Depositing Predominantly Alloy Coating Patents (Class 205/236)
  • Patent number: 8821707
    Abstract: Disclosed herein is an electric Al or Al alloy plating bath which comprises (A) an aluminum halide; (B) one kind of compound or at least two kinds of compounds selected from the group consisting of N-alkylpyridinium halides, N-alkylimidazolium halides, N,N?-alkylimidazolium halides, N-alkyl-pyrazolium halides, N,N?-alkylpyrazolium halides, N-alkylpyrrolidinium halides and N,N-alkyl-pyrrolidinium halides; and (C) a high boiling point aromatic hydrocarbon solvent, wherein the molar ratio of the aluminum halide (A) to the compound (B) ranges from 1:1 to 3:1 and the flash point of the plating bath is not less than 50° C. The plating bath never involves any risk of causing an explosion, can be handled industrially with safety and can provide a smooth and fine Al of Al alloy plated film.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: September 2, 2014
    Assignees: Dipsol Chemicals Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Manabu Inoue, Tadahiro Ohnuma, Tsutomu Miyadera
  • Publication number: 20120052324
    Abstract: Provided herein is an electric Al—Zr—Mn alloy-plating bath which comprises (A) an aluminum halide; (B) one or at least two kinds of compounds selected from the group consisting of N-alkylpyridinium halides, N-alkylimidazolium halides, N,N?-dialkyl-imidazolium halides, N-alkyl-pyrazolium halides, N,N?-dialkyl-pyrazolium halides, N-alkylpyrrolidinium halides and N,N-dialkyl-pyrrolidinium halides; (C) a zirconium halide; and (D) a manganese halide, in which the molar ratio of the aluminum halide (A) to the compound (B) ranges from 1:1 to 3:1. The plating bath never involves any risk of causing an explosion and can provide a smooth and fine Al—Zr—Mn alloy-plated film. Moreover, the resulting film has high resistance to corrosion even when it does not contain any chromium and therefore, it is quite suitable from the viewpoint of the environmental protection and it can thus be used in a wide variety of applications including the plating of parts for motorcars, and the plating of parts for electrical appliances.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicants: HONDA MOTOR CO., LTD., DIPSOL CHEMICALS CO., LTD.
    Inventors: Manabu Inoue, Tadahiro Ohnuma, Tsutomu Miyadera
  • Publication number: 20110174631
    Abstract: Consumer goods and industrial articles are electroplated with bronze layers for decorative purposes and for protection against corrosion. The electrolytes used hitherto for producing decorative bronze layers are cyanide-containing or, as in the case of baths based on organosulfonic acids, highly corrosive, or, as in the case of cyanide-free baths based on diphosphoric acid, give unsatisfactory brightness and shine. The present invention provides a nontoxic electrolyte for the electrochemical deposition of uniformly bright and shiny bronze layers and a corresponding process for the application of such decorative bronze layers to consumer goods and industrial articles, by means of which relatively thick bronze layers can also be deposited electrochemically in a satisfactory way.
    Type: Application
    Filed: July 6, 2009
    Publication date: July 21, 2011
    Applicant: UMICORE GALVANOTECHNIK GMBH
    Inventors: Klaus Bronder, Bernd Weyhmueller, Frank Oberst, Sascha Berger, Uwe Manz
  • Publication number: 20100326838
    Abstract: A pyrophosphate-containing bath for the cyanide-free deposition of copper alloys on substrate surfaces, comprising a reaction product of a secondary monoamine with a diglycidyl ether, is described. The electrolyte bath is suitable for the galvanic deposition of glossy white, even and uniform copper-tin alloy coatings.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 30, 2010
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Philip Hartmann, Klaus-Dieter Schulz, Lars Kohlmann, Heiko Brunner
  • Patent number: 7704368
    Abstract: A method of electroplating conductive material on semiconductor wafers controls undesirable surface defects by reducing the electroplating current as the wafer is being initially immersed in a plating bath. Further defect reduction and improved bottom up plating of vias is achieved by applying a static charge on the wafer before it is immersed in the bath, in order to enhance bath accelerators used to control the plating rate. The static charge is applied to the wafer using a supplemental electrode disposed outside the plating bath.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chung-Liang Chang, Shau-Lin Shue
  • Publication number: 20080237051
    Abstract: A cobalt-iron-boron (CoFeB) film (100) is electrolessly deposited on a substrate (150) using a chloride plating bath. The plating bath may include a primary metal in a concentration of between approximately 0.05 moles per liter and approximately 0.4 moles per liter, a secondary metal in a concentration of between approximately 0.005 moles per liter and approximately 0.04 moles per liter, a complexing agent in a concentration of between approximately 0.15 and approximately 0.8 moles per liter, a pH buffer in a concentration of between approximately 0.5 and approximately 1.5 moles per liter, and a reducing agent in a concentration of between approximately 0.05 and approximately 0.25 moles per liter.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Chang-Min Park, Arnel M. Fajardo
  • Patent number: 7235681
    Abstract: The invention relates to a method for producing electrolyte solutions consisting of trialkylaluminium AlR3, M1AlR4, M2AlR4 and an aromatic hydrocarbon. According to the invention, a mixture of M1OR and M2OR is reacted with trialkylaluminium AlR3 at temperatures below 25° C. in an aromatic hydrocarbon. M1AlR4/M2AlR4 is isolated from the obtained mixture and a ready-for-use electrolyte for the electrochemical deposition of aluminum-magnesium alloys is obtained by the addition of aromatic hydrocarbon.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: June 26, 2007
    Assignee: Aluminal Oberflachentechnik GmbH & Co. KG
    Inventors: Klaus-Dieter Mehler, Richard Lisowsky
  • Patent number: 6652730
    Abstract: Organoaluminum electrolytes and methods for the coating of electrically conductive materials with aluminum or aluminum-magnesium alloys, essentially and preferably consisting of Na[Et3Al—H—AlEt3] for aluminum coating, or of either K[AlEt4] or Na[Et3Al—H—AlEt3] and Na[AlEt4] and trialkylaluminum for alloy coating using solutions of these electrolytes in liquid aromatic hydrocarbons or mixtures thereof with aliphatic mono- or polybasic ethers, such as dimethoxyethane, and using soluble anodes of aluminum or of aluminum and magnesium, or of aluminum-magnesium alloy.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: November 25, 2003
    Assignee: Studiengesellschaft Kohle mbH
    Inventors: Herbert Lehmkuhl, Klaus-Dieter Mehler, Bertram Reinhold
  • Publication number: 20030010645
    Abstract: A damascene process for introducing copper into metallization layers in microelectronic structures includes a step of forming an enhancement layer of a metal alloy, such as a copper alloy or Co—W—P, over the barrier layer, using PVD, CVD or electrochemical deposition prior to electrochemically depositing copper metallization. The enhancement layer has a thickness from 10&mgr; to 100&mgr; and conformally covers the discontinuities, seams and grain boundary defects in the barrier layer. The enhancement layer provides a conductive surface onto which a metal layer, such as copper metallization, may be applied with electrochemical deposition. Alternatively, a seed layer may be deposited over the enhancement layer prior to copper metallization.
    Type: Application
    Filed: June 14, 2002
    Publication date: January 16, 2003
    Applicant: Mattson Technology, Inc.
    Inventors: Chiu H. Ting, Igor Ivanov
  • Patent number: 6406611
    Abstract: An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70° C.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: June 18, 2002
    Assignees: University of Alabama in Huntsville, The United States of America as represented by the Marshall Space Flight Center
    Inventors: Darell E. Engelhaupt, Brian D. Ramsey
  • Patent number: 6277510
    Abstract: The present invention provides a porous electrode used for a conductive material-filled polymer composite. At least one surface of the porous electrode is an open porous structure, which includes a plurality of macropores and micropores randomly distributed and interconnected with each other. The conductive material-filled polymer composite includes a polymer substrate and conductive particles filled therein. When the surface of the open porous structure of the porous electrode is bonded with the conductive material-filled polymer composite, the conductive particles in the conductive material-filled polymer composite can be trapped in the macropores of the porous structure, and the polymer substrate in the conductive material-filled polymer composite can be immersed into the micropores of the porous structure. This enables a better direct contact between the conductive particles and the porous electrode.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: August 21, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Huang Chang, Wei-Wen Yeh, Shu-Chin Chou, Chen-Ron Lin
  • Publication number: 20010009724
    Abstract: Deposition of metal in a preferred shape, including coatings on parts, or stand-alone materials, and subsequent heat treatment to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25° C. This technique involves depositing a material in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment. This moderate heat treatment differs from other commonly employed “stress relief” heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. Coating and heat treating a spring-shaped substrate provides a resilient, conductive contact useful for electronic applications.
    Type: Application
    Filed: January 29, 2001
    Publication date: July 26, 2001
    Inventors: Jimmy Kuo-Wei Chen, Benjamin N. Eldridge, Thomas H. Dozier, Junjye J. Yeh, Gayle J. Herman
  • Patent number: 6051117
    Abstract: An apertured and porous metal article can find use, for example, in diaphragm or membrane electrolysis cells. The article may comprise a thin and flexible metal foam of small pores which, typically, has been perforated with large apertures. The article may also be provided with an electrocatalytic coating. It can be in substantial physical contact with a membrane or diaphragm separator used in the cell for separating anode and cathode members or compartments. There is also disclosed the preparation of the article and an electrolysis cell utilizing the resulting apertured and porous metal article.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: April 18, 2000
    Assignee: Eltech Systems, Corp.
    Inventors: Donald S. Novak, Douglas J. Waskovich, Mark L. Arnold, Kevin J. O'Leary, Eric J. Rudd, Thomas J. Gilligan, III, Timothy M. Hambor
  • Patent number: 5944977
    Abstract: A method of pretreating a hydrogen-occluding alloy, by electrically plating the hydrogen-occluding alloy with a Co--V alloy or a Co--Mo alloy. A nickel-hydrogen secondary battery manufactured using the pretreated hydrogen-occluding alloy has an increased initial activation rate and an increased high rate discharge characteristic.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: August 31, 1999
    Assignee: Samsung Display Devices Co., Ltd.
    Inventor: Ki-ho Kim
  • Patent number: 5944966
    Abstract: A novel cathode of low hydrogen overvoltage is provided which is useful for electrolysis of water and electrolysis of an aqueous alkali metal chloride such as sodium chloride. A process for producing the cathode is also provided. The low hydrogen overvoltage cathode comprises an electroconductive base material; and a coating layer containing at least one organic compound selected from the group consisting of amino acids, monocarboxylic acids, dicarboxylic acids, monoamines, diamines, triamines, and tetramines, and derivatives thereof at a content of from 0.5% to 18% by weight in terms of carbon, and a metal component selected from the group consisting of nickel, nickel-iron, nickel-cobalt, and nickel-indium at an indium content ranging from 1% to 90% by weight.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: August 31, 1999
    Assignee: Tosoh Corporation
    Inventors: Kazumasa Suetsugu, Kazuhisa Yamaguchi, Kanji Yoshimitsu, Takashi Sakaki
  • Patent number: 5827413
    Abstract: A low hydrogen overvoltage cathode is provided which comprises an electroconductive base material coated with an alloy layer containing cobalt and tin at least at a content of tin ranging from 0.01 to 95% by weight. A process is also provided for producing the low hydrogen voltage cathode, wherein cobalt and tin at least are electrolytically co-deposited onto a surface of an electroconductive base material from a plating bath containing cobalt ions, tin ions, and a complexing agent.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: October 27, 1998
    Assignee: Tosoh Corporation
    Inventors: Kazuhisa Yamaguchi, Kanji Yoshimitsu, Satoshi Yoshida, Kazumasa Suetsugu, Takashi Sakaki
  • Patent number: 5785837
    Abstract: A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: July 28, 1998
    Assignee: Midwest Research Institute
    Inventors: Raghu Nath Bhattacharya, David S. Ginley
  • Patent number: 5476837
    Abstract: A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: December 19, 1995
    Assignee: Midwest Research Institute
    Inventors: Raghuthan Bharacharya, Philip A. Parilla, Richard D. Blaugher