Heating Patents (Class 205/224)
  • Patent number: 7001499
    Abstract: A process for electroplating and annealing thin-films of nickel-iron alloys having from 63% to 81% iron content by weight to produce pole pieces having saturation flux density (BS) in the range from 1.9 to 2.3 T (19 to 23 kG) with acceptable magnetic anisotropy and magnetostriction and a coercivity (HC) no higher than 160 A/m (2 Oe). The desired alloy layer properties, including small crystal size and minimal impurity inclusions, can be produced by including higher relative levels of Fe++ ions in the electroplating bath while holding the bath at a lower temperature while plating from a suitable seed layer. The resulting alloy layer adopts a small crystal size (BCC) without significant inclusion of impurities, which advantageously permits annealing to an acceptable HC while retaining the high BS desired.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: February 21, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Mike Ming Yu Chen, Thomas Edward Dinan, April Hixson-Goldsmith, Murali Ramasubramanian, Neil Leslie Robertson
  • Patent number: 7001471
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: February 21, 2006
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Patent number: 6974636
    Abstract: A turbine engine component comprising a substrate made of a nickel-base or cobalt-base superalloy and a protective coating overlying the substrate, the coating formed by electroplating at least two platinum group metals selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium. The protective coating is typically heat treated to increase homogeneity of the coating and adherence with the substrate. The component typically further comprises a ceramic thermal barrier coating overlying the protective coating. Also disclosed are methods for forming the protective coating on the turbine engine component by electroplating the platinum group metals.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: December 13, 2005
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Mark Daniel Gorman, Melvin Robert Jackson, Ji-Cheng Zhao
  • Patent number: 6942781
    Abstract: A method for electroplating a strip of foam having two opposite sides and an electrically conductive surface, including: (a) continuously applying the strip of foam onto a moving cathode immersed in an electroplating bath so that the strip travels through the bath in contact with the moving cathode to electroplate metal on the strip of foam, a first side of the strip of foam facing a working surface of the moving cathode, and (b) continuously removing the electroplated strip of foam from the moving cathode when metal has been plated to a desired thickness; A metal foil is continuously formed by electrodeposition on the working surface of the moving cathode in such a way that the strip of foam is applied at step (a) onto the moving cathode over the metal foil; and, after step (b), the metal foil is continuously removed from the moving cathode.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: September 13, 2005
    Assignee: Efoam S.A.
    Inventors: Marc Kuhn, Louis Masotti, Damien Michel, Liyan Yang
  • Patent number: 6926818
    Abstract: A method of forming a bump structure through the use of an electroplating solution, comprising the following steps. A substrate having an overlying conductive structure is provided. A patterned dry film resist is formed over the conductive structure. The patterned dry film resist having a trench exposing a portion of conductive structure. The patterned dry film resist adhering to the conductive structure at an interface. The structure is treated with a treatment that increases the adherence of the patterned dry film resist to the conductive structure at the interface. A conductive plug is over the exposed portion of the conductive structure within the trench through the use of the electroplating solution. The increased adhesion of the patterned dry film resist to the conductive structure at the interface preventing the electroplating solution from penetrating the interface of the patterned dry film resist and the conductive structure during the formation of the conductive plug.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: August 9, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yih-Ann Lin, Tung-Heng Shie, Kai-Ming Ching, Sheng-Liang Pan, Kuo-Liang Lu
  • Patent number: 6824666
    Abstract: An apparatus and a method of depositing a catalytic layer comprising at least one metal selected from the group consisting of noble metals, semi-noble metals, alloys thereof, and combinations thereof in sub-micron features formed on a substrate. Examples of noble metals include palladium and platinum. Examples of semi-noble metals include cobalt, nickel, and tungsten. The catalytic layer may be deposited by electroless deposition, electroplating, or chemical vapor deposition. In one embodiment, the catalytic layer may be deposited in the feature to act as a barrier layer to a subsequently deposited conductive material. In another embodiment, the catalytic layer may be deposited over a barrier layer. In yet another embodiment, the catalytic layer may be deposited over a seed layer deposited over the barrier layer to act as a “patch” of any discontinuities in the seed layer. Once the catalytic layer has been deposited, a conductive material, such as copper, may be deposited over the catalytic layer.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: November 30, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Chris R. McGuirk, Deenesh Padhi, Muhammad Atif Malik, Sivakami Ramanathan, Girish A. Dixit, Robin Cheung
  • Patent number: 6814849
    Abstract: A porous silicon structure is stabilized by anodically oxidizing the structure and then subjecting it to chemical functionalization to protect non-oxidized surface regions, preferably in the presence of 1-decene under thermal conditions. This process creates a protective organic monolayer on the surface of the structure, rendering it highly stable.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: November 9, 2004
    Assignee: National Research Council
    Inventors: David John Lockwood, Rabah Boukherroub, Danial D. M. Wayner, Nobuyoshi Koshida
  • Patent number: 6811671
    Abstract: A method of fabricating a semiconductor device, having a reduced-oxygen Cu—Zn alloy thin film (30) electroplated on a Cu surface (20) by electroplating, using an electroplating apparatus, the Cu surface (20) in a unique chemical solution containing salts of zinc (Zn) and copper (Cu), their complexing agents, a pH adjuster, and surfactants; and annealing the electroplated Cu—Zn alloy thin film (30); and a semiconductor device thereby formed. The method controls the parameters of pH, temperature, and time in order to form a uniform reduced-oxygen Cu—Zn alloy thin film (30), having a controlled Zn content, for reducing electromigration on the Cu—Zn/Cu structure by decreasing the drift velocity therein which decreases the Cu migration rate in addition to decreasing the void formation rate, for improving device reliability, and for increasing corrosion resistance.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 2, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel, Joffre F. Bernard
  • Publication number: 20040185294
    Abstract: It is disclosed a method of deposting a seal coating and a seal system comprising at least two layers (3, 4) on the surface of an article (1). The upper or surface layer (4) has a higher chromium activity than a bottom layer (3) to reduce a diffusion of cobalt and the formation of cobalt oxide is reduced. The coating (2) of invention may be heat-treated to reduce or optimize the formation of cobalt oxide to sustin the wear property.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 23, 2004
    Applicant: ALSTOM Technology Ltd
    Inventors: Abdus Suttar Khan, Ian William Boston, James Alexander Hearley
  • Patent number: 6793798
    Abstract: This invention relates to radioactively coated devices, preferably radioactively coated medical devices. These coated devices are characterized as having a low rate of leaching of the radioisotope from the surface of the coated device and a uniform radioactive coating, and are therefore suitable for use within biological systems. Methods for coating a device with a radioisotope comprising are also disclosed. One method comprises immersing the device within a solution containing a &Ugr;, &bgr;+, &agr;, &bgr;− or &egr; (electron capture) emitting radioisotope, then exposing the immersed substrate to tuned vibrational cavitation to produce a coated substrate. A second method involves coating a substrate using electroless plating, and yet a third method involves the use of electroplating a radioisotope onto a substrate of interest. With these methods, the coating procedures are followed by baking the coated substrate at a temperature below the recrystallization temperature of the substrate.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: September 21, 2004
    Assignee: MDS Inc.
    Inventors: Albert Chan, Stephen M. Oelsner, Thomas J. Simpson
  • Publication number: 20040137166
    Abstract: A cationic coating composition containing (A) an unsaturated group-modified cationic epoxy resin, (B) a blocked polyisocyanate crosslinking agent, and (C) a photopolymerization initiator, preferably further containing a polymerizable unsaturated group-containing compound (D).
    Type: Application
    Filed: November 26, 2003
    Publication date: July 15, 2004
    Inventors: Shigeo Nishiguchi, Koji Kamikado, Hideki Iijima, Akihiko Shimasaki, Tadayoshi Hiraki
  • Publication number: 20040118695
    Abstract: The present invention generally relates to a two-coat electrocoating process. More particularly, the present invention relates to a process wherein a substrate is first coated via a cathodic electrodeposition system and a second coat is subsequently applied via an anodic electrodeposition system, and curing the at least two electrodepositable layers simultaneously in a single bake where the primer coating composition is still wet when the second coat is applied.
    Type: Application
    Filed: August 26, 2003
    Publication date: June 24, 2004
    Inventor: Ding-Yu Chung
  • Publication number: 20040118698
    Abstract: Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Inventors: Yunfeng Lu, Donghai Wang
  • Patent number: 6749081
    Abstract: A method of surface treating a cookware article formed of aluminum or aluminum alloy, comprises the steps of applying a first coating of porcelain enamel to the exterior of the article; subjecting the interior of the article to hard-anodizing; and applying a second coating of porcelain enamel over the first coating.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: June 15, 2004
    Assignee: Meyer Manufacturing Company Limited
    Inventor: Stanley Kin-Sui Cheng
  • Publication number: 20040104121
    Abstract: The present invention provides a method of forming a transparent conductive film at a low temperature that is suitable for use with a synthetic resin substrate. According to the production method of a substrate with an electrode of the present invention, an oxide conductive film composed of an amorphous material or mainly composed of an amorphous material is formed on a substrate at a temperature equal to or less than the crystallization temperature of the film, and subsequently, the formed oxide conductive film is crystallized by heating. The oxide conductive film is processed into the shape of an electrode either before or after crystallization, according to necessity.
    Type: Application
    Filed: November 19, 2003
    Publication date: June 3, 2004
    Applicant: Matsushita Elec. Ind. Co. Ltd.
    Inventors: Naomi Kaneko, Naohide Wakita, Hiroshi Satani, Tsuyoshi Uemura
  • Publication number: 20040092136
    Abstract: A method and apparatus for electrolytic plating of selected areas of printed circuit board traces is disclosed. The method is characterized by its elimination of the need for plating bus bars and plating contacts on the printed circuit board to facilitate a spot-plating process. In one embodiment, a printed circuit board substrate is provided which is at least partially conductive, such that a plating voltage may be applied to any one or more points on the substrate during a spot plating operation. In another embodiment, the substrate material is initially partially conductive, but following the spot-plating operation, is subjected to a curing treatment or the like to cause degeneration of the substrate's conductivity. Carbon-impregnated polimid, partially-cured polyimid, FR4 or FR5, with appropriate contaminants introduced therein are contemplated as materials suitable for a printed circuit board substrate in accordance with the invention.
    Type: Application
    Filed: October 14, 2003
    Publication date: May 13, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Kevin G. Duesman
  • Patent number: 6726829
    Abstract: Disclosed herewithin is an apparatus for fabricating a stent which involves processing a tubular member whereby no connection points to join the edges of a flat pattern are necessary. The process includes the steps of: a) preparing the surface of a tubular member, b) coating the outside surface of the tubular member with a photo-sensitive resist material, c) placing the tubular member in an apparatus designed to simultaneously rotate the tubular member while passing a specially configured photographic frame negative between a light source and the tubular member, d) exposing the tubular member to a photoresist developer, e) rinsing the excess developer and uncured resist from the exposed tubular member, f) sealing the inner lumen of the tubular member, and g) treating the tubular member with a chemical or electro-chemical process to remove uncovered metal. By modifying the photographic negative, this process can be employed to fabricate a virtually unlimited number of stent designs and configurations.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: April 27, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventor: Thomas Trozera
  • Patent number: 6699379
    Abstract: An improved plating method in combination with a low-temperature thermal treatment is disclosed. The method for reducing the stress in the nickel-based alloy plating comprises the steps of: (a) adding ceramic particles into a plating bath containing soluble nickel salts; and (b) placing a substrate in the plating bath and thereafter carrying out a pulse-current electroplating in the plating bath. The method of this invention can prevent substrate softening or deformation problems. The use of a post low-temperature thermal treatment can slightly increase the hardness of the coating products. The use of the low-temperature thermal treatment can reduce the stress of the coatings since the hydrogen embrittlement resulting from exist of hydrogen in the coatings is eliminated.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: March 2, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Tsung Ke, Jen-Chih Li, Ming-Der Ger, Le-Min Wang, Yeh Sung, Jauh-Jung Yang, Ya-Ru Huang
  • Patent number: 6695960
    Abstract: The invention concerns a method comprising a step which consists in producing, on a precursor alloy powder containing at least the elements Cr, Al and Y, using a chemical or electrolytic deposition bath, a deposition containing at least a modifying element such as platinum, palladium, ruthenium or rhenium. The modifying element enhances the capacity of the coating to form from phase &bgr;, by exposure to oxygen at high temperature, an adhesive alumina surface barrier. The invention is useful for protecting against corrosion and oxidation at high temperatures aviation turbine blades.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: February 24, 2004
    Assignee: Onera (Office National d' Etudes et de Recherchers Aerospatiales)
    Inventors: Marie Pierre Bacos, Pierre Josso
  • Publication number: 20040026261
    Abstract: Corrosion resistance of metallic components such as stainless steel components of vehicles, and especially aluminum-based components of aircraft, is enhanced by application of an e-coat paint or primer which is enhanced by incorporation of cerium ions into the e-coat electrolytic bath. The resulting overall coating includes a cerium-based layer under a cerium-enhanced e-coat paint or primer layer.
    Type: Application
    Filed: August 6, 2003
    Publication date: February 12, 2004
    Inventors: James O. Stoffer, Thomas J. O'Keefe, Eric L. Morris, Xuan Lin, Scott A. Hayes, Pu Yu
  • Publication number: 20040003873
    Abstract: A method and apparatus for annealing copper. The method comprises forming a copper layer by electroplating on a substrate in an integrated processing system and annealing the copper layer in a chamber inside the integrated processing system.
    Type: Application
    Filed: June 30, 2003
    Publication date: January 8, 2004
    Applicant: Applied Materials, Inc.
    Inventors: B. Michelle Chen, Ho Seon Shin, Yezdi Dordi, Ratson Morad, Robin Cheung
  • Publication number: 20030234181
    Abstract: A process for in situ electroforming a structural reinforcing layer of selected metallic material for repairing an external surface area of a degraded section of metallic workpieces, especially of tubes and tube sections, is described. Preferably, the metal layer coatings are made of fine-grained metals, metal alloys or metal matrix composites. The plating system can be used on straight tubes, tube joints to different diameter tubes or face plates, tube elbows and other complex shapes encountered in piping systems. A suitable apparatus is assembled on or near the degraded site and is sealed in place to form the plating cell. Also described is a process for plating “patches” onto degraded areas by selective plating including brush plating.
    Type: Application
    Filed: October 24, 2002
    Publication date: December 25, 2003
    Inventors: Gino Palumbo, Iain Brooks, Andrew J. Robertson, Konstantinos Panagiotopoulos, Francisco Gonzalez, Klaus Tomantschger
  • Patent number: 6660155
    Abstract: A process of coating the surface of articles made of glass pieces assembled in a came to minimize breakage of glass during application and hardening of the coating The process includes the steps of preprocessing the article, electrodepositing the coating on the article, and hardening the electrodeposited and coated article glass step-by-step.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: December 9, 2003
    Assignee: Korea Houghton Corporation
    Inventor: Kwang Soon Kim
  • Patent number: 6641711
    Abstract: An electrodeposition coating composition that is excellent in bath stability and that can give a cured film enhanced in hardness and an electrodeposition coating process is provided. An electrodeposition coating composition to be used in an electrodeposition coating process which comprises the electrodeposition step of immersing a substrate in an electrodeposition coating composition and applying a voltage between the substrate as an anode or cathode and a counter electrode to thereby form a film of said electrodeposition coating composition on the surface of the substrate, and the heating step of heating said film obtained in the above electrodeposition step, and said electrodeposition coating composition comprising having electrodeposition potentiality against the curing reaction of said film.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: November 4, 2003
    Assignee: Nippon Paint Co., Ltd.
    Inventors: Hiroyuki Sakamoto, Ichiro Kawakami, Koji Izumiya, Takao Saito, Masahiro Nishio
  • Patent number: 6632343
    Abstract: A method and apparatus for electrolytic plating of selected areas of printed circuit board traces is disclosed. The method is characterized by its elimination of the need for plating bus bars and plating contacts on the printed circuit board to facilitate a spot-plating process. In one embodiment, a printed circuit board substrate is provided which is at least partially conductive, such that a plating voltage may be applied to any one or more points on the substrate during a spot plating operation. In another embodiment, the substrate material is initially partially conductive, but following the spot-plating operation, is subjected to a curing treatment or the like to cause degeneration of the substrate's conductivity. Carbon-impregnated polyimide, partially-cured polyimide, FR4 or FR5, with appropriate contaminants introduced therein are contemplated as materials suitable for a printed circuit board substrate in accordance with the invention.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: October 14, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Kevin G. Duesman
  • Publication number: 20030162052
    Abstract: Steel sheet for porcelain enameling capable of realizing excellent enamel adhesion with the steel sheet by direct-on enameling once is provided by using a Ti-added steel sheet; there are also a method for producing the same, as well as a porcelain enamel product and the method for producing the same. A steel sheet for porcelain enameling is produced by providing a Ni—Mo alloy plating film on a Ti-added steel sheet containing 0.01% by weight (wherein, % represents “% by weight” hereinafter) or less of C, 0.5% or less of Mn, 0.04% or less of P, 0.04% or less of S, 0.01 to 0.50% of Ti, and balance Fe accompanied by unavoidable impurities, and by then performing heat treatment thereto to control the content of Ni, Mo, and Fe present in the surface of the steel sheet in a predetermined range, porcelain enamel is applied once and fired.
    Type: Application
    Filed: January 16, 2003
    Publication date: August 28, 2003
    Inventors: Fumiaki Sato, Toshihira Hamada, Shuzo Oda, Yoshihiro Jono, Takahiro Hayashida, Junichi Fujimoto, Masao Komai
  • Patent number: 6605369
    Abstract: The present invention is directed to provision of a surface-treated copper foil exhibiting a maximum effect of a silane coupling agent which is adsorbed onto the copper foil and is employed in order to enhance adhesion between the copper foil and a substrate during manufacture of printed wiring boards. The invention is also directed to provision of a method for producing such a copper foil. To attain these goals, a surface-treated copper foil for producing printed wiring boards is provided, wherein an anti-corrosion treatment comprises forming a zinc layer or a zinc alloy layer on a surface of the copper foil and forming an electrodeposited chromate layer on the zinc or zinc alloy layer; forming a silane-coupling-agent-adsorbed layer on the electrodeposited chromate layer without causing the electrodeposited chromate layer of the nodular-treated surface to dry; and drying.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: August 12, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Naotomi Takahashi, Yutaka Hirasawa
  • Patent number: 6602548
    Abstract: A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: August 5, 2003
    Assignee: Honeywell International Inc.
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Margaret Eagan, Milton Ortiz
  • Patent number: 6588090
    Abstract: The present invention relates to a method and apparatus of fabricating electromagnetic coil vanes. The method involves placing a bonding composition on opposing surfaces of a substrate. First and second complementary coil patterns are formed, and are aligned and bonded to respective clamp plate fixtures. The first complementary coil pattern is bonded to one surface of the opposing surfaces of the substrate via the bonding composition, and the second complementary coil pattern is bonded to the other surface of the opposing surfaces of the substrate via the bonding composition. The bonding composition is cured, and the clamp plates are removed from the first and second complementary coil patterns.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: July 8, 2003
    Assignee: Nikon Corporation
    Inventors: Rodney A. Kendall, David A. Pickney
  • Patent number: 6585877
    Abstract: An object of the invention is to provide a surface-treated copper foil capable of consistently attaining a percent loss of peel strength in resistance against hydrochloric acid degradation of 10% or less as measured on a copper pattern prepared from the copper foil and having a line width of 0.2 mm, by bringing out the maximum effect of the silane coupling agent employed in brass-plated anti-corrosive copper foil. The Another object is to impart excellent moisture resistance to the surface-treated copper foil.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: July 1, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Masakazu Mitsuhashi, Takashi Kataoka, Naotomi Takahashi
  • Publication number: 20030111350
    Abstract: Steel cabinet parts and other steel objects are electrocoated in a cationic resin-containing bath. The steel objects are chromium-coated, free of phosphate and preferably free of chromium oxide. The products are not significantly subject to filiform corrosion, and the process is economically beneficial because throwpower is more easily controlled than in previous processes.
    Type: Application
    Filed: November 25, 2002
    Publication date: June 19, 2003
    Applicant: United States Steel Corporation
    Inventors: Jian X. Li, Daniel E. Bullard, Chyang J. Wu
  • Patent number: 6579568
    Abstract: This invention provides a copper foil for a printed wiring board, which comprises a copper foil, an alloy layer (A) comprising copper, zinc, tin and nickel which is formed on a surface of the copper foil, said surface to be brought into contact with a substrate for a printed wiring board, and a chromate layer which is formed on a surface of the alloy layer (A). The copper foil for a printed wiring board has the following features: even if a printed wiring board is produced using a long-term stored copper foil, the interface between the copper foil and the substrate is only slightly corroded with chemicals; even if the copper foil contacts a varnish containing an organic acid, e.g., a varnish for an acrylic resin, in the formation of a copper-clad laminate, the bond strength is sufficient.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: June 17, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuhisa Fujiwara, Hiroshi Tan, Mitsuo Fujii, Masanobu Tsushima
  • Patent number: 6579437
    Abstract: An object of the invention is to provide a surface-treated copper foil capable of consistently attaining a percent loss in peel strength against hydrochloric acid degradation of 10% or less as measured on a copper pattern prepared from the copper foil and having a line width of 0.2 mm, by bringing out the maximum effect of the silane coupling agent employed in zinc-plated or zinc-alloy-plated anti-corrosive copper foil. Another object is to impart excellent moisture resistance, heat resistance, and long-term storage stability to the surface-treated copper foil.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: June 17, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Masakazu Mitsuhashi, Takashi Kataoka, Naotomi Takahashi
  • Patent number: 6565931
    Abstract: The present invention provides for an etch and mar resistant low VOC clear coating composition most suitable for use as a top clear coat in multi-layered OEM or refinish automotive coatings. The coating composition includes isocyanate, carbonate and melamine components. The isocyanate component includes an aliphatic polyisocyanate. The composition may be formulated as a two-pack or one-pack coating composition, wherein the isocyanate functionalities are blocked with a blocker such as a mono-alcohol.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: May 20, 2003
    Assignee: Rolls-Royce plc
    Inventors: David S Rickerby, Richard AB McCall
  • Publication number: 20030066755
    Abstract: An anode of a cell for the electrowinning of aluminium comprises a nickel-iron alloy substrate having an openly porous nickel metal rich outer portion whose surface is electrochemically active. The outer portion is optionally covered with an external integral nickel-iron oxide containing surface layer which adheres to the nickel metal rich outer portion of the nickel-iron alloy and which in use is pervious to molten electrolyte. During use, the nickel metal rich outer portion contains cavities some or all of which are partly or completely filled with iron and nickel compounds, in particular oxides, fluorides and oxyfluorides.
    Type: Application
    Filed: June 3, 2002
    Publication date: April 10, 2003
    Inventors: Jean-Jacques Duruz, Thinh T. Nguyen, Vittorio De Nora
  • Patent number: 6540900
    Abstract: Disclosed is a process for the continuous anodizing of aluminum foil for use in aluminum electrolytic capacitors. Specifically, etched anode foil is anodized to relatively low voltage in a two-step reel-to-reel process. The process is particularly useful for anodizing highly-etched aluminum foil for use in surface mount aluminum capacitors containing conductive polymer cathode material. The process is economical and provides high foil quality. Specifically, the process for anodizing aluminum foil comprises anodizing the foil in a first electrolyte a solution, passing the foil through an oven, anodizing the foil in a second anodizing solution wherein the first electrolyte solution and second electrolyte solution each comprise about 5 wt % to about 50 wt % glycerine, about 0.01 wt % to about 0.2 wt % ammonium phosphate, and de-ionized water, and wherein the foil is anodized in the first electrolyte solution for at least 3.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: April 1, 2003
    Assignee: Kemet Electronics Corporation
    Inventors: John Tony Kinard, Brian John Melody, Philip Michael Lessner, Albert Kennedy Harrington, David Alexander Wheeler, Erik Karlsen Reed, Duane Earl Stenziner
  • Patent number: 6531045
    Abstract: The invention provides a surface-treated copper foil for producing printed wiring boards whose surface has been subjected to nodular treatment and anti-corrosion treatments, wherein the anti-corrosion treatment includes forming a zinc-copper-nickel ternary alloy anti-corrosive plating layer on a surface of the copper foil; forming an electrolytic chromate layer on the anti-corrosive plating layer; forming a silane-coupling-agent-absorbed layer on the electrolytic chromate layer; and drying the copper foil for 2-6 seconds such that the copper foil reaches 105° C.-200° C.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: March 11, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Masakazu Mitsuhashi, Takashi Kataoka, Naotomi Takahashi
  • Publication number: 20030034251
    Abstract: Apparatus and method for treating a surface of a substrate for electrolytic or electroless plating of metals in integrated circuit manufacturing. In one embodiment the method includes forming a barrier layer on a substrate. A metal-seed layer is then formed on the barrier layer. The method continues by performing in situ surface treatment of the metal-seed layer to form a passivation layer on the metal-seed layer.
    Type: Application
    Filed: August 14, 2001
    Publication date: February 20, 2003
    Inventors: Vinay B. Chikarmane, Chi-Hwa Tsang
  • Patent number: 6521113
    Abstract: An electrolyte for use in electrolytic platinum plating that results in reduced Cl, S, or P contaminant production. The bath comprises 0.01 to 320 g/lit of platinum in the form of the platinum salt dinitrodiammine platinum, Pt(NH3)2(NO2)2 or variants thereof and 0.1 to 240 g/lit of alkali metal carbonate M2CO3 or bicarbonate MHCO3 where M is selected from a group comprising lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs). A method of improving oxidation resistance of a platinum modified aluminide diffusion coating on a substrate, comprises electroplating the substrate using this electrolyte and then aluminizing the electroplated substrate at an elevated temperature to grow a platinum modified aluminide diffusion coating.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: February 18, 2003
    Assignee: Honeywell International Inc.
    Inventors: Thomas E. Strangman, Derek Raybould, Alex Kozlov
  • Patent number: 6509411
    Abstract: Aqueous, anodically precipitable electrodeposition lacquer, containing A) an aqueous dispersion consisting of anionically modified polyurethane (meth)acrylates (a1) having terminal, ethylenically unsaturated (meth)acrylic double bonds, and reactive thinners (a2) having at least two ethylenically unsaturated (meth)acrylic double bonds, whereby the (meth)acrylic double bonds from the mixture comprising (a1) and (a2) correspond to a bromine number of 20 to 150 g bromine/100 g solids, and B) optionally photo-initiators and/or optionally thermally activable radical initiators, whereby the terminal ethylenically unsaturated (meth)acrylic double bonds from the polyurethane (meth)acrylates are bonded to the anionically modified polyurethane prepolymer via urethane, urea, amide or ester groups, and optionally conventional auxiliary substances and additives, pigments and/or fillers.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: January 21, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Andreas Fieberg, Volker Rekowski, Dietrich Saatweber, Hans-Ulrich Simmrock, Bettina Vogt-Birnbrich
  • Patent number: 6508920
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: January 21, 2003
    Assignee: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Patent number: 6503348
    Abstract: Method for manufacturing a metal foil consisting of several metals in which at least one galvanic bath of several different bath types is prepared. Each bath type contains an electrolyte solution suitable for the deposition of one of the metals involved. A layer stack is then formed for the metal foil by successive alternate galvanic deposition of one layer at a time of the metals contained in the various bath types, on the circumference of a rotating deposition roller which is wired as a cathode in the corresponding galvanic bath. This step is followed by a tempering process that converts the layer stack is converted into a homogeneous alloy of the metals. Thereby, a metal membrane foil is produced for hydrogen separation from a process gas of a methanol reformation system in a fuel-cell-operated motor vehicle.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: January 7, 2003
    Assignee: Ballard Power Systems AG
    Inventor: Thomas Poschmann
  • Patent number: 6475368
    Abstract: A method of anodizing an aluminum substrate comprising heating the substrate to a first temperature of 200° C. to about 380° C.; suspending the substrate into a first electrolyte and applying a first anodizing current to the first electrolyte; rinsing the substrate; heating the substrate to a second temperature of 200° C. to about 380° C.; and suspending the substrate into a second electrolyte and applying a second anodizing current to the second electrolyte, wherein the first electrolyte and second electrolyte each comprise an aqueous solution of at least one salt of alpha-hydroxy acid.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: November 5, 2002
    Assignee: Kemet Electronics Corporation
    Inventors: Albert Kennedy Harrington, Brian John Melody, John Tony Kinard, Philip Michael Lessner, David Alexander Wheeler
  • Patent number: 6475565
    Abstract: The invention relates to a process for producing a clothing wire which is suitable for fitting to an opening-cylinder base body, wherein a raw wire which is customarily used to produce clothing wire is processed on end to form a wire coil, in which the teeth of the wire are perpendicular to the coil axis and which has a diameter which corresponds to the diameter of the opening-cylinder base body or differs by at most ±5% from the diameter of the opening-cylinder base body, and the wire coil is pushed loosely onto a support device and, together with this device, is introduced into an electroplating unit, the process steps which are customarily used for the chemical deburring of a raw wire and the nickel-diamond coating of a clothed opening cylinder taking place in the electroplating unit, and the clothing wire being removed from the electroplating unit.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: November 5, 2002
    Assignee: Elektroschmelzwerk Kempten GmbH
    Inventors: Jörg Lukschandel, Manfred Menge, Jürgen Meyer
  • Patent number: 6461680
    Abstract: The present invention relates to a method and apparatus of fabricating electromagnetic coil vanes. The method involves photolithographically exposing high resolution, dense wire patterns in a flash coat of copper, on both sides of a ceramic vane substrate. The substrate can be pre-drilled with a through hole to connect the two copper coil patterns. Additional copper is then deposited on both high resolution patterns and in the through hole by plating until the desired thickness is obtained. A firing operation is then performed that eutectically bonds the copper to the ceramic.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: October 8, 2002
    Assignee: Nikon Corporation
    Inventor: David J. Pinckney
  • Publication number: 20020134686
    Abstract: A method for the formation of copper wiring films includes the steps of forming a first copper film by means of a CVD method on an insulating diffusion barrier film, which insulating diffusion barrier film has been formed on a semiconductor substrate and in which a concavity has been established; heating the first copper film to a temperature within the range from 200 to 500° C.; and subsequently forming a second copper film on the first copper film by a plating method using the first copper film as an electrode.
    Type: Application
    Filed: November 16, 2001
    Publication date: September 26, 2002
    Inventors: Akiko Kobayashi, Atsushi Sekiguchi, Tomoaki Koide, Minjuan Zhang, Hideki Sunayama, Shiqin Xiao, Kaoru Suzuki
  • Patent number: 6413404
    Abstract: Bumps are formed by means of uniform plating in which air can be easily discharged.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: July 2, 2002
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yoshihiro Ihara, Takeo Kanazawa, Tsuyoshi Kobayashi
  • Patent number: 6409904
    Abstract: The present invention provides a method and apparatus for plating a conductive material to a substrate and also modifying the physical properties of a conductive film while the substrate is being plated. The present invention further provides a method and apparatus that plates a conductive material on a workpiece surface in a “proximity” plating manner while a pad type material or other fixed feature is making contact with the workpiece surface in a “cold worked” manner. In this manner, energy stored in the cold worked regions of the plated layer is used to accelerate and enhance micro-structural recovery and growth. Thus, large grain size is obtained in the plated material at a lower annealing temperature and a shorter annealing time.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: June 25, 2002
    Assignee: Nutool, Inc.
    Inventors: Cyprian Emeka Uzoh, Homayoun Talieh
  • Publication number: 20020074233
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Application
    Filed: June 20, 2001
    Publication date: June 20, 2002
    Applicant: Semitool, Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, Linlin Chen, Lyndon W. Graham, Curt Dundas
  • Patent number: 6379523
    Abstract: With the purpose of forming an anodic oxide coating that is given conductivity or other new functions on the surface of aluminum-based material with high productivity, anodizing of aluminum-based material (2) is performed in an anodizing bath containing sulfuric acid together with nitrate ion to form a porous anodic oxide coating on the surface of the aluminum-based material (2). In another processing step, if electroplating is performed after anodizing, silver or a silver compound or other metal (7) can be electroplated from an electroplating bath without dissolving and removing the barrier layer from the bottom (6) of the pores (3) of the porous anodic oxide coating (1).
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: April 30, 2002
    Assignee: Izumi Techno Inc.
    Inventor: Masatomo Takabayashi