Utilizing Organic Compound-containing Bath Patents (Class 205/253)
  • Patent number: 7087315
    Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: August 8, 2006
    Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.
    Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
  • Patent number: 7013564
    Abstract: A method of producing an electronic device by connecting a lead of a semiconductor device with an electrode of a circuit board to form a bonded structure. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 21, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hanae Shimokawa, Tasao Soga, Hiroaki Okudaira, Toshiharu Ishida, Tetsuya Nakatsuka, Yoshiharu Inaba, Asao Nishimura
  • Patent number: 6998036
    Abstract: The invention relates to an acidic electrolyte used for depositing tin-silver alloys. The acidic electrolyte comprises one or more alkylsulfonic acids and/or alkanolsulfonic acids, one or more soluble tin (II) salts, one or more soluble silver (I) salts and one or more organic sulfur compounds with one or more thioether functional units and/or ether functional units of the general formula R—Z—R?—, wherein R and R? are the same or different non-aromatic organic groups, and Z represents S or O. The invention further relates to a method using the electrolyte and to the coating obtainable by the inventive method as well as to the use of the electrolyte for coating electronic components.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: February 14, 2006
    Assignee: Dr.-Ing. Max Schlotter GmbH & Co. KG
    Inventors: Michael Dietterle, Manfred Jordan, Gernot Strube
  • Patent number: 6923899
    Abstract: Provided for is a solution for use in the electroplating of tin and tin alloys comprising a basis solution comprising an acid, optionally a salt thereof, the acid selected from the group consisting of fluoboric acid, an organic sulfonic acid, a mineral acid, or a combination thereof; divalent tin ions; and an antioxidant comprising a hydroxy benzene sulfonic acid or salt thereof, in an amount effective to prevent the oxidation of divalent tin ions. Also provided for is a method for electroplating comprising electroplating a substrate using an electroplating solution comprising a hydroxy benzene sulfonic acid or salt thereof in an amount effective to decrease the oxidation of tin ions.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: August 2, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Neil D. Brown, Angelo Chirafisi, Peter R. Levey
  • Patent number: 6911138
    Abstract: A method for plating electrodes of ceramic chip electronic components includes performing electroplating in a plating bath. The plating bath contains tin (II) sulfamate, acting as a tin (II) salt; a complexing agent including at least one selected from the group consisting of citric acid, gluconic acid, pyrophosphoric acid, heptoic acid, malonic acid, malic acid, salts of these acids, and gluconic lactone; and a brightener including at least one surfactant having an HLB value of about 10 or more. The tin plating adhesion of the resulting ceramic chip electronic components can be limited to a certain level.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: June 28, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Akihiro Motoki, Shoichi Higuchi, Yoshihiko Takano, Kunihiko Hamada
  • Patent number: 6821681
    Abstract: An interchangeable electrolyte contains an additive that promotes interchangeable use between batteries and electroplating cells by limiting dendritic deposition in battery cells and promoting a smooth finish in an electroplating cell, such that fresh or spent electrolyte can be used interchangeably in these type of cells.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: November 23, 2004
    Inventor: Johan C. Fitter
  • Patent number: 6811672
    Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: November 2, 2004
    Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.
    Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
  • Patent number: 6808614
    Abstract: In accordance with the present invention, an electroplating solution is provided for electroplating satin bright tin-copper alloy solder coatings at high speed. The preferred solution comprises sulfonic acid, tin sulfonate, copper sulfonate, non-ionic surfactant, satin brightener and an antioxidant catechol. The preferred surfactant is polyoxyethylene-block-polyoxypropylene. The preferred satin brightener is formed by the oxidation of an aqueous solution of 1-phenyl-3-parazolidinone. The preferred sulfonic acid is methanesulfonic acid.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: October 26, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Oscar Khaselev, Igor S. Zavarine, Yun Zhang
  • Patent number: 6797142
    Abstract: Electrolyte compositions for the deposition of tin and tin-alloys on a substrate are disclosed, along with methods of electroplating tin and tin-alloys using such compositions. These electrolyte compositions are useful for high speed tin plating.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: September 28, 2004
    Assignee: Shipley Company, L.L.C.
    Inventor: Jeffrey N. Crosby
  • Publication number: 20040180779
    Abstract: To provide a rust inhibitor which is a fired composition excellent in corrosion resisting properties almost as same as or even better than lead compounds and which is also good in stability of electrodeposition bath. The fired composition is a fired matter of a zinc compound and a tin compound, wherein zinc oxide Wz and tin oxide Ws are in the relation of Wz≧Ws in weight %. The ratio of the zinc oxide Wz and the tin oxide Ws is in the range of 99/1 to 70/30 in weight %, and preferably in the range of 95/5 to 85/15. Such a fired matter has not only a rust resisting function but also a curing catalyst function, so that such a curing catalyst as dibutyl tin oxide, which has heretofore been used, can be eliminated.
    Type: Application
    Filed: February 3, 2004
    Publication date: September 16, 2004
    Inventors: Hiroshi Ishikawa, Tsuyoshi Iwamoto, Kazutoshi Motegi
  • Patent number: 6790333
    Abstract: The present invention relates to a to-be-mounted electronic component to which functional alloy plating using a bonding material for mounting is applied with a substitute bonding material for solder (tin-lead alloy), and aims at providing alloy plating which has been put to a practical use in such a way that the function of existing alloy plating of this type has been significantly improved to eliminate toxic plating from various kinds of electronic components for use in electronic devices so that it is useful in protecting the environment. Functional alloy plating using substitute bonding material for Pb and electronic component to be mounted to which the functional alloy plating is applied, characterized in that with Sn (tin) as a base, one of Bi (bismuth), Ag (silver) and Cu (copper) is selected, a Bi content to the Sn is set to 1.0% or less, the Bi content to the Sn is set to 2.0 to 10.0%, an Ag content to the Sn is set to 1.0 to 3.0%, the Ag content to the Sn is set to 3.0 to 5.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: September 14, 2004
    Assignee: Nishihara Rikoh Corporation
    Inventor: Masaaki Ishiyama
  • Patent number: 6773568
    Abstract: The present invention provides inter alia electroplating compositions, methods for use of the compositions and products formed by the compositions. Electroplating compositions of the invention are characterized in significant part by a grain refiner/stabilizer additive comprising one or more non-aromatic compounds having &pgr; electrons that can be delocalized, e.g., an &agr;,&bgr; unsaturated system or other conjugated system that contains a proximate electron-withdrawing group. Compositions of the invention provide enhanced grain refinement and increased stability in metal plating solutions, particularly in tin and tin alloy plating formulations.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: August 10, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andre Egli, Anja Vinckier, Jochen Heber, Wan Zhang
  • Patent number: 6770185
    Abstract: The invention relates to an aqueous solution comprising the following components: Zn(II) ions, Sn(II) ions, aliphatic carboxylic acids and/or their alkaline salts, anionic surfactants, non-ionogenic surfactants and optionally aromatic aldehydes, aromatic ketones, aromatic carboxylic acids and heterocyclic carboxylic acids or their alkaline salts or conducting salts. The inventive solution provides a means for electrodepositing uniform light-colored tin-zinc alloys without having to use cyanide ions, allowing low energy consumption and few requirements in terms of the control of the bath.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: August 3, 2004
    Assignee: Dr.-Ing. Max Schlotter GmbH & Co. KG
    Inventors: Manfred Jordan, Gernot Strube
  • Patent number: 6736954
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 18, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20040086697
    Abstract: The present invention provides inter alia electroplating compositions, methods for use of the compositions and products formed by the compositions. Electroplating compositions of the invention are characterized in significant part by a grain refiner/stabilizer additive comprising one or more non-aromatic compounds having &pgr; electrons that can be delocalized, e.g., an &agr;, &pgr; unsaturated system or other conjugated system that contains a proximate electron-withdrawing group. Compositions of the invention provide enhanced grain refinement and increased stability in metal plating solutions, particularly in tin and tin alloy plating formulations.
    Type: Application
    Filed: July 16, 2003
    Publication date: May 6, 2004
    Applicant: Shipley Company, L.L.C.
    Inventors: Andre Egli, Anja Vinckier, Jochen Heber, Wan Zhang
  • Patent number: 6730209
    Abstract: In accordance with the invention, the volatility of a solder plating bath with volatile brighteners such as aldehydes has its volatility reduced by the addition of diols to the bath. The diols are advantageously 1,3 propanediol or 1,2 propanediol and are accompanied by lower molecular weight alcohols. In a preferred embodiment, a diol along with low alcohol is added to a bath comprising sulfonic acid, surfactant, grain refiner and brightening agents comprising an aromatic aldehyde and a carboxylic acid.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: May 4, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Joseph A. Abys, Frank Stanley Humiec, Kenneth J. Murski, Yun Zhang
  • Patent number: 6726827
    Abstract: In accordance with the present invention, an electroplating solution is provided for electroplating satin bright tin-bismuth alloy solder coatings in high speed electroplating applications. The solution comprises a sulfonic acid electrolyte, a soluble tin compound, a soluble bismuth compound, a non-ionic surfactant, a grain refiner and an antioxidant. The preferred non-ionic surfactant comprises a mixture of polyethylene glycol-block-polypropylene glycol, polyethylene glycol-ran-polypropylene glycol, and ethylenediamine tetrakis (polyethylene glycol-block-polypropylene glycol) tetrol.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: April 27, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Oscar Khaselev, Igor S. Zavarine, Yun Zhang
  • Patent number: 6706418
    Abstract: The present invention provides inter alias electroplating compositions, methods for use of the compositions and products formed by the compositions. Electroplating compositions of the invention are characterized in significant part by a grain refiner/stabilizer additive comprising one or more non-aromatic compounds having &pgr; electrons that can be delocalized, e.g., an &agr;,&bgr; unsaturated system or other conjugated system that contains a proximate electron-withdrawing group. Compositions of the invention provide enhanced grain refinement and increased stability in metal plating solutions, particularly in tin and tin alloy plating formulations.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: March 16, 2004
    Assignee: Shipley Company L.L.C.
    Inventors: Andre Egli, Anja Vinckier, Jochen Heber, Wan Zhang
  • Patent number: 6669834
    Abstract: The present invention is directed to an improved electroplating method, chemistry, and apparatus for selectively depositing tin/lead solder bumps and other structures at a high deposition rate pursuant to manufacturing a microelectronic device from a workpiece, such as a semiconductor wafer. An apparatus for plating solder on a microelectronic workpiece in accordance with one aspect of the present invention comprises a reactor chamber containing an electroplating solution having free ions of tin and lead for plating onto the workpiece. A chemical delivery system is used to deliver the electroplating solution to the reactor chamber at a high flow rate. A workpiece support is used that includes a contact assembly for providing electroplating power to a surface at a side of the workpiece that is to be plated. The contact contacts the workpiece at a large plurality of discrete contact points that isolated from exposure to the electroplating solution.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 30, 2003
    Assignee: Semitool, Inc.
    Inventors: Robert W. Batz, Jr., Scot Conrady, Thomas L. Ritzdorf
  • Publication number: 20030159939
    Abstract: In accordance with the invention, the volatility of a solder plating bath with volatile brighteners such as aldehydes has its volatility reduced by the addition of diols to the bath. The diols to the bath. The diols are advantageously 1,3 propanediol or 1,2 propanediol and are accompanied by lower molecular weight alcohols. In a preferred embodiment, a diol along with low alcohol is added to a bath comprising sulfonic acid, surfactant, grain refiner and brightening agents comprising an aromatic aldehyde and a carboxylic acid.
    Type: Application
    Filed: February 22, 2002
    Publication date: August 28, 2003
    Applicant: Lucent Technologies
    Inventors: Joseph A. Abys, Frank Stanley Humiec, Kenneth J. Murski, Yun Zhang
  • Patent number: 6607653
    Abstract: The present invention provides a tin-copper alloy plating bath, tin-copper-bismuth alloy plating bath or tin-copper-silver alloy plating bath containing a soluble metal compound and a specific sulfur-containing compound. The plating bath of the present invention is an alloy plating bath containing tin and copper, the bath being capable of preventing deposition of copper on a tin anode by substitution, having low dependence of plated coating composition on current density, high bath stability and resistance to turbidness.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: August 19, 2003
    Assignees: Daiwa Fine Chemicals Co., Ltd., Ishihara Chemical Co., Ltd.
    Inventors: Kiyotaka Tsuji, Keigo Obata, Takao Takeuchi, Hidemi Nawafune, Tetsuji Nishikawa
  • Publication number: 20030150743
    Abstract: There are provided a tin or tin-base alloy plating bath having significantly improved solderability, a tin salt solution and an acid or complexing agent solution for preparing or controlling and making up the plating bath, as well as electrical and electric components prepared by the use of the plating bath.
    Type: Application
    Filed: September 20, 2002
    Publication date: August 14, 2003
    Applicant: DAIWA FINE CHEMICALS CO., LTD.
    Inventors: Keigo Obata, Masakazu Yoshimoto, Kiyotaka Tsuji, Ei Uchida
  • Publication number: 20030132122
    Abstract: In accordance with the present invention, an electroplating solution is provided for electroplating satin bright tin-bismuth alloy solder coatings in high speed electroplating applications. The solution comprises a sulfonic acid electrolytes, a soluble tin compound, a soluble bismuth compound, a non-ionic surfactant, a grain refiner and an antioxidant. The preferred non-ionic surfactant comprises a mixture of polyethylene glycol-block-polypropylene glycol, polyethylene glycol-ran-polypropylene glycol, and ethylenediamine tetrakis (polyethylene glycol-block-polypropylene glycol) tetrol.
    Type: Application
    Filed: January 17, 2002
    Publication date: July 17, 2003
    Applicant: LUCENT TECHNOLOGIES INC
    Inventors: Oscar Khaselev, Igor S. Zavarine, Yun Zhang
  • Patent number: 6582582
    Abstract: An electroplating bath is disclosed that is particularly suited to the electrodeposition of tin, zinc and alloys of the foregoing in a smooth and bright electrodeposit. The disclosed electroplating bath comprises propanedioic acid, diethyl ester, polymer with N-(3-aminopropyl)-1,3-propanediamine, N-(2-carboxy benzoyl) as a brightener additive. In addition, the electroplating bath may also comprise carboxylic acids, ammonium salts, aldehyde compounds and a variety of co-brighteners.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: June 24, 2003
    Inventor: Donald Becking
  • Publication number: 20030070933
    Abstract: A composition and process for electroplating tin or tin alloys onto a substrate at relatively high current densities. The electrolyte comprises toluene sulfonic acid and a source of ammonium ions and/or magnesium ions. The process is particularly suited to high speed reel to reel or strip steel plating.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 17, 2003
    Inventor: David Crotty
  • Publication number: 20030066756
    Abstract: A metal plating bath and method for plating a metal on a substrate. The metal plating bath contains hydroxylamines that inhibit the consumption of additive bath components to improve the efficiency of metal plating processes. The additive bath components are added to metal plating baths to improve brightness of plated metal as well as the micro-throwing and macro-throwing power of the bath. In addition to brighteners, the additive bath components may include levelers, suppressors, hardeners, and the like. The hydroxylamines that inhibit additive consumption may be employed in metal plating baths for plating copper, gold, silver, platinum, palladium, cobalt, cadmium, nickel, bismuth, indium, tin, rhodium, iridium, ruthenium and alloys thereof.
    Type: Application
    Filed: October 4, 2001
    Publication date: April 10, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6544398
    Abstract: The present invention provides a non-cyanide-type gold-tin alloy plating bath comprising: (i) at least one water-soluble gold compound, (ii) at least one completing agent for gold, (iii) at least one water-soluble tin compound, and (iv) at least one component selected from the group consisting of cationic macromolecular surfactants and cationic macromolecular compounds. By using the non-cyanide-type gold-tin alloy plating bath of the present invention, a gold-tin alloy plating film having good brightness, reflow properties and the like can be formed.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: April 8, 2003
    Assignee: Ishihara Chemical Co., LTD
    Inventors: Ei Uchida, Takashi Okada
  • Publication number: 20030024822
    Abstract: The invention concerns a process for the deposition of a silver-tin alloy from an acidic, cyanide-free electrolyte, containing silver ions, tin ions as well as a complexing agent. In order to provide a process which, despite the great differential of potential between silver and tin, makes it possible to simultaneously precipitate both metals to form well-adhering layers which, in addition, have a smooth, matte to silky surface and which are easily soldered, the invention involves the use of, as a further component an aromatic compound with an aldehyde group added to the electrolyte.
    Type: Application
    Filed: April 30, 2001
    Publication date: February 6, 2003
    Inventor: Ortrud Steinius
  • Patent number: 6508927
    Abstract: A tin-copper alloy electroplating bath which comprises a water-soluble tin salt, a water-soluble copper salt, an inorganic or organic acid or a water-soluble salt thereof, and one or more compounds selected from thioamide compounds and thiol compounds. The present invention makes it possible to form a tin-copper alloy deposit, in place of tin-lead alloy plating, on electronic parts such as chips, quartz crystal oscillators, hoops, connector pins, lead frames, bumps, lead pins of packages, and printed circuit boards.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: January 21, 2003
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Isamu Yanada, Masanobu Tsujimoto, Tetsurou Okada, Teruya Oka, Hideyuki Tsubokura
  • Publication number: 20020170828
    Abstract: An electroplating bath is disclosed that is particularly suited to the electrodeposition of tin, zinc and alloys of the foregoing in a smooth and bright electrodeposit. The disclosed electroplating bath comprises propanedioic acid, diethyl ester, polymer with N-(3-aminopropyl)-1,3-propanediamine, N-(2-carboxy benzoyl) as a brightener additive.
    Type: Application
    Filed: March 9, 2001
    Publication date: November 21, 2002
    Inventor: Donald Becking
  • Patent number: 6458264
    Abstract: An acidic Sn—Cu alloy plating bath composition comprising: (a) Sn2+ ions and Cu2+ ions, (b) at least one acid selected from the group consisting of alkane sulfonic acids, alkanol sulfonic acids, and sulfuric acid, and (c) a thiourea compound. The composition exhibits high current efficiency and does not cause Cu to deposit on the Sn anode, the Sn—Cu alloy plating bath is free from such problems as inadequate adhesion of the plating to substrate and covering of with copper deposit. Moreover, processing waste water from the Sn—Cu plating bath is easy because the composition does not contain a complexing agent. The Sn—Cu alloy plating bath of the present invention, therefore, can advantageously produce not only Sn—Cu alloy plating but also ternary alloy plating containing other metals in an industrial scale.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: October 1, 2002
    Assignee: Ebara-Udylite Co., Ltd.
    Inventors: Yoshiaki Muramatsu, Yoshihiko Yada, Hideki Miyazaki, Kanae Tokio
  • Patent number: 6436269
    Abstract: The present invention relates to an aqueous plating bath for electrodeposition of tin-zinc alloys comprising at least one bath-soluble stannous salt, at least one bath soluble zinc salt, and a quaternary ammonium polymer selected from a ureylene quaternary ammonium polymer, an iminoureylene quaternary ammonium polymer or a thioureylene quaternary ammonium polymer. The plating baths also may contain one or more of the following additives: hydroxy polycarboxylic acids or salts thereof such as citric acid; ammonium salts; conducting salts; aromatic carbonyl-containing compounds; polymers of aliphatic amines such as a poly(alkyleneimine); and hydroxyalkyl substituted diamines as metal complexing agents. The plating baths of this invention deposit a bright and level deposit, and they can be adapted to provide plated alloys having high tin concentration over a wide current density range.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: August 20, 2002
    Assignee: Atotech Deutschland GmbH
    Inventors: Vincent C. Opaskar, Lee Desmond Capper
  • Publication number: 20020104763
    Abstract: A tin-copper alloy electroplating bath which comprises a water-soluble tin salt, a water-soluble copper salt, an inorganic or organic acid or a water-soluble salt thereof, and one or more compounds selected from thioamide compounds and thiol compounds. The present invention makes it possible to form a tin-copper alloy deposit, in place of tin-lead alloy plating, on electronic parts such as chips, quartz crystal oscillators, hoops, connector pins, lead frames, bumps, lead pins of packages, and printed circuit boards.
    Type: Application
    Filed: November 4, 1999
    Publication date: August 8, 2002
    Inventors: ISAMU YANADA, MASANOBU TSUJIMOTO, TETSUROU OKADA, TERUYA OKA, HIDEYUKI TSUBOKURA
  • Publication number: 20020046954
    Abstract: The invention relates to an aqueous solution comprising the following components: Zn(II) ions, Sn(II) ions, aliphatic carboxylic acids and/or their alkaline salts, anionic surfactants, non-ionogenic surfactants and optionally aromatic aldehydes, aromatic ketones, aromatic carboxylic acids and heterocyclic carboxylic acids or their alkaline salts or conducting salts. The inventive solution provides a means for electrodepositing uniform light-colored tin-zinc alloys without having to use cyanide ions, allowing low energy consumption and few requirements in terms of the control of the bath.
    Type: Application
    Filed: May 11, 2001
    Publication date: April 25, 2002
    Inventors: Manfred Jordan, Gernot Strube
  • Patent number: 6322686
    Abstract: Disclosed are electrolyte compositions for depositing tin or tin-alloys at various current densities. Also disclosed are methods of plating such tin or tin-alloys on substrates, such as the high speed tin plating of steel.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: November 27, 2001
    Assignee: Shipley Company, L.L.C.
    Inventors: Neil D. Brown, George A. Federman, Angelo B. Chirafisi, Gregory Lai
  • Patent number: 6267863
    Abstract: An electroplating solution for plating bright tin, lead, or tin-lead alloy solder coatings in high speed electroplating applications. The electroplating solution includes an alkane or alkanol sulfonic acid electrolyte, a non-ionic surfactant, a grain refiner and two brightening agents: an aromatic aldehyde and a carboxylic acid. In one embodiment of the electroplating solution, the sulfonic acid electrolyte is methane sulfonic acid, the non-ionic surfactant is octylphenoxy(10)polyethoxy ethanol, the grain refiner is phenolphthalein, the aromatic aldehyde is chlorobenzaldehyde, and the carboxylic acid is methacrylic acid.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: July 31, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Joseph Anthony Abys, Kenneth J. Murski, Yun Zhang
  • Patent number: 6210556
    Abstract: The invention relates to an electrolyte for depositing tin-rich tin-silver alloys upon a substrate. This electrolyte includes a basis solution containing a solution soluble tin and silver compounds; a tin chelating agent of a polyhydroxy compound in an amount sufficient to complex tin ions provided by the tin compound; and a silver chelating agent of a heterocyclic compound in an amount sufficient to complex silver ions provided by the silver compound. Preferably, the tin and silver compounds are present in relative amounts to enable deposits containing about 85 to 99% by weight tin and about 0.5 to 15% by weight silver to be obtained.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: April 3, 2001
    Assignee: Learonal, Inc.
    Inventors: Michael P. Toben, Daniel C. Marcktell, Neil D. Brown, Colleen A. Doyle
  • Patent number: 6183545
    Abstract: An aqueous solution for the reductive deposition of metals comprising, besides water, (A) a phosphine of the general formula (1)  in which R1, R2, and R3 denote lower alkyl groups, at least one of which being hydroxy-or amino-substituted lower alkyl group, and (B) a soluble compound of a metal or a compound of a metal solubilized through the formation of a soluble complex by said phosphine.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: February 6, 2001
    Assignee: Daiwa Fine Chemicals Co., Ltd.
    Inventors: Yoshiaki Okuhama, Takao Takeuchi, Masakazu Yoshimoto, Shigeru Takatani, Emiko Tanaka, Masayuki Nishino, Yuji Kato, Yasuhito Kohashi, Kyoko Kuba, Tetsuya Kondo, Keiji Shiomi, Keigo Obata, Mitsuo Komatsu, Hidemi Nawafune
  • Patent number: 6176996
    Abstract: A tin-based, two-component alloy electroplating composition comprising 20 to 500 g/l of a tin salt, 1 to 100 g/l of a metal salt selected from the group consisting of a zinc, cobalt, bismuth and copper salt, 20 to 200 g/l of methanesulfonic acid, 10 to 300 g/1 of a conductive compound, and 0.5 to 50 g/l of a complexing agent provides a plating layer having excellent corrosion resistance and solderability to electronic devices such as lead frames, connectors and printed circuit boards.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: January 23, 2001
    Inventor: Sungsoo Moon
  • Patent number: 6103088
    Abstract: The invention provides a process for preparing bismuth compounds, in particular a process for preparing highly concentrated solutions of bismuth methanesulfonate, that are stable to hydrolysis.The preparation takes place from aqueous solutions of bismuth compounds of the formula (I)BiX.sub.3 (I)by subjecting acid of the formula (II)HX (II)whereX is the anion of a mineral acid, an organic acid radical, fluoroborate, hexafluorosilicate or cyanide, in an electrolytic cell, to electrolytic dissolution of the anode with metallic bismuth as the anode.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: August 15, 2000
    Assignee: Goldschmidt Ag.
    Inventors: Dieter Guhl, Frank Honselmann
  • Patent number: 6103089
    Abstract: A multilayer material is described, whose overlay exhibits improved hardness and improved wear-resistance. The multilayer material includes an overlay, which contains 8-18.5 wt. % tin and 2-16 wt. % copper, the balance being lead, wherein the tin is present as a finely crystalline deposit completely homogeneously distributed in the lead. A process for producing sliding elements in which the overlay of lead-tin-copper is applied to the prefabricated semi-finished product by electroplating provides that a ternary, fluoroborate-free electroplating bath is used without brighteners and with the addition of fatty acid polyglycol ester and a grain refining agent including a carboxylic acid.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: August 15, 2000
    Assignee: Federal-Mogul Wiesbaden GmbH
    Inventors: Klaus Staschko, Hans-Ulrich Huhn, Klaus Muller, Joachim Heyer
  • Patent number: 6099713
    Abstract: Disclosed is a tin-silver alloy electroplating bath containing: (A) stannous salt; (B) silver salt; (C) one kind or two or more kinds of acids selected from the group consisting of sulfuric acid, phosphoric acid, phosphonic acid, hydroxycarboxylic acid, alkanesulfonic acid, and alkanolsulfonic acid; (D) thiourea; (E) nonionic surface active agent; and (F) one kind or two or more kinds of additives selected from the group consisting of a mercapto group containing aromatic compound, dioxyaromatic compound, and unsaturated carboxylic acid. The electroplating using the above electroplating bath is allowed to form a homogeneous tin-silver alloy plated film having a good external appearance by eliminating preferential deposition of silver and substitutional deposition of silver on an anode and the plated film.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: August 8, 2000
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Isamu Yanada, Masanobu Tsujimoto
  • Patent number: 6086742
    Abstract: The invention concerns a method of producing layered materials for sliding bearings and an electroplating bath for carrying out this method. According to the method, an electroplating bath with a non-ionic wetting agent and a benzene derivative is used for depositing a binary layer on a bronze layer on which the lead- or tin-based binary layer and a molybdenum-based initial layer are deposited galvanically in succession. When the binary layer has been deposited and before the initial layer is deposited, at least one surface layer of the binary layer is anodically activated. The layered material comprises a steel support shell (1) and a cast leaded bronze (2) to which an intermediate layer (13) is applied galvanically. When the layer (3) has been applied galvanically, the surface region (5) is altered by anodic activation, whereupon the molybdenum oxide layer (4) is applied galvanically.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: July 11, 2000
    Assignee: Glyco-Metall-Werke, Glyco B.V. & Co. KG
    Inventors: Hans-Ulrich Huhn, Dietmar Wiebach, Klaus Muller
  • Patent number: 6022467
    Abstract: Continuous electrolytic tin plating is accomplished in a bath containing 90-160 g/L sulfuric acid, 4-70 g/L tin ion and a grain refiner, and 1-4% nonylphenol ethoxylated with 8-10 ethylene oxide groups, having a weight average molecular weight of 616.+-.18, at a speed of 900-1600 feet per minute and a current density as much as 1500 amperes per square foot or more.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: February 8, 2000
    Assignee: USX Corporation
    Inventor: Ersan Ilgar
  • Patent number: 5951841
    Abstract: Salts of aromatic hydroxy compounds are used as brighteners in acidic electroplating baths. Furthermore, acidic electroplating baths for the electrolytic deposition of metallic layers onto shaped articles comprise, as brighteners, at least one novel salt of an aromatic hydroxy compound. Finally, shaped articles are electroplated by a process using the novel acidic electroplating baths.
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: September 14, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Wehlage, Ulrich Schroder, Alfred Oftring
  • Patent number: 5911866
    Abstract: The invention relates to an acid tin-silver alloy plating bath which comprises tin ions, silver ions, one compound selected from the group consisting of aromatic thiol compounds and aromatic sulfide compounds, substantially non-cyanide and a balance of water, the pH of the bath being not higher than 2. According to this acid bath, tin and silver can be kept dissolved in the bath in a stable state for a long period of time even at a high temperature and a predetermined plating capacity is kept for a long period of time even though the bath is free from cyanide.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: June 15, 1999
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Satoshi Yuasa
  • Patent number: 5902472
    Abstract: A tin-silver alloy plating solution having a tin compound, a silver compound, and a complexing agent including a pyrophosphoric compound and an iodic compound. The tin-silver alloy layer composition can achieve a high electric current efficiency without using harmful compounds such as cyanides. The plating solution is very stable, possesses adhesivability, and the solder-wettability of the tin-silver alloy layer is satisfactory. Also, the alloy is an advantageous alloy for solder plating.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: May 11, 1999
    Assignee: Naganoken and Shinko Electric Industries Co., Ltd.
    Inventors: Susumu Arai, Tohru Watanabe, Mitsutoshi Higashi
  • Patent number: 5871631
    Abstract: An additive for an acidic tinplating bath comprises: an additive ingredient (A) prepared by adding oxypropylene to polyoxyethylene glycol and having an average molecular weight ranging from 3000 to 18000; an additive ingredient (B) prepared by adding oxypropylene to polyoxyethylene glycol and having an average molecular weight ranging from 300 to 1500; and the additive ingredient (A) and the additive ingredient (B) having a weight ratio of the additive ingredient (A) to the additive ingredient (B) being from 97/3 to 40/60.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: February 16, 1999
    Assignees: NKK Corporation, LeaRonal Japan Inc.
    Inventors: Mikiyuki Ichiba, Hiroshi Kubo, Yoshinori Yomura, Takeshi Miura, Kazuyuki Suda
  • Patent number: 5814202
    Abstract: Continuous electrolytic tin plating is accomplished in a bath containing 90-160 g/L sulfuric acid, 40-70 g/L tin ion and a grain refiner, at a speed of 900-1600 feet per minute and a current density as much as 1500 amperes per square foot or more.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: September 29, 1998
    Assignee: USX Corporation
    Inventor: Ersan Ilgar
  • Patent number: 5783059
    Abstract: An electrodeposition bath for depositing a Sn alloy onto a Cu substrate containing a Zn salt. This bath is particularly useful for Pb free alloy, such as a Sn--Bi alloy. The presence of Zn in the elctrodeposition bath greatly influence the bath behaviour and the characteristics of the deposited alloy, even if no Zn is codeposited on the Cu substrate.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: July 21, 1998
    Assignee: International Business Machines Corporation
    Inventors: Pietro Luigi Cavallotti, Vittorio Sirtori, Giovanni Zangari