions disposed on at least one side of the current collector; and an active material layer disposed on the current collector, the active material layer at least partially covering the uneven portions. In addition, disclosed are a capacitive deionization device and an electric double layer capacitor including the integrated electrode-current collector sheet.
    Type: Application
    Filed: July 31, 2009
    Publication date: July 8, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-jung YANG, Hyo-rang KANG, Tae-won SONG, Chang-hyun KIM
  • Publication number: 20100151352
    Abstract: The invention relates to the following types of composite membranes; composites or composite membranes obtained by adding a metal salt, e.g. from ZrOCl2, to a solvent, especially DMSO, for dissolving one or more polymers in an organic solvent or in aqueous systems, in addition to the subsequent precipitation in the matrix of the thus produced composite-membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid. The invention also relates to composites or composite membranes obtained by subsequent ion exchange of finished polymer membranes with a suitable salt cation, especially ZrO2+, wherein the polymer membrane is, optionally, swollen with an organic solvent or a mixture of organic solvent with water prior to the ion exchange and the subsequent precipitation of a low soluble salt, e.g. from Zr3(PO4)4, in the membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Inventors: Thomas Haring, Vladimir Linkov, Jochen Kerres, Andreas Ullrich, Chy-Ming Tang, Martin Hein, Wei Zhang
  • Patent number: 7682494
    Abstract: Materials for use in proton transport characterized by several formulas are disclosed. Mixed ion and electron conductors may include metals and/or ceramic electron conductors and a proton conducting material. Hydrogen separation membranes may include porous layers and an electrolyte layer including a proton conducting material and an electron conductor. Hydrogen separation membranes may be formed by thermal spray techniques. Hydrogen separation membranes may include a catalyst layer. A method of separating hydrogen from a mixed gas stream includes passing the mixed gas through a first porous layer to an electrolyte layer, dissociating protons and electrons, diffusing the protons and electrons through the electrolyte layer, recombining them, and passing molecular hydrogen through a second porous layer.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 23, 2010
    Assignee: ITN Energy Systems, Inc.
    Inventors: Brian S. Berland, Sabina Gade, Ronald W. Schaller, Michael Schwartz
  • Publication number: 20100025235
    Abstract: Disclosed is a sensitive glass film for a pH electrode, which is not deteriorated in its glass strength or pH-measuring function, which is hardly stained, and from which any stain can be removed easily. Also disclosed is a pH electrode having the sensitive glass film. A microparticle comprising rutile-type or brookite-type titanium dioxide or a microparticle comprising amorphous titanium dioxide is adhered directly on the glass film surface of a sensitive glass film for a pH electrode.
    Type: Application
    Filed: December 11, 2007
    Publication date: February 4, 2010
    Applicants: Horiba , ltd., Mie University
    Inventors: Yuji Nishio, Yasukazu Iwamoto, Tadanori Hashimoto
  • Patent number: 7648616
    Abstract: A number of apertures are defined within a wall of a chamber defined to maintain an electrolyte solution. A cation exchange membrane is disposed within the chamber over the number of apertures. The electrolyte solution pressure within the chamber causes the cation exchange membrane to extend through the apertures beyond an outer surface of the chamber. A cathode is disposed within the chamber. The cathode is maintained at a negative bias voltage relative to a top surface of a wafer to be planarized. When the top surface of the wafer is brought into proximity of the cation exchange membrane extending through the apertures, and a deionized water layer is disposed between the top surface of the wafer and the cation exchange membrane, a cathode half-cell is established such that metal cations are liberated from the top surface of the wafer and plated on the cathode in the chamber.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: January 19, 2010
    Assignee: Lam Research Corporation
    Inventors: John M. Boyd, Fritz C. Redeker, Yezdi Dordi, Michael Ravkin, Robert Maraschin
  • Publication number: 20090255826
    Abstract: A membrane for use with an electrochemical apparatus is provided. The electrochemical apparatus may include a fuel cell or electrolyzer, for example, an electrolyzer adapted to produce hydrogen. The membrane comprises a fabric made from a synthetic fiber such as nylon where the nylon, in an exemplary embodiment, is woven into ripstop nylon fabric. The electrochemical apparatus is constructed with frames comprising high-density polyethylene (HDPE) which provide support and structure to the membranes as well as to internal electrodes. A method of making an electrochemical apparatus, such as an electrolyzer, containing a membrane comprising ripstop nylon is also disclosed, as is a method for producing hydrogen gas with an electrolyzer containing a membrane comprising ripstop nylon.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 15, 2009
    Inventors: Christopher M. McWhinney, David C. Erbaugh
  • Publication number: 20090142638
    Abstract: It is intended to provide a composite porous membrane comprising a fibrous filler-containing polymer film or sheet, characterized by having a large number of pores with an exposed fibrous filler formed by irradiation with an ultra-short pulse laser with a pulse width of 10?9 seconds or less, and to provide a polymer electrolyte membrane having the pores that are filled with a polymer electrolyte. According to the present invention, an inorganic-organic or organic-organic composite porous membrane can be obtained, which can be prepared as a thin membrane and is highly durable with high strength and a reduced cross-leak of fuel gas. This composite porous membrane can be used as a solid polymer electrolyte membrane to obtain a fuel cell improved in output voltage and electric current density.
    Type: Application
    Filed: July 19, 2006
    Publication date: June 4, 2009
    Inventor: Yukihisa Katayama
  • Publication number: 20090120788
    Abstract: A cation-exchange membrane for electrolysis which comprises a fluoropolymer having ion-exchange groups and a porous base. It is characterized by having, on the anode-side surface of the membrane, protrusions comprising a polymer having ion-exchange groups. It is further characterized in that: when the average value of the heights of the tops of the protrusions from the anode-side surface of the membrane is expressed as h (?m), then 20?h?150; when the density of the protrusions distributed is expressed as P (protrusions per cm2), then 50?P?1,200; when the average proportion of the areas of those bottom parts of the protrusions which are on the same level as the anode-side surface of the membrane to the area of the anode-side surface of the membrane is expressed as S (cm2/cm2), then 0.001?S?0.6; and when the average proportion of the areas of the top parts of the protrusions to the area of the anode-side surface of the membrane is expressed as T (cm2/cm2), then T?0.05.
    Type: Application
    Filed: January 5, 2006
    Publication date: May 14, 2009
    Inventors: Akio Kashiwada, Toshinori Hirano, Hiroshi Nakayama
  • Publication number: 20090008261
    Abstract: An oxygen generator for an oxygen-generation apparatus has a proton-conducting membrane (60), a cathode (50) contacting a first side, or cathodic side, of the membrane, an anode (70) contacting a second side, or anodic side, of the membrane, and a source of water for supply to the membrane. In use, an electrolysis voltage applied between the cathode and the anode causes electrolysis of the water to generate oxygen gas at the anode. Atmospheric oxygen, i.e. oxygen in the air, is substantially prevented from coming into contact with the cathode. For an acidic proton-conducting membrane this substantially prevents the formation of hydrogen peroxide at the cathode.
    Type: Application
    Filed: March 3, 2006
    Publication date: January 8, 2009
    Applicant: Cambridge Enterprise Limited
    Inventors: Vega Petrova Kotzeva, Derek John Fray
  • Publication number: 20080257722
    Abstract: The present invention relates to an inert, non-asbestos separator and method of making same, the separator comprising an inorganic/polymer fibrid and agglomeration composite material containing from about 5 weight percent to about 70 weight percent of organic halocarbon polymer fibers together with from about 30 wt percent to about 95 weight percent of a finely divided non-organic particulate, which non-organic particulate is firmly bound in said composite fibrids and agglomerates; a natural gum thickening agent in an amount to provide a viscosity of about 6270 to about 590 cP at 0.22 sec?1; and an inert inorganic particulate powder whereby the inert inorganic particulate remains unbound from the inorganic/polymer fibrid and agglomeration composite, the inorganic particulate powder having a mean particle size of not greater than 1.0 ?m and being present in an amount to provide a ratio of polymer fiber composite to unbound inorganic particulate in a range from about 1 to 25.
    Type: Application
    Filed: September 7, 2006
    Publication date: October 23, 2008
    Inventors: Nick J. Tomba, Michael S. Moats, Richard L. Romine, Thomas F. Florkiewicz, Douglas J. Waskovich, Edward S. Kazimir
  • Publication number: 20080245663
    Abstract: Materials for use in proton transport characterized by several formulas are disclosed. Mixed ion and electron conductors may include metals and/or ceramic electron conductors and a proton conducting material. Hydrogen separation membranes may include porous layers and an electolyte layer including a proton conducting material and an electron conductor. Hydrogen separation membranes may be formed by thermal spray techniques. Hydrogen separation membranes may include a catalyst layer. A method of separating hydrogen from a mixed gas stream includes passing the mixed gas through a first porous layer to an electrolyte layer, dissociating protons and electrons, diffusing the protons and electrons through the electrolyte layer, recombining them, and passing molecular hydrogen through a second porous layer.
    Type: Application
    Filed: May 16, 2008
    Publication date: October 9, 2008
    Inventors: Brian S. Berland, Sabina Gade, Ronald W. Schaller, Michael Schwartz
  • Patent number: 7416803
    Abstract: Improved solid acid electrolyte materials, methods of synthesizing such materials, and electrochemical devices incorporating such materials are provided. The stable electrolyte material comprises a solid acid capable undergoing rotational disorder of oxyanion groups and capable of extended operation at elevated temperatures, that is, solid acids having hydrogen bonded anion groups; a superprotonic, trigonal, tetragonal, or cubic, disordered phase; and capable of being operating at temperatures of ˜100° C. and higher.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: August 26, 2008
    Assignee: California Institute of Technology
    Inventors: Sossina M. Haile, Calum Chisholm, Ryan B. Merle, Dane A. Boysen, Sekharipuram R. Narayanan
  • Patent number: 7413687
    Abstract: A device for conducting protons at a temperature below 550° C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: August 19, 2008
    Assignee: UT - Battelle, LLC
    Inventors: Timothy R. Armstrong, Edward A. Payzant, Scott A. Speakman, Martha Greenblatt
  • Patent number: 7399393
    Abstract: The invention concerns an oxide ion conductive ceramic membrane, characterized in that it comprises a non-null finite volume with non-null total thickness E, comprising, a dense layer (CD) of a solid electrolyte, a so-called bonding layer (CA), of mixed conductive porous cathode (EP) and porous anode (EP?), a cathode current collector (CC) and an anode current collector (CC?), a coating porous layer (ER), and a coating porous layer (ER?), and characterized in that the volume E of said membrane, is equal to the sum of the thickness of said elements. The membrane is used for separating oxygen from air or from a gas mixture containing same and in particular for producing ultra-pure oxygen under high pressure in a closed chamber.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 15, 2008
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christophe Chaput, Thierry Terracol, Gisèle Bach, Guylaine Gouriou, Pascal Del Gallo
  • Patent number: 7387716
    Abstract: A polymer electrolyte for an electrochemical half cell, in particular for a reference half cell, contains a polymer which as a first monomer component contains at least one alkyl methacrylate. The alkyl methacrylate has a substituted alkyl group with from three to seven carbon atoms and at least two substituents. The aforementioned substituents are selected from the group comprising OR1 and NR2R3, in which R1 , R2 and R3 are selected from the group comprising hydrogen, methyl, and ethyl, on the condition that the substituted alkyl group contains the substituent OH at most once.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: June 17, 2008
    Assignee: Mettler-Toledo AG
    Inventors: Philippe Ehrismann, Rolf Thrier
  • Publication number: 20080135404
    Abstract: An amperometric membrane sensor that utilizes redox-carriers to transfer the redox potential of an oxidizing or reducing species to an electrode. The sensor consists of a membrane containing a first redox carrier, and a second redox carrier in the internal electrolyte of a membrane amperometric sensor. One implementation of this sensor utilizes a quinone carrier in a liquid membrane, and a vanadate carrier in the electrolyte to produce a sensor that responds to chlorine and chloroamine containing aqueous solutions. This strategy for the construction of an amperometric sensor allows the detection and quantification of redox-active membrane impermeant species.
    Type: Application
    Filed: January 10, 2006
    Publication date: June 12, 2008
    Inventors: Robert D. Rowe, Thomas M. Fyles
  • Patent number: 7300561
    Abstract: The invention concerns an oxide ion conductive ceramic membrane, characterized in that it comprises a non-null finite volume with non-null total thickness E, comprising a dense layer (CD) of a solid electrolyte, a so-called bonding layer (CA), of two porous electrodes (EP) and (EP?), two porous current collectors (CC) and (CC?), and at least at least a coating porous layer (ER), characterized in that the thickness E of the volume of said membrane, is equal to the sum of the thickness of each of said elements. The membrane is used for separating oxygen from air or from a gas mixture containing same.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: November 27, 2007
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance Pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christophe Chaput, Thierry Terracol, Gisèle Bach, Guylaine Gouriou, Pascal Del Gallo
  • Patent number: 7291191
    Abstract: Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: November 6, 2007
    Assignee: UltraCell Corporation
    Inventor: Ian W. Kaye
  • Patent number: 7279025
    Abstract: A method of separating oxygen from an oxygen containing feed and reacting the oxygen with a reactive substance and an oxygen ion transport membrane element utilized for such purposes. The oxygen ion transport membrane element has a self-supporting dense layer and a surface porous feature in contact with and supported by the dense layer. The porous surface feature may be a layer, a layer having discontinuities or a series of repeating geometrical forms. The dense layer and the porous surface feature are capable of conducting oxygen ions and electrons. The porous surface feature at least in part forms the anode side of the oxygen ion transport membrane element at which the reactive substance reacts with the separated oxygen and has a thickness less than that of the dense layer and a greater surface area than that of a surface of the dense layer adjoining the porous layer. Pores within the porous surface feature have a pore aspect ratio of pore size to pore length of between about 0.1 and about 5.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: October 9, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Prasad S. Apte, Joseph M. Schwartz, James E. White
  • Patent number: 7247222
    Abstract: Embodiments of the invention may generally provide a small volume electrochemical plating cell. The plating cell generally includes a fluid basin configured to contain a plating solution therein, the fluid basin having a substantially horizontal weir. The cell further includes an anode positioned in a lower portion of the fluid basin, the anode having a plurality of parallel channels formed therethrough, and a base member configured to receive the anode, the base member having a plurality of groves formed into an anode receiving surface, each of the plurality of grooves terminating into an annular drain channel. A membrane support assembly configured to position a membrane immediately above the anode in a substantially planar orientation with respect to the anode surface is provided, the membrane support assembly having a plurality of channels and bores formed therein.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: July 24, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Dmitry Lubomirsky, Yezdi Dordi, Saravjeet Singh, Sheshraj Tulshibagwale, Nicolay Kovarsky
  • Patent number: 7229537
    Abstract: A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo5Si3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: June 12, 2007
    Assignees: Praxair Technology, Inc., BP Corporation North America, Inc.
    Inventors: Jack C. Chen, Charles J. Besecker, Hancun Chen, Earil T. Robinson
  • Patent number: 7128823
    Abstract: Embodiments of the invention provide a method for plating copper into features formed on a semiconductor substrate. The method includes positioning the substrate in a plating cell, wherein the plating cell includes a catholyte volume containing a catholyte solution, an anolyte volume containing an anolyte solution, an ionic membrane positioned to separate the anolyte volume from the catholyte volume, and an anode positioned in the anolyte volume. The method further includes applying a plating bias between the anode and the substrate, plating copper ions onto the substrate from the catholyte solution, and replenishing the copper ions plated onto the substrate from the catholyte solution with copper ions transported from the anolyte solution via the ionic membrane, wherein the catholyte solution has a copper concentration of greater than about 51 g/L.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: October 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Nicolay Y. Kovarsky
  • Patent number: 7122072
    Abstract: Method for processing an article comprising a mixed conducting metal oxide material, which method comprises (a) contacting the article with an oxygen-containing gas and reducing or increasing the temperature of the oxygen-containing gas; (b) when the temperature of the oxygen-containing gas is reduced, reducing the oxygen activity in the oxygen-containing gas; and (c) when the temperature of the oxygen-containing gas is increased, increasing the oxygen activity in the oxygen-containing gas.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: October 17, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Matthew James Watson, Eric Minford, Stephen Andrew Motika, Dale M. Taylor
  • Patent number: 7108934
    Abstract: A “water free,” proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: September 19, 2006
    Assignee: California Instituite of Technology
    Inventors: Sekharipuram R. Narayanan, Shiao-Pin S. Yen
  • Patent number: 7063908
    Abstract: A complex oxide and an oxide-ion conductor made of the complex oxide are provided. The complex oxide has a basic composition of (Sm1-xAx)(Al1-yBy)O3, wherein “A” represents at least one element selected from the group consisting of barium, strontium and calcium, “B” represents an element selected from the group consisting of magnesium, iron and cobalt, x is a value in a range of 0.10 to 0.30, and y is a value in a range of 0 to 0.30.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: June 20, 2006
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshihiko Yamamura, Kazuyuki Kaigawa, Shinji Kawasaki, Hiroaki Sakai