Coating Predominantly Semiconductor Substrate (e.g., Silicon, Compound Semiconductor, Etc.) Patents (Class 205/157)
  • Publication number: 20140183051
    Abstract: A system and method generate atomic hydrogen (H) for deposition of a pure metal in a three-dimensional (3D) structure. The method includes forming a monolayer of a compound that includes the pure metal. The method also includes depositing the monolayer on the 3D structure and immersing the 3D structure with the monolayer in an electrochemical cell chamber including an electrolyte. Applying a negative bias voltage to the 3D structure with the monolayer and a positive bias voltage to a counter electrode generates atomic hydrogen from the electrolyte and deposits the pure metal from the monolayer in the 3D structure.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 3, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Chudzik, Min Dai, Rishikesh Krishnan, Joseph F. Shepard, JR.
  • Patent number: 8741113
    Abstract: The present invention concerns an electrochemical pattern replication method, ECPR, and a construction of a conductive electrode for production of applications involving micro and nano structures. An etching or plating pattern, which is defined by a conductive electrode, a master electrode, is replicated on an electrically conductive material, a substrate. The master electrode is put in close contact with the substrate and the etching/plating pattern is directly transferred onto the substrate by using a contact etching/plating process. The contact etching/plating process is performed in local etching/plating cells, that are formed in closed or open cavities between the master electrode and the substrate.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: June 3, 2014
    Assignee: Centre de Recherche Public—Gabriel Lippmann
    Inventors: Patrik Möller, Mikael Fredenberg, Peter Wiwen-Nilsson
  • Patent number: 8728939
    Abstract: A single-crystal substrate is placed on a supporting table while maintaining crystalline orientation of the single-crystal substrate. The single-crystal substrate has contacting regions on a periphery of an upper surface of the single-crystal substrate. Linear contacting surfaces of contacting pins are placed in contact with the contacting regions of the single-crystal substrate placed on the supporting table. Longitudinal directions on the contacting surfaces of all the contacting pins are not parallel to intersecting lines of the upper surface of the single-crystal substrate and cleaved surfaces of the single-crystal substrate.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 20, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Maeda, Koichiro Nishizawa
  • Publication number: 20140110265
    Abstract: An electrode for forming an electrochemical cell with a substrate and a method of forming said electrode. The electrode comprises a carrier provided with an insulating layer which is patterned at a front side. Conducting material in an electrode layer is applied in the cavities of the patterned insulating layer and in contact with the carrier. A connection layer is applied at the backside of the carrier and in contact with the carrier. The periphery of the electrode is covered by the insulating material.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: CENTRE DE RECHERCHE PUBLIC - GABRIEL LIPPMANN
    Inventors: Mikael Fredenberg, Patrik Möller, Peter Wiwen-N ilsson, Cecilia Aronsson, Matteo Dainese
  • Publication number: 20140090982
    Abstract: A method for plating metal to a solar cell is disclosed. The method includes plating a metal layer only on the surface of solar cell without plating metal along the solar cell edges by conducting a first current in a first direction in an electroplating bath, ejecting metal from the metal layer by conducting a second current in a second direction and plating additional metal to the metal layer by conducting a third current in the first direction. The first, second and third current can be alternated. Subsequent to an electroplating process, an ultrasonic cleaning process is performed on the solar cell to remove any excess plated metal along the surface and edges of the solar cell.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventor: Joseph Behnke
  • Patent number: 8685221
    Abstract: One embodiment is a method for void-free metallic electrofilling inside openings, said method includes: providing a substrate with at least one opening, the substrate includes an electrically conductive surface, including inside the at least one opening; immersing the substrate in an electrolyte contained in an ECD cell, the ECD cell includes at least one anode and a cathode, the cathode includes at least a portion of the conductive surface, the electrolyte includes plating metallic ions and at least one inhibitor additive, said metallic ions and at least one inhibitor additive having concentrations; providing electrolyte agitation across the substrate surface; and applying electroplating current density to the substrate; wherein the agitation, the concentrations, and the electroplating current density are such to produce void-free metallic electrofilling of the at least one opening, and wherein a height of electrodeposited surface bumps, or transition steps or humps, or transition spikes, is less than 140 nm
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: April 1, 2014
    Inventor: Uri Cohen
  • Patent number: 8679317
    Abstract: A copper electroplating bath useful in filling non-through holes formed on a substrate which contains a water-soluble copper salt, sulfuric acid, and chloride ions and further contains a brightener, a carrier, and a leveler as additives, wherein the leveler contains at least one water-soluble polymer containing quaternary nitrogen, tertiary nitrogen, or both which are cationizable in a solution. In the copper electroplating bath, the filling power for non-through holes formed on a substrate can be easily controlled so as to fit to the size of the holes only by changing the quaternary nitrogen to tertiary nitrogen ratio of the water-soluble polymer to be used as the leveler, which enables copper electroplating of non-through holes of various sizes with a good fit to the sizes.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: March 25, 2014
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Toshihisa Isono, Shinji Tachibana, Tomohiro Kawase, Naoyuki Omura
  • Publication number: 20140054020
    Abstract: A method for fabricating a heat sink may include: providing a carbon fiber fabric having carbon fibers and openings, the openings leading from a first side to a second side of the fabric; and electroplating the fabric with metal, wherein metal is deposited with a higher rate at the first side than at the second side of the fabric. Another method for fabricating a heat sink may include: providing a carbon metal composite having metal-coated carbon fibers and openings, the openings leading from a first side to a second side of the carbon metal composite; disposing the composite over a semiconductor element such that the first side of the composite faces the semiconductor element; and bonding the composite to the semiconductor element by means of an electroplating process, wherein metal electrolyte is supplied to an interface between the carbon metal composite and the semiconductor element via the openings.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 27, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Friedrich Kroener
  • Publication number: 20140048420
    Abstract: A method for fabricating one-dimensional metallic nanostructures comprises steps: sputtering a conductive film on a flexible substrate to form a conductive substrate; placing the conductive substrate in an electrolytic solution, and undertaking electrochemical deposition to form one-dimensional metallic nanostructures corresponding to the conductive film on the conductive substrate. The method fabricates high-surface-area one-dimensional metallic nanostructures on a flexible substrate, exempted from the high price of the photolithographic method, the complicated process of the hard template method, the varied characteristic and non-uniform coating of the seed-mediated growth method.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 20, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yu-Liang CHEN, Nai-Ying CHIEN, Hsin-Tien CHIU, Chi-Young LEE
  • Publication number: 20140035168
    Abstract: A bonding pad for thermocompression bonding of a carrier material to a further carrier material includes a base layer and a top layer. The base layer is made of metal, is deformable, and is connected to the carrier material. The metal is nickel-based. The top layer is metallic and is connected directly to the base layer. The top layer is arranged at least on a side of the base layer which faces away from the carrier material. The top layer has a smaller layer thickness than the base layer. In at least one embodiment, the top layer has a greater oxidation resistance than the base layer.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 6, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Christoph Schelling, David Borowsky
  • Publication number: 20140001048
    Abstract: The present invention relates to a coating method by electrocatalyzed chemical grafting of a surface of a substrate with a polymeric layer characterized in that it comprises the following steps: a. a substrate is provided, b. a bath containing at least one polymerizable monomer via a radical route, at least one cleavable aryl salt, at least one reducing agent and at least one solvent is provided, in which a potential difference is applied, c. said substrate is immersed in said bath, d. a grafted polymer is obtained on the surface of said substrate. The invention also relates to a substrate obtained according to the coating method by electrocatalyzed chemical grafting, the surface of which is coated with a polymeric layer.
    Type: Application
    Filed: December 21, 2011
    Publication date: January 2, 2014
    Applicant: PEGASTECH
    Inventors: Sebastien Roussel, Matthieu Laurent, Christian Maennel
  • Patent number: 8603314
    Abstract: Semiconductors are electrochemically etched in solutions containing sources of bifluoride and nickel ions. The electrochemical etching may form pores in the surface of the semiconductor in the nanometer range. The etched semiconductor is then nickel plated.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 10, 2013
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Gary Hamm, Jason A. Reese, George R. Allardyce
  • Patent number: 8591716
    Abstract: A semiconductor substrate with anode pattern is anodized to be shaped into an optical lens. The anodization utilizes an electrolytic solution which etches out oxidized portion as soon as it is formed as a result of the anodization, to thereby develop a porous layer in a pattern in match with the anode pattern. After being removed of the porous layer, the substrate is treated to smooth out minute projections remaining in the top surface of the substrate, thereby obtaining the lens of good transmissivity.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: November 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Yoshiaki Honda, Takayuki Nishikawa, Tomohiro Kamitsu
  • Patent number: 8591715
    Abstract: The present invention relates to an electrodeposition composition intended particularly for coating a semiconductor substrate in order to fabricate structures of the “through via” type for the production of interconnects in integrated circuits. According to the invention, the said solution comprises copper ions in a concentration of between 14 and 120 mM and ethylenediamine, the molar ratio between ethylenediamine and copper being between 1.80 and 2.03 and the pH of the electrodeposition solution being between 6.6 and 7.5. The present invention also relates to the use of the said electrodeposition solution for the deposition of a copper seed layer, and to the method for depositing a copper a seed layer with the aid of the electrodeposition solution according to the invention.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: November 26, 2013
    Assignee: Alchimer
    Inventors: Saïd Zahraoui, Frédéric Raynal
  • Patent number: 8574418
    Abstract: The object of the present invention is a method of coating a surface of a substrate with copper by electroplating. According to the invention, this method comprises: a step during which the surface to be coated is brought into contact with an electroplating bath while the surface is not under electrical bias; a step of forming the coating during which the surface is biased; a step during which the surface is separated from the electroplating bath while it is under electrical bias; the aforementioned electroplating bath comprising, in solution in a solvent: a source of copper ions, with a concentration of between 0.4 and 40mM; and at least one copper complexing agent.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: November 5, 2013
    Assignee: Alchimer
    Inventors: Hervé Monchoix, Frédéric Raynal, Jérôme Daviot, José Gonzalez
  • Publication number: 20130284604
    Abstract: Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 31, 2013
    Inventors: Tighe A. Spurlin, Charles L. Merrill, Ludan Huang, Matthew Thorum, Lee Brogan, James E. Duncan, Frederick D. Wilmot, Marshall R. Stowell, Steven T. Mayer, Haiying Fu, David W. Porter, Shantinath Ghongadi, Jonathan D. Reid, Hyosang S. Lee, Mark J. Willey
  • Publication number: 20130284602
    Abstract: A device for metalizing wafers, in particular microchip wafers, in an electrolyte, contains a plurality of holder arrangements. Each holder arrangement has a chamber for the electrolyte which is separate from the electrolyte-receiving chambers in other holder devices, a ring acting as cathode, and an anode system as the anode being associated with each wafer.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 31, 2013
    Inventor: Markus Hacksteiner
  • Publication number: 20130277618
    Abstract: The present disclosure includes purification and deposition methods for single-walled carbon nanotubes (SWNTs) that allow for purification without damaging the SWNTs. The present disclosure includes methods for reducing electrical resistance in SWNT networks.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventors: Marcus D. Lay, Pornnipa Vichchulada, Nidhi P. Bhatt
  • Patent number: 8551313
    Abstract: An electroplating apparatus and method for depositing a metallic layer on the surface of a wafer is provided wherein said apparatus and method do not require physical attachment of an electrode to the wafer. The surface of the wafer to be plated is positioned to face the anode and a plating fluid is provided between the wafer and the electrodes to create localized metallic plating. The wafer may be positioned to physically separate and lie between the anode and cathode so that one side of the wafer facing the anode contains a catholyte solution and the other side of the wafer facing the cathode contains an anolyte solution. Alternatively, the anode and cathode may exist on the same side of the wafer in the same plating fluid. In one example, the anode and cathode are separated by a semi permeable membrane.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Eduard Cartier, Hariklia Deligianni, Rajarao Jammy, Vamsi K. Paruchuri
  • Patent number: 8545687
    Abstract: Apparatus for the electrolytic treatment of the product L using a treatment agent is used to make the treatment of a plate-shaped product more uniform. This apparatus includes devices 40, 42 for retaining the product L in the apparatus, one or more flow devices 10, which each include at least one nozzle 15 and are disposed situated opposite the product L, one or more counter electrodes 30, which are inert relative to the treatment agent and are disposed parallel to at least one treatment surface, eccentric motor means for generating a relative movement 44 between the product L, on the side, and the flow devices 10 and/or the counter electrodes 30, on the other side, in at least one direction parallel to a treatment surface. The product L can be immersed in the treatment agent during treatment.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: October 1, 2013
    Assignee: Atotech Deutschland GmbH
    Inventors: Reinhard Schneider, Henry Kunze, Ferdinand Wiener
  • Publication number: 20130224887
    Abstract: A laminated magnetic core, which has a number of magnetic layers and a number of insulation layers which are arranged so that an insulation layer lies between each vertically adjacent pair of magnetic layers, is formed in a method that forms the magnetic layers with an electroplating process, and the insulation layers with a sputter depositing process.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Inventors: Dok Won Lee, Andrei Papou, William French, Peter J. Hopper
  • Patent number: 8518224
    Abstract: The present invention provides a plating apparatus with multiple anode zones and cathode zones. The electrolyte flow field within each zone is controlled individually with independent flow control devices. A gas bubble collector whose surface is made into pleated channels is implemented for gas removal by collecting small bubbles, coalescing them, and releasing the residual gas. A buffer zone built within the gas bubble collector further allows unstable microscopic bubbles to dissolve.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 27, 2013
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Yue Ma, Xi Wang, Yunwen Huang, Zhenxu Pang, Voha Nuch, David Wang
  • Publication number: 20130199935
    Abstract: A method for metallizing a through silicon via feature in a semiconductor integrated circuit device substrate. The method comprises immersing the semiconductor integrated circuit device substrate into an electrolytic copper deposition composition, wherein the through silicon via feature has an entry dimension between 1 micrometers and 100 micrometers, a depth dimension between 20 micrometers and 750 micrometers, and an aspect ratio greater than about 2:1; and supplying electrical current to the electrolytic deposition composition to deposit copper metal onto the bottom and sidewall for bottom-up filling to thereby yield a copper filled via feature.
    Type: Application
    Filed: May 24, 2011
    Publication date: August 8, 2013
    Applicant: ENTHONE INC.
    Inventors: Thomas B. Richardson, Wenbo Shao, Xuan Lin, Cai Wang, Vincent Paneccasio, JR., Joseph A. Abys, Yun Zhang, Richard Hurtubise, Chen Wang
  • Patent number: 8496790
    Abstract: An electrochemical processor may include a head having a rotor configured to hold a workpiece, with the head moveable to position the rotor in a vessel. Inner and outer anodes are in inner and outer anolyte chambers within the vessel. An upper cup in the vessel, has a curved upper surface and inner and outer catholyte chambers. A current thief is located adjacent to the curved upper surface. Annular slots in the curved upper curved surface connect into passageways, such as tubes, leading into the outer catholyte chamber. Membranes may separate the inner and outer anolyte chambers from the inner and outer catholyte chambers, respectively.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 30, 2013
    Assignee: APPLIED Materials, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh
  • Patent number: 8496789
    Abstract: An electrochemical processor may include a head having a rotor configured to hold a workpiece, with the head moveable to position the rotor in a vessel. Inner and outer anodes are in inner and outer anolyte chambers within the vessel. An upper cup in the vessel, has a curved upper surface and inner and outer catholyte chambers. A current thief is located adjacent to the curved upper surface. Annular slots in the curved upper curved surface connect into passageways, such as tubes, leading into the outer catholyte chamber. Membranes may separate the inner and outer anolyte chambers from the inner and outer catholyte chambers, respectively.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 30, 2013
    Assignee: APPLIED Materials, Inc.
    Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson
  • Publication number: 20130168825
    Abstract: A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 4, 2013
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventor: Alliance for Sustainable Energy, LLC
  • Patent number: 8475633
    Abstract: Provided is a method for preparing an epoxy substrate having a nanopattern, including: (a) forming a titanium oxide film by anodizing a titanium substrate; (b) obtaining a titanium substrate having a concave shape formed on the surface by removing the titanium oxide film from the titanium substrate on which the titanium oxide film has been formed; (c) coating an epoxy resin onto the titanium substrate on which the concave shape has been formed; and (d) obtaining an epoxy substrate having a nanopattern of convex surfaces by removing the titanium substrate.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: July 2, 2013
    Assignee: BioBud Co., Ltd.
    Inventors: Kwang Hoe Chung, Sung Yu Hong, Hyun Ju Doh, Jin Sub Choi, Jae Hoon Lim, Sung Joong Kim
  • Publication number: 20130122326
    Abstract: An electrodeposited nano-twins copper layer, a method of fabricating the same, and a substrate comprising the same are disclosed. According to the present invention, at least 50% in volume of the electrodeposited nano-twins copper layer comprises plural grains adjacent to each other, wherein the said grains are made of stacked twins, the angle of the stacking directions of the nano-twins between one grain and the neighboring grain is between 0 to 20 degrees. The electrodeposited nano-twins copper layer of the present invention is highly reliable with excellent electro-migration resistance, hardness, and Young's modulus. Its manufacturing method is also fully compatible to semiconductor process.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 16, 2013
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventor: NATIONAL CHIAO TUNG UNIVERSITY
  • Patent number: 8425753
    Abstract: The present invention provides a method and precursor structure to form a solar cell absorber layer. The method includes electrodepositing a first layer including a film stack including at least a first film comprising copper, a second film comprising indium and a third film comprising gallium, wherein the first layer includes a first amount of copper, electrodepositing a second layer onto the first layer, the second layer including at least one of a second copper-indium-gallium-ternary alloy film, a copper-indium binary alloy film, a copper-gallium binary alloy film and a copper-selenium binary alloy film, wherein the second layer includes a second amount of copper, which is higher than the first amount of copper, and electrodepositing a third layer onto the second layer, the third layer including selenium; and reacting the precursor stack to form an absorber layer on the base.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 23, 2013
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Mustafa Pinarbasi
  • Patent number: 8389696
    Abstract: Polymerizable diazonium salts having redox properties and absorption in the visible range, a process for preparing them and uses thereof are disclosed. The salts have the general formula: [XX+LnDdEm(N2+)p][(B?)p+x] in which: X is chosen from transition metals, preferably X is chosen from ruthenium (Ru), osmium (Os), iron (Fe), cobalt (Co) and iridium (Ir), x is an integer ranging from 1 to 5 inclusive, L is a ligand chosen from pyridine, bipyridine, terpyridine, phenanthroline and phenylpyridine groups, and mixtures thereof, n is an integer ranging from 1 to 5 inclusive, D is a saturated or unsaturated, C1-C5 alkyl spacer compound, d=0 or 1, E is an aromatic or polyaromatic spacer compound that can contain one or more heteroatoms, m is an integer ranging from 0 to 5 inclusive, p is an integer, and B is a counterion.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 5, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Gérard Bidan, Bruno Jousselme, Rémi De Bettignies
  • Patent number: 8333879
    Abstract: A composition for use in electrodeposition includes a resin blend, a coalescing solvent, a catalyst, water, and a highly cross-linked microgel, wherein at least 20 percent by weight of resin solids in the composition is the highly cross-linked microgel. Another composition for use in electrodeposition includes a surfactant blend, a low ion polyol, phenoxypropanol, a catalyst, water, a flexibilizer, and a highly cross-linked microgel, wherein at least 20 percent by weight of resin solids in the composition is the highly cross-linked microgel.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 18, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Kelly L. Moore, Michael J. Pawlik, Michael G. Sandala, Craig A. Wilson
  • Publication number: 20120305403
    Abstract: An electrical chemical plating process is provided. A semiconductor structure is provided in an electrical plating platform. A pre-electrical-plating step is performed wherein the pre-electrical-plating step is carried out under a fixed voltage environment and lasts for 0.2 to 0.5 seconds after the current is above the threshold current of the electrical plating platform. After the pre-electrical-plating step, a first electrical plating step is performed on the semiconductor structure.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Inventors: Chun-Ling Lin, Yen-Liang Lu, Chi-Mao Hsu, Chin-Fu Lin, Chun-Hung Chen, Tsun-Min Cheng, Meng-Hong Tsai
  • Patent number: 8318552
    Abstract: A process for forming gate structures is described. A web comprises a substrate, a plurality of conductive elements disposed on the substrate, and a conductive anodization bus. The web is moved through an anodization station to form a plurality of gate structures comprising a plurality of gate dielectrics adjacent to a plurality of gate electrodes. A process for forming electronic devices further providing a semiconductor, a source electrode, and a drain electrode is described.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: November 27, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Jeffrey H. Tokie, Michael A. Haase, Robert J. Schubert, Michael W. Bench, Donald J. McClure, Grace L. Ho
  • Patent number: 8303791
    Abstract: An electrochemical process comprising: providing a 125 mm or larger semiconductor wafer in electrical contact with a conducting surface, wherein at least a portion of the semiconductor wafer is in contact with an electrolytic solution, said semiconductor wafer functioning as a first electrode; providing a second electrode in the electrolytic solution, the first and second electrode connected to opposite ends of an electric power source; and irradiating a surface of the semiconductor wafer with a light source as an electric current is applied across the first and the second electrodes. The invention is also directed to an apparatus including a light source and electrochemical components to conduct the electrochemical process.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: November 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, John M. Cotte, Hariklia Deligianni, Matteo Flotta
  • Publication number: 20120219809
    Abstract: A method for enhancing the friction resistance properties of a substrate comprising a step consisting of grafting onto all or part of the surface of said substrate a polymer organic film of the non-substituted polyphenylene type as well as to the thus prepared substrate.
    Type: Application
    Filed: September 17, 2010
    Publication date: August 30, 2012
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Alessandro Benedetto, Pascal Viel, Sophie Noel
  • Patent number: 8236159
    Abstract: Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 7, 2012
    Assignee: Applied Materials Inc.
    Inventors: Rajesh Baskaran, Robert W. Batz, Jr., Bioh Kim, Tom L. Ritzdorf, John L. Klocke, Kyle M. Hanson
  • Publication number: 20120196035
    Abstract: A method for modifying the surface energy of at least one surface of a solid is provided. The method may comprise a step consisting of grafting, on the surface, a polymeric organic film consisting of graft polymers, each polymer having a first unit bound directly to the surface derived from a cleavable aryl salt and at least one other unit of the polymer chain derived from a component selected from the group consisting of a cleavable fluorinated aryl salt, a fluorinated (meth)acrylate and a vinyl-terminated siloxane. In addition, a kit for implementation of the method is provided.
    Type: Application
    Filed: April 2, 2010
    Publication date: August 2, 2012
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Guy Deniau, Fabien Nekelson, Brigitte Mouanda
  • Patent number: 8216438
    Abstract: Provided is a copper anode or a phosphorous-containing copper anode for use in performing electroplating copper on a semiconductor wafer, wherein purity of the copper anode or the phosphorous-containing copper anode excluding phosphorous is 99.99 wt % or higher, and silicon as an impurity is 10 wtppm or less. Additionally provided is an electroplating copper method capable of effectively preventing the adhesion of particles on a plating object, particularly onto a semiconductor wafer during electroplating copper, a phosphorous-containing copper anode for use in such electroplating copper, and a semiconductor wafer comprising a copper layer with low particle adhesion formed by the foregoing copper electroplating.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: July 10, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Akihiro Aiba, Hirofumi Takahashi
  • Publication number: 20120168800
    Abstract: A lead frame for an optical semiconductor device, having a reflection layer (2) composed of silver or a silver alloy formed on an outermost surface of an electrically-conductive substrate (1), in which a thickness of the reflection layer is from 0.2 to 5.0 ?m, and in which an intensity ratio of a (200) plane is 20% or more to the total count number when the silver or the silver alloy of the reflection layer is measured by an X-ray diffraction method; a method of producing the same; and an optical semiconductor device utilizing the same.
    Type: Application
    Filed: June 23, 2010
    Publication date: July 5, 2012
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiaki Kobayashi, Shin Kikuchi
  • Publication number: 20120164529
    Abstract: An electrode for lithium ion batteries, the electrode having a metal film which is inert to lithium ions and having a plurality of silicon nanowires protruding from the film, which are arranged on at least one flat side of the film, wherein sections of the nanowires are enclosed by the metal film.
    Type: Application
    Filed: July 9, 2010
    Publication date: June 28, 2012
    Applicant: CHRISTIAN-ALBRECHTES-UNIVERSITAT ZU KIEL
    Inventors: Joerg Bahr, Juergen Carstensen, Helmut Foell, Oliver Riemenschneider, Hauke Hartz, Emmanuel Ossei-Wusu
  • Publication number: 20120152294
    Abstract: A thermoelectric material includes powders having a surface coated with an inorganic material. The thermoelectric material includes a thermoelectric semiconductor powder and a coating layer on an outer surface of the thermoelectric semiconductor powders.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-il KIM, Kyu-hyoung LEE, Sang-mock LEE
  • Publication number: 20120145553
    Abstract: This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: November 3, 2011
    Publication date: June 14, 2012
    Applicant: SOLEXEL, INC.
    Inventors: Karl-Josef Kramer, Mehrdad M. Moslehi, Subramanian Tamilmani, George D. Kamian, Jay Ashjaee, Takao Yonehara
  • Patent number: 8177944
    Abstract: A plating apparatus can form a bump having a flat top or can form a metal film having a good in-plane uniformity even when the plating of a plating object (substrate) is carried out under high-current density conditions. The plating apparatus includes a plating tank for holding a plating solution; an anode to be immersed in the plating solution in the plating tank; a holder for holding a plating object and disposing the plating object at a position opposite the anode; a paddle, disposed between the anode and the plating object held by the holder, which reciprocates parallel to the plating object to stir the plating solution; and a control section for controlling a paddle drive section which drives the paddle. The control section controls the paddle drive section so that the paddle moves at a velocity whose average absolute value is 70 cm/sec to 100 cm/sec.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: May 15, 2012
    Assignee: Ebara Corporation
    Inventors: Nobutoshi Saito, Jumpei Fujikata, Tadaaki Yamamoto, Kenji Kamimura
  • Publication number: 20120097547
    Abstract: The present invention is related to a method for electroplating a copper deposit onto a substrate, wherein the method comprises the steps of: a) immersing the substrate into an electroplating bath having a copper ion concentration comprised between 0.5 mmol·l?1 and 50 mmol·l?1, and an acid concentration comprised between 0.05% and 10% per volume of said electroplating bath; and wherein the method further comprises the step of b) electroplating the copper deposit from the electroplating bath onto the substrate. In particular, the present invention is directed to an improved method for the manufacture of semiconductor integrated circuit (IC) devices provided with sub-100 nm features.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 26, 2012
    Applicants: UNIVERSITEIT GENT, IMEC
    Inventors: Philippe M. Vereecken, Tanya A. Atanasova, Margalit Nagar, Aleksandar Radisic
  • Publication number: 20120090825
    Abstract: A device including a micro component having an external surface and a permeable nanofiber covering on at least a portion of the external surface of the micro component. A cooled micro component system further includes a droplet spray system for spraying liquid droplets onto the nanofiber covering to cool the micro component. In an example method for cooling a micro component, droplet spray is directed onto a nanofiber covering that covers at least a portion of the micro component. The directing is controlled to permit efficient spreading and evaporation of liquid permeating the nanofiber covering. In example embodiments nanofibers of the permeable nanofiber covering are metalized to provide a rougher surface (e.g., a nano-textured metal layer).
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Alexander L. Yarin, Srikar Raman, Tatiana Gambaryan-Roisman, Suman Sinha Ray, Yiyun Zhang
  • Patent number: 8153904
    Abstract: A substrate panel is disclosed. The substrate panel may include a clamp contact, a bus line formed at a distance from the clamp contact, and a plurality of substrate units supplied with an electric current by way of the bus line, where an insulation part may be formed between the clamp contact and the bus line, through which electricity may not flow.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 10, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hee-Soo Yoon, Chang-Hwan Choi, Soo-Heung Lee, Jong-Soo Yoo, Dal-Hyun Yoo, Ji-Chul An, Jeong-Hoon Park
  • Patent number: 8137569
    Abstract: A method of fabricating a membrane having a tapered pore, a polymeric membrane having a tapered pore, and uses of such polymeric membrane are disclosed. The membrane includes apertures of increasing diameter which are aligned with each other to form the tapered pore.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 20, 2012
    Assignees: Sony Deutschland GmbH, Oxford Nanopore Technologies Limited
    Inventors: Oliver Harnack, Jurina Wessels, Akio Yasuda, James Clarke, Terry Reid
  • Publication number: 20120061246
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Patent number: 8133376
    Abstract: A plating method and a plating apparatus, which has a plurality of plating units, for plating a substrate. Each of the plating units includes a plating tank for containing a plating solution therein, a water cleaning tank, disposed adjacent to said plating tank for cleaning the substrate with water, a substrate holder for holding the substrate in a vertical orientation, a vertical displacing mechanism for vertically dipping the substrate holder and a substrate held thereby in the plating solution in the plating tank, and a lateral displacing mechanism or a back-and-forth displacing mechanism for moving the substrate holder while holding the substrate in a vertical orientation between the plating tank and the water cleaning tank. The plating unit also includes a loading/unloading station for loading and unloading the substrate, and a transfer device for transferring the substrate between the plating unit and the loading/unloading station.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: March 13, 2012
    Assignee: Ebara Corporation
    Inventors: Junichiro Yoshioka, Seiji Katsuoka, Masahiko Sekimoto, Yasuhiko Endo, Yugang Guo
  • Patent number: 8123926
    Abstract: Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Baskaran, Robert W Batz, Jr., Bioh Kim, Tom L Ritzdorf, John L Klocke, Kyle M Hanson