Forming Nonelectrolytic Coating After Forming Nonmetal Electrolytic Coating Patents (Class 205/198)
  • Patent number: 7563354
    Abstract: Application of a redox polymer of the poly-[Me(R-Salen)] type onto a conducting substrate is accomplished by the method of electrochemical polymerization. Said polymerization is accomplished by supplying a voltage between the substrate (that serves as an anode) and a counter electrode (that serves as a cathode), with both of them being submerged into the electrolyte containing an organic solvent and the compounds capable of dissolving in said solvent. The process is accompanied by the production of electrochemically inactive (at concentrations of no less than 0.01 mol/l) ions within the range of potentials from ?3.0 V to +1.5 V, and metal complex [Me(R-Salen)] dissolved at a concentration of no less than 5-10?5 mol/l, (where: Me is a transition metal having at least two different degrees of oxidation, R is an electron-donating substituent, Salen is a residue of bis-(salicylaldehyde)-ethylenediamine in Schiff's base.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: July 21, 2009
    Assignee: GEN3 Partners, Inc.
    Inventors: Alexander Mikhailovich Timonov, Sergey Anatolijevich Logvinov, Dmitriy Ivanovich Pivunov, Svetlana Viktorovna Vasiljeva, Nik Shkolnik, Sam Kogan
  • Publication number: 20090169903
    Abstract: The present invention provides a process for producing a metal substrate with a multilayer film that has excellent corrosion resistance. Specifically, the process comprising immersing a metal substrate in an aqueous bismuth compound solution (A) and applying an electric current between the metal substrate and an electrode to thereby form a coating film (F1) on the metal substrate; and then applying a coating composition (B) on the coating film (F1) to form a coating film (F2).
    Type: Application
    Filed: December 9, 2008
    Publication date: July 2, 2009
    Applicant: KANSAI PAINT CO., LTD.
    Inventor: Kentaro KUBOTA
  • Publication number: 20090136768
    Abstract: The instant invention relates to novel hydroxyphenyl triazine UV-absorbers with an aromatic carbocyclic fused ring system having a long wavelength shifted absorption spectrum with significant absorbance up to 420 nm. Further aspects of the invention are a process for their preparation, a UV stabilized composition containing the new UV-absorbers, a process for the stabilization of organic materials and the use of the new compounds as UV-light stabilizers for organic materials.
    Type: Application
    Filed: May 31, 2006
    Publication date: May 28, 2009
    Inventors: Thomas Vogel, Adalbert Braig, Thomas Schafer, Rachel Kohli Steck, Valerie Stutz
  • Publication number: 20080176079
    Abstract: A process for coating vehicle parts comprising composite articles having good mechanical properties and smooth surface appearance comprising a reinforced thermoplastic polymeric component and a film.
    Type: Application
    Filed: December 4, 2007
    Publication date: July 24, 2008
    Inventors: Andri E. Elia, Toshikazu Kobayashi, William Daniel Saunders
  • Patent number: 7323221
    Abstract: The present invention relates to a process for the coating of objects made of valve metals or their alloys with a thin barrier layer consisting of the metal and an oxide ceramic layer provided thereon whose surface has been coated with fluoropolymers, characterized in that the fluoropolymers are introduced into the capillary system of the oxide ceramic layer in the form of a solution by vacuum impregnation, followed by removing the non-wetting portions of the solution and drying.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: January 29, 2008
    Assignee: Leybold Vakuum GmbH
    Inventors: Josef Heppekausen, Frank Schulte
  • Patent number: 7267859
    Abstract: The presently disclosed invention provides for the fabrication of porous anodic alumina (PAA) films on a wide variety of substrates. The substrate comprises a wafer layer and may further include an adhesion layer deposited on the wafer layer. An anodic alumina template is formed on the substrate. When a rigid substrate such as Si is used, the resulting anodic alumina film is more tractable, easily grown on extensive areas in a uniform manner, and manipulated without danger of cracking. The substrate can be manipulated to obtain free-standing alumina templates of high optical quality and substantially flat surfaces PAA films can also be grown this way on patterned and non-planar surfaces. Furthermore, under certain conditions the resulting PAA is missing the barrier layer (partially or completely) and the bottom of the pores can be readily accessed electrically.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: September 11, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Oded Rabin, Paul R. Herz, Mildred S. Dresselhaus, Akintunde I. Akinwande, Yu-Ming Lin
  • Patent number: 7229545
    Abstract: A biomimetically produced bone-analogous coating, comprising organic and inorganic main constituents, is suitable for coating metallic implant materials of any desired surfaces. The coating comprises a collagen matrix mineralized with calcium phosphate.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: June 12, 2007
    Assignee: Biomet Deutschland GmbH
    Inventors: Andreas Sewing, Michel Dard, Sophie Roessler, Dieter Scharnweber, Hartmut Worch
  • Patent number: 7204925
    Abstract: A structure and a method of preventing electrolytic corrosion for a magnesium alloy member (20), the structure wherein a first coated layer (11) formed by electro deposition and a second coated layer (12) formed by distributing PTFE particles on the first coated layer (11) are covered on the surface of a tightening member (1) at least on a surface coming into contact with the magnesium alloy member (20), whereby, the electrolytic corrosion of the magnesium alloy member can be prevented at a low cost by insulating a tightening member such as a steel bolt and a washer from the magnesium alloy member, and an adhesiveness therebetween can be sufficiently assured.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 17, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Sadaharu Matsumura, Tsuyoshi Kawabe, Tetsuya Saito, Katsumi Sakamoto, Ryosuke Kamegamori
  • Patent number: 6866896
    Abstract: An electroless or electrolytic process for treating metallic surfaces is disclosed. The disclosed process exposes the metallic surface to a first medium comprising at least one silicate, and then to a second medium comprising colloidal silica (additional processing steps can be employed before, between and after exposure to the first and second mediums). The first and second mediums can be electrolytic or electroless.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: March 15, 2005
    Assignee: Elisha Holding LLC
    Inventors: Robert L. Heimann, Bruce Flint, Ravi Chandran, Jonathan L. Bass, James S. Falcone, Jr.
  • Patent number: 6830821
    Abstract: A method for coating zinc, zinc plated, or steel articles with a hydroxy benzoic acid protective coating by coating a cleaned zinc, zinc plated, or steel with a hydoxy benzoic acid composition having a pH of about 2.0 to 5.0; and coating cleaned tin surfaced articles with a composition having a PH of 2.0 to 12.0, and the composition having as its essential ingredients proteins, amino acids, amino acid—protein compounds and amine alcohols; and the articles produced thereby along with the coated articles having an appropriate paint thereon.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: December 14, 2004
    Assignee: Sanchem, Inc.
    Inventor: John W. Bibber
  • Patent number: 6814845
    Abstract: Improved biosensors are provided having excellent selectivity and stability properties, together with methods of preparing the biosensors. A preferred biosensor includes an electrode (12) having enzyme (16) deposited thereon together with a layer of electropolymerized polymer (18) intermingled with the enzyme (16); a crosslinked silane film (20) is applied over the polymer layer (18), and a final coating (22) of polyurethane is formed over the film (20). In preparative procedures, the enzyme (16) is electrodeposited using an aqueous enzyme solution containing a nonionic surfactant at a concentration level preferably in excess of the critical micelle concentration of the surfactant. In the case of a glucose sensor, the polymer layer (18) is preferably polyphenol, while the silane film is crosslinked (3-aminopropyl) trimethoxysilane. The preferred biosensors have greatly enhanced selectivity stabilities.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: November 9, 2004
    Assignee: University of Kansas
    Inventors: George S. Wilson, Xiaohong Chen, Norio Matsumoto, Yibai Hu
  • Patent number: 6814849
    Abstract: A porous silicon structure is stabilized by anodically oxidizing the structure and then subjecting it to chemical functionalization to protect non-oxidized surface regions, preferably in the presence of 1-decene under thermal conditions. This process creates a protective organic monolayer on the surface of the structure, rendering it highly stable.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: November 9, 2004
    Assignee: National Research Council
    Inventors: David John Lockwood, Rabah Boukherroub, Danial D. M. Wayner, Nobuyoshi Koshida
  • Publication number: 20040159555
    Abstract: A process for forming a multilayer composite coating on a substrate is provided. The process includes forming an electrodeposition coating layer on the substrate by electrodeposition of a curable electrodepositable coating composition over at least a portion of the substrate. Optionally, the coated substrate is heated to a temperature and for a time sufficient to cure the electrodeposition coating layer. A basecoating layer is formed on the electrodeposition coating layer by depositing an aqueous curable basecoating composition directly onto at least a portion of the electrodeposition coating layer. Optionally, the basecoating layer is dehydrated. A top coating layer is formed on the basecoating layer by depositing a curable top coating composition which is substantially pigment-free directly onto at least a portion of the basecoating layer. The top coating layer, the basecoating layer, and, optionally, the electrodeposition coating layer are cured simultaneously.
    Type: Application
    Filed: February 13, 2003
    Publication date: August 19, 2004
    Inventors: Sean Purdy, Dennis A. Simpson, Richard J. Foukes, David M. Aiken, James P. Rowley
  • Publication number: 20040094425
    Abstract: A process for producing a multicoat system on a substrate, in which a) an electrodeposition coating film is deposited on the substrate, b) the electrodeposition coating film is predried by heating to a predrying temperature for a predetermined period, c) a coat of a surfacer is applied to the electrodeposition coating film, and d) the electrodeposition coating film and the coat of the surfacer are baked together at elevated temperatures, and in which the predrying temperature in step b) is equal to the temperature (Tp) or lies above the temperature (Tp) at which the loss factor tan&dgr;, which is the quotient formed from the loss modulus E″ and the storage modulus E′, of the unbaked electrodeposition coating material shows a maximum, and the use of the resulting multicoat system.
    Type: Application
    Filed: March 26, 2003
    Publication date: May 20, 2004
    Inventors: Karl-Heinz Grosse-Brinkhaus, Georg Wigger
  • Patent number: 6689413
    Abstract: Ultra smooth as-deposited composite nickel coatings for use in an information storage system are provided. The composite nickel coatings include an electrolessly deposited nickel layer formed on a sputter deposited nickel layer. The composite nickel coatings have an as-deposited surface roughness of less than about 10 Å. Embodiments include formation of the composite nickel coating on a disk, followed by deposition of an underlayer and magnetic layer thereon to form a magnetic recording medium.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: February 10, 2004
    Assignee: Seagate Technology LLC
    Inventors: Connie C. Liu, Linda L. Zhong, Ian J. Beresford, Lin Huang, Joseph Leigh, David E. Brown
  • Publication number: 20040011657
    Abstract: The present invention provides an improved 2 wet coating system. The present invention relates to a process for forming a multi layered coated film comprising the steps of: forming an uncured electrodeposition coated film on an electrically conductive substrate, applying an intermediate coating on the electrodeposition coated film, and then simultaneously heating and curing the uncured electrodeposition coated film and an uncured intermediate coated film, forming an uncured base coated film on the intermediate coated film, applying a clear top coating on the base coated film, and then simultaneously heating and curing the uncured base coated film and an uncured clear coated film; wherein the electrodeposition coating forms a self-stratifying coated film, and a dynamic glass transition temperature of a resin layer (&agr;) in direct contact with the electrically conductive substrate and that of a resin layer (&bgr;) in direct contact with the intermediate coated film are controlled.
    Type: Application
    Filed: March 5, 2003
    Publication date: January 22, 2004
    Inventors: Hisaichi Muramoto, Hitoshi Hori, Koji Izumiya
  • Patent number: 6610191
    Abstract: The present invention provides plating solutions, particularly metal plating solutions, designed to provide uniform coatings on substrates and to provide substantially defect free filling of small features, e.g., micron scale features and smaller, formed on substrates with none or low supporting electrolyte, i.e., which include no acid, low acid, no base, or no conducting salts, and/or high metal ion, e.g., copper, concentration. Additionally, the plating solutions may contain small amounts of additives which enhance the plated film quality and performance by serving as brighteners, levelers, surfactants, grain refiners, stress reducers, etc.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: August 26, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Uziel Landau, John J. D'Urso, David B. Rear
  • Patent number: 6582583
    Abstract: The present invention provides a novel biosensor for the detection of chemicals of interest. The novel biosensor of the present invention comprises an electrode having a catalytically active cyclodextrin attached thereto. The present invention will be useful for the detection of materials in a wide variety of samples. In particular, the present invention will permit the detection of nitrophenyl esters.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: June 24, 2003
    Assignee: The United States of America as represented by the Department of Health and Human Services
    Inventor: Ellen T. Chen
  • Publication number: 20020025449
    Abstract: The electroactive product of the present invention is a metal cyanide film on a substrate, wherein the improvement is the metal cyanide film having a flux throughput capacity greater than 0.54 millicoulombs/second-cm2 as measured by the specific cyclic voltammetry procedure. The improved metal cyanide film generally has a flux throughput capacity greater than that of unimproved metal cyanide film wherein the improved metal cyanide film was deposited at a slow rate. The present invention enjoys the advantages of greater cation equivalent loading capacity, and achieving ion separations using half the amount of electricity as other electrochemical ion separations.
    Type: Application
    Filed: August 17, 1999
    Publication date: February 28, 2002
    Inventors: JOHANES H. SUKAMTO, MARK F. BUEHLER, SCOT D. RASSAT, RICK J. ORTH, MICHAEL A. LILGA, RICHARD T. HALLEN
  • Patent number: 6346186
    Abstract: A method for electrochemical phosphating of metal surfaces, particularly stainless steel, in connection with cold forming of metal workpieces, which method provides the cold formed workpiece with a lubricant after phosphating, involves an electrochemical phosphating through a cathodic process applying an aqueous phosphating solution containing 0.5 to 100 g Ca2+/l 0.5 to 100 g Zn2+/l 5 to 100 g PO43−/l 0 to 100 g NO3−/l 0 to 100 g ClO3−/l and 0 to 50 g F− or Cl−/l by which the temperature of the solution is between 0 and 95° C., the pH-value of the solution is between 0.5 and 5, and the current density is between 0.1 and 250 mA/cm2. This gives a good lubrication effect, a good adhesion to the metal surface, particularly stainless steel, and a more expedient texture than ordinary phosphating.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: February 12, 2002
    Assignee: Danfoss A/S
    Inventors: Niels Janniksen Bjerrum, Erik Christensen, Thomas Steenberg
  • Patent number: 5976343
    Abstract: Process for multi-coat lacquering of a substrate with a stoved first electrodeposition layer by applying a second surface coating layer of 10 to 30 .mu.m dry layer thickness consisting of a base lacquering agent containing a first, water-based, polyurethane resin, and wet-on-wet application of a third coating agent with a thinner dry layer thickness of 7 to 15 .mu.m consisting of a second water-based base lacquering agent, further application without prior stoving of a clear lacquer layer and mutual stoving, wherein the first base lacquering agent has a higher concentration of polyurethane resin than the second base lacquering agent.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: November 2, 1999
    Assignee: Herberts Gesellschaft mit beschrankter Haftung
    Inventor: Detlef Schlaak
  • Patent number: 5948234
    Abstract: Acid-doped, polyaniline-based polymers are formed into fibers, films, and coatings with a solvent of at least one bicyclic terpene. Such a solvent system is characterized by a drying temperature of less than 150.degree. C. and a relatively low toxicity.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: September 7, 1999
    Assignee: Kemet Electronics Corporation
    Inventors: John T. Kinard, Brian J. Melody, Philip M. Lessner
  • Patent number: 5944975
    Abstract: A method of fabricating an emitter plate 12 for use in a field emission device comprising the steps of providing an insulating substrate 18 and forming a first conductive layer 13 on the insulating substrate 18. This is followed by the steps of forming an insulating layer 20 on the first conductive layer 13 and forming a second conductive layer 22 on the insulating layer 20. Then, a plurality of apertures 34 are formed through the second conductive layer 22 and through the insulating layer 20. A lift-off layer 36 is then formed on the second conductive layer 22. The lift-off layer 36 is formed by a plating process wherein the plating bath has a pH between 2.25 and 4.5, and current densities of 1 to 2O mA/cm.sup.2. The method may further comprise depositing conductive material through the plurality of apertures 34 to form a microtip 14 in each of the plurality of apertures 34. The excess deposited conductive material 14' and the lift-off layer 36 are then removed from the second conductive layer 22.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: August 31, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Arthur M. Wilson, Chi-Cheong Shen, Saroja Ramamurthi
  • Patent number: 5837117
    Abstract: A process for polishing a metal surface, typically based on Al, Mg, Ta, Ti, Zr, Hf or their alloys, comprises a first conventional polishing step by chemical or electrolytic means and a second electrolytic micro-polishing step by anodizing in a mineral, organic or mixed acid solution to form a oxide layer of the barrier type having a thickness between 100 and 500 nm.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: November 17, 1998
    Assignee: Satma
    Inventor: Francis Allegret
  • Patent number: 5676813
    Abstract: The present invention provides a method for film formation, which comprises applying onto a substrate an electrocoating (A) and an intermediate coating (B) in this order, heat-curing the formed films of the coatings (A) and (B), applying thereon a liquid deep color coating (C) which comprises 100 parts by weight of a thermosetting resin composition, 0.1-30 parts by weight of an aluminum powder having an average particle diameter of 10.mu. or less, 1-100 parts by weight of a titanium oxide pigment and 0.1-10 parts by weight of a carbon black pigment and which shows a film hiding power of 25.mu. or less and a film elongation ratio of 10-50% at 20.degree. C., a liquid color clear coating (D) which comprises a thermosetting resin composition and a color pigment as the main components and which shows a film hiding power of 50.mu. or more and a film elongation ratio of 10% or less at 20.degree. C.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: October 14, 1997
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Shigeru Nakamura, Yutaka Mizutani, Terukazu Shibata, Toru Ozaki
  • Patent number: 5676814
    Abstract: Disclosed is a method of producing an electrically conductive polymer composite comprising a general-purpose resin layer and an electrically conductive layer, wherein the conductive layer is formed on at least one surface of the general-purpose resin layer, the method comprising the steps of forming the conductive layer on at least one internal surface of a mold, introducing into the mold a raw solution of the general-purpose resin comprising a monomer polymerizable without condensation reaction, and subjecting said monomer to polymerization in said mold to provide the general-purpose resin layer.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: October 14, 1997
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Satoshi Honda, Hideaki Matsuura
  • Patent number: 5540828
    Abstract: A method for making a sensing element for use in a sensor or biosensor that amperometrically measures the concentration of an analyte in a liquid, includes the following sequential steps: a) obtaining an electrode; b) immersing the electrode in a solution of monomer that is capable of being electropolymerized into an electrically insulating polymer; c) flowing an electric current from a cathode through the solution to the electrode at a voltage and amperage sufficient to cause the monomer to polymerize on the surface of the electrode, thereby yielding an electrode coated with an adherent layer of electrically insulating polymer; and e) impregnating the polymeric coating on the surface with a sensing agent that is capable, when contacted by a specific analyte in a chemical or biological liquid, of generating an electroactive molecule that can be detected amperometrically.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: July 30, 1996
    Inventor: Alexander Yacynych
  • Patent number: 5492731
    Abstract: A composition is disclosed which includes a urethane resin containing reactive ethylenically unsaturated groups and hydroxyl groups, which is preferably derived by reacting a polyisocyanate and an isocyanate reactive group-containing unsaturated monomer selected from the group consisting of hydroxyalkyl acrylates, hydroxyalkyl methacrylates, hydroxyalkyl acrylamides, hydroxy functional allylic compounds, and mixtures thereof to form an isocyanate group-containing reaction product which is then reacted with an organic polyol wherein the equivalent number of hydroxyl groups is in excess compared with the equivalent number of isocyanate groups. The composition also includes an aminoplast resin for reaction with hydroxyl groups on the urethane resin in an amount of less than about 10% by weight based on solids of the composition which is effective in thin film curing of the composition.
    Type: Grant
    Filed: May 17, 1991
    Date of Patent: February 20, 1996
    Assignee: PPG Industries, Inc.
    Inventors: Rodger G. Temple, Henry H. Crum, III, Jonathan T. Martz
  • Patent number: 5296127
    Abstract: Composite-coated flat-rolled sheet metal substrate subject to surface oxidation, after surface cleaning and oxidation removal is cathodically E-coated with minimal organic coating to stabilize such surface to prevent oxidation prior to application of protective organic coating finish to provide a total coating weight on each surface selected in the range of about 3 to about 20 mg/in.sup.2 of organic coating per surface. Such E-coat being applied to such substrate after removal of surface oxidation so as to enhance coating adhesion of end product protective organic coating. Lubricant for draw processing is embodied in the protective organic coating as a "blooming compound" or can be precoated after such organic coating to enable draw-processing of articles such as a unitary cup-shaped can body while maintaining desired full surface protective organic coating to meet requirements for such article.
    Type: Grant
    Filed: August 6, 1992
    Date of Patent: March 22, 1994
    Inventor: William T. Saunders
  • Patent number: 5286364
    Abstract: An electrode for a biosensor (e.g., a glucose biosensor) has a layer of an electrically insulating polymer formed in situ on its operating surface by electropolymerization. For example, a diaminobenzene and a dihydroxybenzene (e.g., 1,3-diaminobenzene and resorcinol) are copolymerized on the electrode's surface by immersing the electrode in a circulating dilute solution of the monomers in deaerated phosphate buffer, and applying a small, continuously cycling voltage between that electrode and another electrode (e.g., from 0.00 V to 0.80 V) until current flow between the electrodes decreases to a minimum. Because the polymer is electrically insulating, polymerization ceases while the polymer layer is still very thin (e.g., 10 nm). An analyte sensing agent, e.g., an enzyme such as immobilized glucose oxidase, is imbedded in the polymer, but with a number of its analyte recognition sites unblocked.
    Type: Grant
    Filed: March 29, 1991
    Date of Patent: February 15, 1994
    Assignee: Rutgers University
    Inventors: Alexander M. Yacynych, Sylvia S. Piznik, Eugene R. Reynolds, Robert J. Geise
  • Patent number: 5281327
    Abstract: Disclosed is a method of producing a conductive polymer composite comprising a resin layer and a conductive polymer layer formed on the resin layer, which comprises the steps of dissolving, in a monomer component (a) which is polymerizable without condensation reaction, a monomer component (b) capable of undergoing electrolytic polymerization to give at least one conductive polymer and an electrolyte (c), introducing the resulting solution into an electrolytic polymerization cell, applying a direct current voltage across the cell to electrolytically polymerize the component (b) to thereby provide the conductive polymer layer, and thereafter subjecting the component (a) to polymerization in the cell to provide the resin layer.
    Type: Grant
    Filed: March 9, 1993
    Date of Patent: January 25, 1994
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Satoshi Honda, Hideaki Matsuura
  • Patent number: 5240589
    Abstract: A two-step process for the coating of magnesium and its alloys is disclosed. The first step comprises immersing the magnesium workpiece in an aqueous solution comprising about 0.2 to 5 molar ammonium fluoride having a pH of about 5 to 8 and a temperature of about 40.degree. to 100.degree. C. The second step is an electrochemical treatment of the pretreated article in an aqueous electrolytic solution having a pH of at least about 12.5 and which solution comprises about 2 to 12 g/L of a aqueous soluble hydroxide, about 2 to 15 g/L of a fluoride-containing composition selected from the group consisting of fluorides and fluorosilicates, and about 5 to 30 g/L of a silicate. This process results in a superior coating which has increased abrasion and corrosion resistance.
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: August 31, 1993
    Assignee: Technology Applications Group, Inc.
    Inventors: Duane E. Bartak, Brian E. Lemieux, Earl R. Woolsey
  • Patent number: 5098527
    Abstract: A method of making a pattern on an electrically conductive material such as a printed circuit comprises(i) electrodepositing on an electrically conductive surface a film of an organic polymer having, per average molecule, more than one reactive functional group,(ii) forming on the electrodeposited film a predetermined pattern of a heat-curable resist having, per average molecule, more than one group reactive with the reactive groups in the electrodeposited film on heating, thereby leaving predetermined areas of the electrodeposited film uncovered,(iii) removing the uncovered areas of the electrodeposited film by treatment with a solvent therefor, thereby forming a surface comprising bare conductive material in predetermined areas and, in other predetermined areas, conductive material coated by areas of the electrodeposited film covered by the resist, and(iv) heating to complete adhesion of the resist to the electrically conductive surface through the areas of the electrodeposited film covered by the resist,st
    Type: Grant
    Filed: September 18, 1989
    Date of Patent: March 24, 1992
    Assignee: Ciba-Geigy Corporation
    Inventors: Christopher P. Banks, Edward Irving