With Control Means Responsive To Sensed Condition Patents (Class 204/602)
  • Publication number: 20110094884
    Abstract: A filter includes a membrane having a plurality of nanochannels formed therein. A first surface charge material is deposited on an end portion of the nanochannels. The first surface charge material includes a surface charge to electrostatically influence ions in an electrolytic solution such that the nanochannels reflect ions back into the electrolytic solution while passing a fluid of the electrolytic solution. Methods for making and using the filter are also provided.
    Type: Application
    Filed: October 28, 2009
    Publication date: April 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John M. Cotte, Christopher V. Jahnes, Hongbo Peng, Stephen M. Rossnagel
  • Patent number: 7883613
    Abstract: The present invention provides a capillary electrophoresis apparatus in which a capillary is easily attached to and detached from a migration medium filling unit without mixing impurities into the capillary. Mixture of impurities such as dust is also prevented when a capillary negative-electrode end is brought into contact with a sample stored in a vessel. Furthermore, temperature control is efficiently performed in the capillary. In the capillary electrophoresis apparatus, the whole of capillary array can be supported by grasping a grip portion by hand. A migration medium filling mechanism includes a slide mechanism which moves a polymer block with respect to a capillary head. The capillary electrophoresis apparatus includes a vessel in which a sample and a buffer can simultaneously be stored. Temperatures of the capillary and an irradiation and detection unit are controlled by a temperature control function provided in a thermostatic device.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: February 8, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takashi Gomi, Ryoji Inaba, Motohiro Yamazaki, Hidenori Namba, Jin Matsumura, Hiromi Yamashita, Seiichi Ugai, Kazumichi Imai
  • Patent number: 7871575
    Abstract: A handling unit that comprises a first clamping element and a second clamping element, and an actuation mechanism adapted for driving at least one of the clamping elements. When the at least one of the clamping elements is driven to a first position, a microfluidic device may be placed between the clamping elements or taken out of the clamping elements, and when the at least one of the clamping elements is driven to a second position, the microfluidic device is gripped and fastened by the clamping elements.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: January 18, 2011
    Assignee: Agilent Technologies, Inc.
    Inventors: Martin Baeuerle, Hans-Georg Weissgerber
  • Patent number: 7822510
    Abstract: Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: October 26, 2010
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Philip Y. Paik, Michael G. Pollack, Ryan A. Sturmer, Gregory F. Smith, Keith R. Brafford, Vamsee K. Pamula
  • Publication number: 20100252437
    Abstract: An apparatus for aligning a capillary column with one or more excitation fibers and with one or more optical lens elements for Capillary Electrophoresis. The apparatus includes two identical blocks having a plurality of grooves for positioning and aligning the capillary column with the one or more excitation fibers, and a plurality of lens seats for optically coupling the lens element with the capillary column. Each block includes a male and female part for mating the two identical blocks together.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 7, 2010
    Inventors: Varouj Amirkhanian, Paul Mooney
  • Publication number: 20100187112
    Abstract: This invention provides a device and methods for increasing the concentration of a charged species in solution, wherein the solution containing the concentrated species is exposed to the environment. Such solution can be formed on a surface or on a tip of a measurement device. The open-environment concentration technique overcomes the disadvantages of in-channel concentration devices, especially by eliminating flow-induced delivery processes that lead to concentration losses. Combined with direct contact dispensing, methods of this invention can be used for various applications such as immunoassay and MALDI-MS.
    Type: Application
    Filed: November 23, 2009
    Publication date: July 29, 2010
    Inventors: Jongyoon Han, Sung Jae Kim, Dustin Moon
  • Publication number: 20100170799
    Abstract: The present invention provides for an interface mechanism in a bio-separation instrument that makes interface connections to a multi-channel cartridge. The interface mechanism precisely positions the cartridge in relation to the support elements in the instrument (e.g., high-voltage, gas pressure, incident radiation and detector), and makes automated, reliable and secured alignments and connections between various components in the cartridge and the support elements in the supporting instrument. The interface mechanism comprises pneumatically or electromechanically driven actuators for engaging support elements in the instrument to components on the cartridge. After the cartridge has been securely received by the interface mechanism, the connection sequence is initiated. The interface provides separate high voltage and optical connections for each separation channel in the cartridge, thus providing channel-to-channel isolation from cross talk both electrically and optically.
    Type: Application
    Filed: November 23, 2009
    Publication date: July 8, 2010
    Inventors: Varouj Amirkhanian, Bob G. Heitel, Ming-Sun Liu, Paul Mooney
  • Patent number: 7708874
    Abstract: An electrophoresis apparatus having a plate on which channels are formed, a tray on which the plate is to be set, a tray driving unit for rotary driving the tray on which the plate is set, a voltage application unit for applying voltage to a buffer agent in the channels on the plate, an optical detection part for irradiating the channels on the plate with light, and detecting fluorescence that is generated from the sample due to the light irradiation. A plate clamp pressing the plate at only the channel formation areas of the plate against the plate setting surface of the tray, thereby fixing and holding the plate on the plate setting surface of the tray.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Panasonic Corporation
    Inventors: Yoshinori Amano, Kazuyoshi Mori, Ryuuji Shimizu
  • Patent number: 7678254
    Abstract: The processing apparatus for microchips, each at least having a main flow path performing migration of a sample for analysis inside a sheet-like member, comprises a holding part holding microchips so that the multiple main flow paths are provided; a pretreatment part common to the multiple main flow paths for performing a pretreatment step prior to an analysis step in each of the multiple main flow paths; a processing part for performing analysis in each of the main flow paths independently of the others; and a control part controlling an operation in the pretreatment part so that when a pretreatment step for one main flow path ends, a pretreatment for a next main flow path starts and further controlling an operation in the processing part so that an analysis is subsequently performed for the main flow path where the pretreatment step has ended.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: March 16, 2010
    Assignee: Shimadzu Corporation
    Inventors: Nobuhiro Hanafusa, Akihir{dot over (o)} Arai, Koji Tanimizu
  • Patent number: 7662268
    Abstract: The present invention discloses a method for measuring the zeta potential at the cylinder's outer surface. In the measuring cell, the cylinder is held coaxially inside a reference tube and a given solution is forced to flow through the annular flow channel between the cylinder and the reference tube. The streaming potential induced by the flow forced with a hydraulic pressure drop is measured to determine the zeta potential, ?m, of the cylinder's outer surface by using the following Equation, E _ ? ? ? P == - D ? ? ? k ? ( ? m + ? ref 2 ) ? F where D is the permittivity, ?ref is the zeta potential of the reference tube, ? is the viscosity of the solution, k is the electric conductivity of the solution, and F is a correction factor for the electrokinetic model. Moreover, this invention also discloses a system for measuring the zeta potential of the cylinder's outer surface.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: February 16, 2010
    Assignee: Chung Yuan Christian University
    Inventor: Ching-Jung Chuang
  • Publication number: 20100032298
    Abstract: Embodiments of methods and devices are disclosed for the manipulation (e.g., concentration, purification, capture, trapping, location, transfer) of analytes, e.g., biomolecules, with respect to analyte-containing solutions, using one or more electric fields.
    Type: Application
    Filed: October 15, 2009
    Publication date: February 11, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Richard T. Reel, Eric S. Nordman, Zbigniew T. Bryning
  • Patent number: 7651598
    Abstract: In a microfluidic device, respective motion of a plurality of objects along corresponding trajectories is achieved by determining a force field, such as an underlying fluid flow which, when applied to the plurality of object, moves each object along its corresponding trajectory. The force field is a linear superposition of a subset of all force fields supported by the physical characteristics of the microfluidic device. Once the fields have been ascertained, a plurality of actuation signals corresponding to the fields is applied to actuators installed on the microfluidic device to cause the force on each object. By implementing a feedback structure, corrections for positional errors may be made by computing a corrective force for each object and adjusting the actuation signals appropriately thereto.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: January 26, 2010
    Assignee: University of Maryland
    Inventors: Benjamin Shapiro, Satej V. Chaudhary, Michael D. Armani, Roland Probst
  • Publication number: 20100000866
    Abstract: The invention concerns a microfluidic device for the controlled movement of liquid. The controlled-movement device according to the invention comprises a microchannel (10) filled with a first liquid (F1) and a fluid (F2) forming a first interface (I1) with the first liquid (F1), or forming a first interface (I1) with the first liquid (F1) and a second interface (I3) with a second liquid (F3) situated downstream of said fluid (F2), and means of moving the first liquid (F1) by electrowetting. A control system is provided for controlling the movement of the first liquid (F1) according to the position of an interface (I1, I3) of the fluid (F2).
    Type: Application
    Filed: July 6, 2009
    Publication date: January 7, 2010
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Jean-Maxime Roux, Raymond Campagnolo
  • Patent number: 7601252
    Abstract: Scattering on analysis in a multi-capillary electrophoresis apparatus is suppressed. The multi-capillary electrophoresis apparatus has a multi-capillary array that has a sample and a separation medium for separating a sample charged therein, and has a sampling section formed at ends of the capillaries and a detector part for acquiring information depending on the sample thus separated, a means for applying a voltage between the sampling section and the detector part, a chamber part having an air blowing mechanism and a temperature controlling mechanism, a capillary housing base provided on a leeward side of the air blowing mechanism and housing the multi-capillary array, and a first straightening plate provided between the chamber part and the capillary housing base.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: October 13, 2009
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Motohiro Yamazaki, Masaya Kojima, Ryoji Inaba
  • Publication number: 20090205959
    Abstract: The present invention provides a technique for automating the operation to peel off and remove a lid seal part adhered and fixed to the top face of a substrate part constituting a lid-sealed “microchip” after subjecting a sample solution to be analyzed to electrophoretic separation. After subjecting sample solution to be analyzed to desired electrophoretic separation the by utilizing a channel formed in the lid-sealed microchip, the electrophoretically separated liquid sample held in the channel undergoes freezing of the aqueous solvent contained and then, while the whole electrophoretically separated liquid sample remains sustained in the frozen state, an end of the lid seal part used for sealing the top face of channel formed in the substrate part is lifted up at a predetermined speed so as to peel and remove it from the substrate part under a condition of maintaining a bend of a predetermined radius of curvature.
    Type: Application
    Filed: February 8, 2006
    Publication date: August 20, 2009
    Applicant: NEC CORPORATION
    Inventors: Machiko Fujita, Hisao Kawaura
  • Patent number: 7527719
    Abstract: The present invention provides a capillary electrophoresis chip apparatus for detecting nucleotide polymorphism or single nucleotide polymorphism belonging to capillary electrophoresis apparatuses. The apparatus comprises an upper channel layer comprising a one-, two-, or multi-dimensional microfluid channel and an electrode aperture structure for loading sample, a middle electrode layer for sealing the microfluid channel to form an intact capillary and providing the needed voltage for electrophoresis; and a lower heating layer for providing a stable temperature gradient for electrophoresis. The upper, middle and lower layers are thermal conductive and adhesive to each other.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: May 5, 2009
    Assignees: Capitalbio Corporation, Tsinghua University
    Inventors: Peng Liu, Wanli Xing, Dong Liang, Jing Cheng
  • Publication number: 20090060797
    Abstract: Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 5, 2009
    Applicant: The Regents of the University of California
    Inventors: Richard A. Mathies, William H. Grover, Brian Paegel, Alison Skelley, Eric Lagally, Chung N. Liu, Robert Blazej
  • Patent number: 7485888
    Abstract: A multicolor particle analyzer and method is described. The particles each of which either naturally fluoresce or are tagged to fluoresce at distinctive wavelengths are caused to flow through an analyzing volume where fluorescence is excited by an impinging light beam. A tunable optical filter repetitively and sequentially passes emitted light at each of the characteristic wavelengths as each particle travels through the analyzing volume and the light transmitted through the optical filter is received by single detector which provides output signals representative of each distinct wavelength of light emitted by the particle.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: February 3, 2009
    Assignee: Guava Technologies, Inc.
    Inventors: Philippe Goix, Paul J. Lingane
  • Patent number: 7439075
    Abstract: A method of discharging a fluid flow with suspended microparticles from a fluidic microsystem (10) is described, whereby the fluid flow converges with at least one output flow to form a discharge flow at the end of a discharge channel (14) of the microsystem, and the discharge flow is delivered through a conduction element (19). A microsystem with a flow output device for implementation of this method is also described.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: October 21, 2008
    Assignee: Perkinelmer Cellular Technologies Germany GmbH
    Inventors: Gunter Fuhr, Stephen Graham Shirley, Torsten Muller, Thomas Schnelle, Rolf Hagedorn
  • Patent number: 7212977
    Abstract: Power consumption of electric equipment used in a semiconductor manufacturing apparatus (100) is obtained and the total amount is displayed as calories by a display means. The semiconductor manufacturing apparatus is configured so that the equipment is set up inside a housing (10). The amount of heat discharged from the inside to the outside (a clean room) via the housing is obtained, and further, the amount of heat removed by exhaust from the interior of the housing and the amount of heat removed by cooling water that cools the equipment is also obtained, and the total amount of heat is displayed. Additionally, factors pertaining to operating costs such as power consumption are measured and their cost obtained, the amount of power consumed is multiplied by a crude oil conversion coefficient to obtain the amount of CO2 generated, and the result is displayed.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: May 1, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Akitoshi Tsuji, Osamu Suenaga, Kiyoshi Komiyama
  • Patent number: 7012342
    Abstract: A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: March 14, 2006
    Assignee: Sandia National Laboratories
    Inventors: James Frederick Stamps, Robert Ward Crocker, Daniel Dadwa Yee, David Wright Dils
  • Patent number: 7005053
    Abstract: Scattering on analysis in a multi-capillary electrophoresis apparatus is suppressed. The multi-capillary electrophoresis apparatus has a multi-capillary array that has a sample and a separation medium for separating a sample charged therein, and has a sampling section formed at ends of the capillaries and a detector part for acquiring information depending on the sample thus separated, a means for applying a voltage between the sampling section and the detector part, a chamber part having an air blowing mechanism and a temperature controlling mechanism, a capillary housing base provided on a leeward side of the air blowing mechanism and housing the multi-capillary array, and a first straightening plate provided between the chamber part and the capillary housing base.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 28, 2006
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Motohiro Yamazaki, Masaya Kojima, Ryoji Inaba
  • Patent number: 6984525
    Abstract: A method to collect a plurality of target zones from a plurality of channels. The method includes introducing a plurality of compound mixtures into a plurality of microchannels on a microfabricated chip or a capillary tube. Optical signal measured at a detector window provides a signal of the position of a target zone. When a target zone has migrated to the location of a detector window, the detector senses an optical signal from the target zone and signals the system to disconnect a driving force from that channel. Once a plurality of zones in a plurality of channels are aligned, the driving force is reconnected and the zones are coeluted into a collection container.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: January 10, 2006
    Assignee: Watrex Praha, s.r.o.
    Inventor: Milan Minarik
  • Patent number: 6982028
    Abstract: A method is described for modifying performed channels fabricated in a variety of substrate materials including PMMA. The method involves exposing a portion of a fluid flow channel to light at a fluence and wavelength which modifies the surface charge of the substrate at the exposure site. The method can be used to modulate electroosmotic flow in channels or to immobilize chemical compounds or biological species in the fluid flow channels at the modified surfaces.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: January 3, 2006
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Timothy J. Johnson, Emanuel A. Waddell, Jr., David J. Ross, Laurie E. Locascio
  • Patent number: 6967489
    Abstract: Methods and systems for effecting a parameter and detecting a parameter using two electric signal in a conductive path are described.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: November 22, 2005
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Carlton F. Brooks, Morten Juel Jensen, Seth Stern
  • Patent number: 6936152
    Abstract: At a wall constituting a space for a thermostatic oven in an electrophoresis apparatus, a capillary array attachment portion is formed which permits attachment of a plurality of capillary arrays having different length. Thereby, a selected capillary array constituted by collecting a plurality of capillaries can be easily attached to the electrophoresis apparatus depending on measurement purpose.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: August 30, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Masaya Kojima, Muneo Maeshima, Yoshiyuki Okishima, Tomohiro Shoji, Wataru Matsuo
  • Patent number: 6929731
    Abstract: A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: August 16, 2005
    Assignee: Northeastern University
    Inventors: Frantisek Foret, Barry L. Karger
  • Patent number: 6908594
    Abstract: Improved sealing for microstructures in microfluidic devices having a plurality of units is provided by providing collars surrounding the openings to the microstructures, such as reservoirs. The collars are protrusions extending from the surface of the devices and the internal walls of the collars generally aligned with the internal walls of the microstructure. Conformable and/or adhesive lids are employed for sealing the microstructures.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: June 21, 2005
    Assignee: Aclara Biosciences, Inc.
    Inventors: Samuel Benjamin Schaevitz, Travis Boone, Torleif Ove Bjornson
  • Patent number: 6886576
    Abstract: A method and flow system for controlling the flow of a liquid in a flow system, the liquid flow comprising particles and being led into a channel thereof. The method comprises the steps of enveloping the liquid flow by a flow of carrier liquid, hydrodynamically focussing the particles in the liquid flow providing a measurement signal of the liquid flow from an observation area in the channel, and dividing the liquid flow at a branching point into two or more outlets in response to the measurement signal. The division of the liquid comprises introducing a control liquid from at least one control channel at a merging point or merging area in the channel. The amount of control liquid is controlled by at least one electro-kinetic pump, the pump effect of which is controlled in response to the measurement signal.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: May 3, 2005
    Assignee: Scandinavian Micro Biodevices A/S
    Inventor: Claus Barholm-Hansen
  • Patent number: 6837977
    Abstract: The invention relates to a capillary electrophoresis-based method of screening complex materials for any unidentified affinity ligand that binds to a target of interest. The method subjects a plug of a mixture of the target and a complex material sample, and a separate plug of a known, tight-binding competitive ligand, to capillary electrophoresis under conditions optimized to allow mingling of the two plugs during the capillary electrophoresis run. Preferably, migration of the competitive ligand is tracked.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: January 4, 2005
    Assignee: Cetek Corporation
    Inventors: Yuriy M. Dunayevskiy, Dallas E. Hughes
  • Patent number: 6808609
    Abstract: Devices and methods are disclosed for moving charged molecules through a medium by the application of a plurality of electrical fields of sufficient strength and applied for sufficient amounts of time so as to move the charged molecules through the medium. The devices although preferably small in size, preferably generate large numbers (100 or more) of electrical fields to a movement area which preferably contains a liquid buffered or gel medium. Mixtures of charged molecules are pulled through the gel by the force of the electrical fields. The fields are preferably activated simultaneously or sequentially one after another at various speeds to create complex force field distributions or moving field waves along the separation medium. Charged molecules capable of moving quickly through the gel will be moved along by the faster moving field waves and be separated from slower moving molecules.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: October 26, 2004
    Assignee: Aclara Biosciences, Inc.
    Inventors: David S. Soane, Zoya M. Soane
  • Publication number: 20040173457
    Abstract: A thermostat control system, that can be configured to include an array of two or more capillary columns or two or more channels in a microfabricated device, is disclosed. A thermally conductive material is in contact with each column or channel in the array. One or more independently controlled heating or cooling elements is positioned adjacent to or within the thermally conductive material, each heating or cooling element being connected to a source of heating or cooling. One or more independently controlled temperature sensing elements and one or more independently controlled temperature probes are also positioned adjacent to or within the thermally conductive material. Each temperature sensing element is connected to a temperature controller, and each temperature probe is connected to a thermometer.
    Type: Application
    Filed: December 19, 2003
    Publication date: September 9, 2004
    Inventors: Arthur W. Miller, Chiranjit Deka, Joseph M. Fallon, Barry L. Karger
  • Patent number: 6787017
    Abstract: The capillary electrophoresis system includes a wafer-shaped part having passages filled with a buffer solution for introducing sample solutions; a body having a configuration suitable to removably hold and to move the wafer-shaped part. The body includes first and second electrodes for applying a voltage across both ends of passages of the wafer-shaped part to separate and remove the sample solution. The body also includes first and second buffer reservoirs conductive to passages of the wafer-shaped part at specific positions for filling buffer solution around the first and second electrodes. The system according to the present invention facilitates washing of electrophoresis passages and reduces the time and labor costs required for replacement of the fused-silica wafers and simplifies operation by allowing a plurality of sample solutions to be analyzed more quickly.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: September 7, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Atsumu Hirabayashi, Yukiko Hirabayashi, Akihiko Okumura, Hideaki Koizumi
  • Patent number: 6783647
    Abstract: Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: August 31, 2004
    Assignee: UT-Battelle, LLC
    Inventors: Christopher T. Culbertson, Stephen C. Jacobson, Maxine A. McClain, J. Michael Ramsey
  • Patent number: 6783649
    Abstract: The invention is directed to a high throughput capillary electrophoresis (CE) system, which comprises multiple mobile CE detector modules that are transportable by a programmable fluid-handling arm assembly to fixed samples in microtiter plate wells for analysis. The CE system of the invention is capable of simultaneously automating sample preparation and multiple CE analysis of the sample in a continuous timely process. The CE detector modules of the invention may be equipped with any suitable detection method, such as an ultraviolet (UV) absorbance or a laser-induced fluorescence (LIF) detector.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: August 31, 2004
    Assignee: Cetek Corporation
    Inventors: Herbert J. Hedberg, Brian Kangas, James L. Waters
  • Publication number: 20040140210
    Abstract: Provided is a method for determining a zeta potential generated between a solid wall and a solution. The method includes (a) injecting an electrolyte solution into a first inlet of a T channel, which is provided with first and second inlet electrodes and a grounded outlet electrode, and a mixed solution of the electrolyte solution and a fluorescent dye into a second channel of the T channel and maintaining a steady-state of the two solutions; (b) applying a direct current electric field from the first and second electrodes to the outlet electrode to form an interface between the electrolyte solution and the mixed solution; (c) applying an alternating current electric field from one of the two inlet electrodes to the outlet electrode to oscillate the interface; and (d) measuring an amplitude of oscillation of the interface and determining the zeta potential from the standard relationship between the zeta potential and the amplitude.
    Type: Application
    Filed: October 31, 2003
    Publication date: July 22, 2004
    Inventors: Yoon-Kyoung Cho, Sang-Min Shin, In-Seok Kang, Geun-Bae Lim
  • Patent number: 6750661
    Abstract: Methods and systems for effecting a parameter and detecting a parameter using two electric signal in a conductive path are described.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: June 15, 2004
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Carlton F. Brooks, Morten Juel Jensen, Seth Stern
  • Patent number: 6675821
    Abstract: With a method of controlling the flow in a flow system where a liquid flow contains a particle concentration, the liquid flow is surrounded by a carrier liquid. The liquid flow and carrier liquid are led into a central channel in which there is provided an observation area (4) where measurements of the liquid flow are effected. The result of the measurements are used to lead the liquid flow into one of several channels, in that control liquids are introduced into the liquid flow before this reaches the channels, the control liquids being derived from a capillary pump structure which pumps on the basis of an electro-kinetic effect, e.g. an electro-osmotic effect. In a preferred embodiment, the pump structure consists of two capillary structures, to each of which an electrical field can be applied. Depending on the strength of the field, the amount of control liquid will be able to be controlled so that the liquid flow with the particle concentration can be led to one of two channels.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: January 13, 2004
    Assignee: Scandinavian Micro Biodevices A/S
    Inventor: Claus Barholm-Hansen
  • Patent number: 6632400
    Abstract: A microfluidic component having a microfluidic channel is bonded to an electronics component having a circuit for processing signals related to the microfluidic component. In an embodiment, the electronics component is a prefabricated integrated circuit chip that includes signal processing and/or process control functionality. The bonding of the microfluidic component to the electronics component provides a modular architecture in which different combinations of microfluidic components and electronics components can be used to create customized processing and analysis tools.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: October 14, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Reid A. Brennen, Antonius A. A. M. van de Goor
  • Patent number: 6616823
    Abstract: The present invention generally provides methods and systems for monitoring and controlling electroosmotic flow rates in microfluidic systems. Generally, such methods and systems monitor flow rates in electroosmotically driven microfluidic systems by flowing signaling elements within these channels and measuring the flow rate of these signals. The methods of monitoring flow rates are also applied to methods and systems for continuously monitoring and controlling these flow rates in electroosmotically driven microfluidic systems.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: September 9, 2003
    Assignee: Caliper Technologies Corp.
    Inventor: Anne R. Kopf-Sill
  • Patent number: 6524866
    Abstract: The invention relates to capillary electrophoretic methods for detecting ligands or hit compounds that can bind to a selected target at or above a selected binding strength. The method allows one to rank various ligands based on their relative affinity, i.e., the relative stability of the target/ligand complex during capillary electrophoresis under selected conditions. The method also enables selective detection of strong-to-moderate binding hit compounds, even in the presence of high concentrations of weaker, competitive hit compounds.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: February 25, 2003
    Assignee: Cetek Corporation
    Inventors: Dallas E. Hughes, James L. Waters, Yuriy M. Dunayevskiy
  • Publication number: 20020195344
    Abstract: Electroosmotic flow controllers that may be used in conjunction with multiple fluids and methods of fluid flow control are described. The invention uses an electroosmotically generated flow component in combination with a pressure driven flow component to modulate fluid flow. A working fluid and a second fluid that supports electroosmotic function may be used in conjunction with embodiments of the invention. Embodiments of the invention may include salt bridges for making electrical connections between a power supply and a channel filled with a porous dielectric material and a fluid.
    Type: Application
    Filed: May 24, 2002
    Publication date: December 26, 2002
    Inventors: David W. Neyer, Phillip H. Paul, Christopher G. Bailey
  • Patent number: 6495104
    Abstract: Microfluidic devices and systems that include keying, registration or indication elements that communicate a functionality of the microfluidic device to the instrumentation which is used in conjunction with these devices. Indicator elements include structural indicators, electrical indicators, optical indicators and chemical indicators. Different indicator elements are indicative of different functionalities, e.g., applications, new vs. used, and the like.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: December 17, 2002
    Assignee: Caliper Technologies Corp.
    Inventors: Garrett Unno, Colin B. Kennedy, Patrick Kaltenbach, Manfred Berndt
  • Publication number: 20020166592
    Abstract: A microfluidic system has an electroosmotic flow (EOF) pumping means for propelling fluids through a series of microchannels and selection valves. Pump channels are configured in groups which may be fabricated singly or in multiple groups onto a substrate. A bubble-free electric connection joint provides for the application of voltages across pump channels while simultaneously blocking the passage of fluids through the joint. Bubble-free electrodes are also provided to prevent electrolysis and bubble formation in or close to the microfluidic channels. The selection valves provide for routing functions within the microfluidic system and can also be configured to route fluids outside the system. A rate monitoring system is provided for determining and compensating for system flow rates. In one application the microfluidic system may be configured to operate as a small volume pipettor or other fluid transport or analysis device.
    Type: Application
    Filed: February 11, 2002
    Publication date: November 14, 2002
    Inventors: Shaorong Liu, Juan Lu
  • Publication number: 20020117398
    Abstract: A sample is separated and separated components thereof are successively fed to a part to be detected. A laser beam of at least 600 nm from a laser beam source of an optical measuring part is applied to the part to be detected through a dichroic mirror and a lens, for making a fluorochrome bonded to the separated components absorb multiphotons, exciting the fluorochrome and making the same fluoresce. The optical measuring part captures the fluorescence so that photomultipliers detect fluorescence of not more than 510 nm in wavelength, fluorescence longer than 510 nm and not more than 560 nm in wavelength, fluorescence longer than 560 nm and not more than 580 nm in wavelength and fluorescence longer than 580 in wavelength respectively. Thus, a capillary electrophoretic apparatus can detect fluorescence from a fluorochrome bonded to samples as a label without influence by Raman scattering or Rayleigh scattering.
    Type: Application
    Filed: April 22, 2002
    Publication date: August 29, 2002
    Inventors: Yoshihide Hayashizaki, Hideshi Fujiwake, Shin Nakamura
  • Patent number: 6413401
    Abstract: In a microfluidic system using electrokinetic forces, the present invention uses electrical current or electrical parameters, other than voltage, to control the movement of fluids through the channels of the system. Time-multiplexed power supplies also provide further control over fluid movement by varying the voltage on an electrode connected to a fluid reservoir of the microfluidic system, by varying the duty cycle during which the voltage is applied to the electrode, or by a combination of both. A time-multiplexed power supply can also be connected to more than one electrode for a savings in cost.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: July 2, 2002
    Assignee: Caliper Technologies Corp.
    Inventors: Calvin Y. H. Chow, J. Wallace Parce
  • Publication number: 20020060156
    Abstract: A fully integrated monolithic small volume PCR-CE device in glass, or the like materials, is fabricated using thin film metal heaters and thermocouples to thermally cycle sub-microliter PCR volumes. Successful amplification of a PCR fragment is demonstrated on a PCR-CE chip. The process utilizes a linear polyacrylamide surface coating coupled with addition of BSA to the amplification buffer was necessary to obtain amplification efficiencies comparable to a positive control. The micro-reactor reduced significantly the time required for amplification and the reaction volume was in the sub-microliter regime. Likewise addressed are the known problems connected with reliable microfabrication of metal coatings and the insulating layers required to shield these layers from the PCR reaction mix, and the longstanding unresolved issue of exposed metal regions in the PCR-CE chip resulting in electrolysis of water and bubble formation whenever a voltage is applied.
    Type: Application
    Filed: July 16, 2001
    Publication date: May 23, 2002
    Applicant: Affymetrix, Inc.
    Inventors: Richard A. Mathies, Peter C. Simpson, Stephen J. Williams
  • Patent number: 6387234
    Abstract: The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: May 14, 2002
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Edward S. Yeung, Hongdong Tan
  • Patent number: 6358387
    Abstract: Analytical systems and methods that use a modular interface structure for providing an interface between a sample substrate and an analytical unit, where the analytical unit typically has a particular interface arrangement for implementing various analytical and control functions. Using a number of variants for each module of the modular interface structure advantageously provides cost effective and efficient ways to perform numerous tests using a particular substrate or class of substrates with a particular analytical and control systems interface arrangement. Improved optical illumination and detection system for simultaneously analyzing reactions or conditions in multiple parallel microchannels are also provided.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: March 19, 2002
    Assignee: Caliper Technologies Corporation
    Inventors: Anne R. Kopf-Sill, Andrea W. Chow, Peter C. Jann, Morten J. Jensen, Michael Spaid, Colin B. Kennedy, Michael J. Kennedy
  • Publication number: 20010045358
    Abstract: Analytical systems and methods that use a modular interface structure for providing an interface between a sample substrate and an analytical unit, where the analytical unit typically has a particular interface arrangement for implementing various analytical and control functions. Using a number of variants for each module of the modular interface structure advantageously provides cost effective and efficient ways to perform numerous tests using a particular substrate or class of substrates with a particular analytical and control systems interface arrangement. Improved optical illumination and detection system for simultaneously analyzing reactions or conditions in multiple parallel microchannels are also provided.
    Type: Application
    Filed: July 31, 2001
    Publication date: November 29, 2001
    Inventors: Anne R. Kopf-Sill, Andrea W. Chow, Peter C. Jann, Morten J. Jensen, Michael Spaid, Colin B. Kennedy, Michael Kennedy