Utilizing Emulsion, Dispersion, Or Suspension Electrolyte System Patents (Class 205/352)
  • Patent number: 11499238
    Abstract: The current disclosure provides alternating current based systems and methods to develop chemical compounds, such as drug molecules using electrochemistry in organic synthesis.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: November 15, 2022
    Assignee: Wayne State University
    Inventors: Long Luo, Hien M. Nguyen
  • Patent number: 10392273
    Abstract: An ion exchange membrane is provided with a first cation exchange composition which has a cation exchange group and is formed in a sheet form; a first anion exchange composition which is disposed to be in contact with the first cation exchange composition, has an anion exchange group, and is formed in a sheet form. Furthermore, the ion exchange membrane is provided with a second cation exchange composition which has a cation exchange group, which is formed in a sheet form, and which is disposed to be opposed to the first cation exchange composition, and through which water permeates more easily than in the first cation exchange composition; and a second anion exchange composition which has an anion exchange group, which is formed in a sheet form, and which is disposed to be opposed to the first anion exchange composition, and through which water permeates more easily than in the first anion exchange composition.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: August 27, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Shigeru Sasabe, Yuji Nakata, Daisuke Suzuki, Tomoko Tani, Yoshinao Ooe, Katsuhiko Uno
  • Patent number: 10072343
    Abstract: Apparatus for removing Greenhouse Gases from combustion of fossil and non-fossil fuels, including hydrocarbons and biomass fuels, is disclosed. The apparatus includes: a vessel containing a liquid medium; a circulation system with a pump; a plurality of positively charged metal plates, each with a plurality of apertures; a negatively charged discharge pipe connected to the circulation pipe; a refrigeration system on the outside of the vessel; and a power source. The apparatus uses the process of electrolysis and electrostatic induction to form covalent bonding among various constituents of Greenhouse Gases and thereby converts and condenses all or most of Greenhouse Gases in the emission. The apparatus has a working prototype. The apparatus can be used in converting and condensing all or some Greenhouse Gases from emissions of power plants and all types of industrial plants which generate Greenhouse Gases as emissions, as well as from various sources of vehicular emissions.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: September 11, 2018
    Assignee: EMISSION CONTROL ASSOCIATES
    Inventor: John Ahearn
  • Patent number: 9217098
    Abstract: A method of initiating polymerization of a composition formed of a 1,1-disubstituted alkene compound includes contacting the composition with a substrate and passing an electrical charge through the composition. The composition can also be electrografted to the substrate or include conductive synergists.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: December 22, 2015
    Assignee: Sirrus, Inc.
    Inventors: Peter Rulon Stevenson, Jeffrey M. Sullivan
  • Publication number: 20140335011
    Abstract: The present invention relates to a method for preparing graphene substantially free of contamination by metallic, magnetic, organic and inorganic impurities, and also to the use of the resulting graphene for the production of transparent electrodes, batteries, electron-acceptor or electron-donor materials, in particular in photovoltaic systems, photovoltaic panels, transistor channels, in particular in electronics, nonlinear emitters or absorbers of infrared photons, current-conducting electrodes, anti-static coatings, chemical detectors, vias and interconnections in electronics, current-conducting cables, and solar cells.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 13, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Lionel Dubois, Serge Gambarelli, Ashok Nanjundan
  • Publication number: 20130175182
    Abstract: A process for the transformation of carbon nanotubes (CNTs) to nanoribbons composed of a few layers of graphene by a two-step electrochemical approach is disclosed in this invention. This consists of the oxidation of CNTs at controlled potential, followed by reduction to form graphene nanoribbons (GNRs) having smooth edges and fewer defects, as evidenced by multiple characterization techniques, including Raman spectroscopy, atomic force micro-scopy, and transmission electron microscopy. This type of ‘unzipping” of CNTs (single-walled, multi-walled) in the presence of an interfacial electric field provides unique advantages with respect to the orientation of CNTs, which might make possible the production of GNRs with controlled widths and fewer defects. The extent of oxidation was confirmed by various characterization techniques like XRD, XPS and Raman spectroscopy. In the second step of experiments, the CNT oxide were reduced for different periods such as 4, 8, 12 hours at fixed negative potentials of ?0.
    Type: Application
    Filed: September 13, 2011
    Publication date: July 11, 2013
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Dhanraj Bhagwanrao Shinde, Vijaymohanan Kunjikrishnan Pillai
  • Patent number: 8444843
    Abstract: An electrocatalytic process to remove organic sulfur compounds from a mixture of water containing a miscible electrolyte and a hydrocarbon feedstock involving the application of a current of electricity to cause the dissociation of the water which produces hydrogen at a catalytic cathode which reduces the organic sulfur compounds in the hydrocarbon with the evolution of H2S which is separated and collected, and the separation and collection of the treated hydrocarbon.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: May 21, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohamed Elanany, Esam Z. Hamad
  • Patent number: 8317978
    Abstract: A method of fabricating a non-brittle, carbon nanopaper from single wall, multiwall, and combination thereof, from carbon nanotubes, using a vacuum deposition, high temperature annealing, and polystyrene polymer rinse process; which nanopaper can be nitrided by either a plasma-enhanced chemical vapor deposition (PECVD) process, or an by an electrochemical method, to obtain a useful chemically functionalized substrate, a substrate containing metastable N4, N8, and longer chain polymeric nitrogen clusters. Such nitrided carbon nanopaper can be used to enhance the ballistic performance of gun propellants, while reducing gun barrel wear and erosion thereof.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 27, 2012
    Inventors: Thelma G. Manning, Zafar Iqbal
  • Patent number: 8241482
    Abstract: The invention is directed to a process for recovering acids from mixtures containing them, in particular organic acids and amino acids, such as acids produced by fermentation in a fermentation broth. The process of the invention comprises contacting a loaded extractant with a solution containing hydroxide ions in the presence of at least one cathode and at least one anode, wherein said hydroxide ions are produced by using said cathode, whereby said acid is converted to its anionic form, by which it can be removed from said extractant and can migrate in the direction of the anode.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: August 14, 2012
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventors: Joost Van Erkel, Earl Lawrence Vincent Goetheer
  • Publication number: 20110262840
    Abstract: A composition useful for the fueling and refueling of electrochemical devices is described. The composition comprises an ion-conducting medium such as an electrolyte, and catalyst nanoparticles. Unlike traditional electrodes, such as those typically used in electrolyzers and fuel cells, the inventive composition may be quickly drained from the device and refilled to maintain maximum cell performance. In addition, the electro-catalytic charging composition can be stored as a solid for safe handling; for example in a portable cartridge.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 27, 2011
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Kevin Maloney, Robert Dopp
  • Patent number: 7763159
    Abstract: A method for preparation of nanocomposite solution, comprises preparing basic silica colloid aqueous solution; providing an electrolysis apparatus by installing a negative electrode containing aluminum and a positive electrode containing silver into the basic silica colloid aqueous solution; and forming nanocomposite by applying voltage to the respective electrodes of the electrolysis apparatus. With this configuration, the present invention provides a method of manufacturing solution dispersed with nanocomposite, further particularly to, a method of manufacturing nanocomposite solution having excellent storability and thermal stability and containing silver having antibacterial function, far infrared radiation function, deodorization function.
    Type: Grant
    Filed: December 26, 2003
    Date of Patent: July 27, 2010
    Inventors: Chul-sang Jeong, Moon-young Jeong, Byoung-chan Kim, Myung-soo Lee
  • Patent number: 7722755
    Abstract: Methods, systems, and devices are provided for synthesizing one or more chemical products from a renewable oil, comprising the step of flowing a fluid which comprises a renewable oil through a high voltage electrical field effective to catalyze a chemical reaction involving the renewable oil. Examples of renewable oils include vegetable oils, animal fats, bio-oils, and combinations thereof. In one embodiment, the fluid further comprises an alcohol mixed with the oil, and the chemical reaction produces biodiesel and an etherified glycerin. In one embodiment, the biodiesel is further reacted to produce acetic acid.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 25, 2010
    Assignee: ECR Technologies, Inc.
    Inventors: J. Alan Lawson, Ahmed A. Baosman
  • Publication number: 20090321689
    Abstract: Disclosed is a method for producing a fine particle dispersion such as a dispersion of metal fine particles which is superior in dispersibility and storage stability. Specifically disclosed is a method for producing a fine particle dispersion wherein fine particles of a metal or the like, having a mean particle diameter of between 1 nm and 150 nm for primary particles, are dispersed in an organic solvent.
    Type: Application
    Filed: July 25, 2007
    Publication date: December 31, 2009
    Inventors: Takuya Harada, Hidemichi Fujiwara, Kazuhiro Takashiba, Nobumitsu Yamanaka, Yusuke Yamada, Hideo Nishikubo, Takashi Unno
  • Publication number: 20090008262
    Abstract: The subject invention provides a potentially economically viable method for the preparation of reactive superoxide ion in deep eutectic solvents (DES). The superoxide ion can be used for many applications, e.g. the degradation of hazardous chemicals at ambient conditions or in the synthesis of some special chemicals, e.g. carboxylic acids, aldehydes, and ketones from the corresponding alcohols. The superoxide ion can be formed by either the electrochemical reduction of oxygen in DES or by dissolving Group 1 (alkali metals) or Group 2 (alkaline earth metals) superoxides, e.g. potassium superoxide, in DES, with/without chemicals used for the enhancement of the solubility of the metal superoxide in the DES, e.g. crown ethers.
    Type: Application
    Filed: March 26, 2008
    Publication date: January 8, 2009
    Applicant: King Saud University
    Inventors: Inas Muen Al Nashef, Saeed M. Al Zahrani
  • Patent number: 7182851
    Abstract: This invention concerns the commercial production of electrolytic hydrogen from coal and other hydrocarbon compounds. The process provides high capacity and low impedance compared to conventional diaphragm electrolytic cells. The hydrogen produced is suitable for combined cycle gas turbines and fuel cell power generation plants and for proton electrolytic membrane fuel cell powered transport vehicles.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: February 27, 2007
    Inventor: Rodolfo Antonio M Gomez
  • Patent number: 6478946
    Abstract: A method of preparing organic acids (fulvic, humic, and ulmic) for use as an electrolyte for producing high ionizations of precious metals (such as silver) which entails leaching out the organic acid from its source, stabilizing the organic acid first with ascorbic acid followed by sodium benzoate, removing cations, and using the organic acid as an electrolyte. A precious metal (such as silver) is used as a sacrificial electrode in this electrolyte. A non-sacrificial electrode could either be the same precious metal or an inert non-precious metal (titanium or graphite carbons). If the same material is used for the non-sacrificial electrode as for the sacrificial electrode, the size of each electrode may be about the same. If different material is used for the non-sacrificial electrode, its size should be larger that of the sacrificial electrode. Current at about 2 or more volts is applied to the electrodes and the ionization process begins yielding high concentrations of ionized precious metals.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: November 12, 2002
    Assignee: The Chemins Company, Inc.
    Inventor: Kenneth D. Westwood
  • Patent number: 6217812
    Abstract: Method for producing a plate-shaped component. This involves the preparation of a first suspension comprising an alcohol as the dispersing medium and a base material for the plate. A second suspension is prepared which comprises binder, water as the gelling agent and an alcohol as the dispersion medium, possibly with the addition of Li/K or Li/Na carbonate. These two suspensions are mixed together, possibly with the addition of fibers. After mixing, a plate-shaped component is fabricated with the aid of the “tape casting” technique.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: April 17, 2001
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Robert De Rooij, Pieter Nammensma
  • Patent number: 6139831
    Abstract: Apparatus and method for immobilizing molecules, particularly biomolecules such as DNA, RNA, proteins, lipids, carbohydrates, or hormones onto a substrate such as glass or silica; patterns of immobilization can be made resulting in addressable, discrete arrays of molecules on a substrate, having applications in bioelectronics, DNA hybridization assays, drug assays, etc.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: October 31, 2000
    Assignee: The Rockfeller University
    Inventors: Ganaganor Visweswara Shivashankar, Albert J. Libchaber
  • Patent number: 5965003
    Abstract: CMPO is safely, reliably and rapidly decomposed under mild conditions. A CMPO-containing substance is emulsified in an electrolyte comprising an oxidation promoter (silver ion) by an emulsifier in an emulsifying tank, this electrolyte comprising the CMPO-containing substance is supplied to an anode chamber, and an electrolytic oxidation reaction is performed by passing an electric current. By emulsifying the CMPO-containing substance, the surface area of CMPO in contact with electrolyte is increased, and electrolytic decomposition is thereby promoted. As sufficient CMPO decomposition is not obtained by passing the emulsion only once through an electrolysis tank 1, a batch oxidation method is employed wherein an anolyte is recirculated by a recirculating pump 3a through the anode chamber, a constant temperature bath 7a and an emulsifying tank 6, so that electrolysis is performed with the CMPO-containing substance permanently emulsified in the electrolyte.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: October 12, 1999
    Assignees: Doryokuro Kakunenryo Kaihatsu Jigyodan, Mitsui Engineering & Shipbuilding Co., Ltd., Chlorine Engineers Corp, Ltd.
    Inventors: Masaki Ozawa, Yasumasa Tanaka, Yoshihiro Hoshino, Hiroyuki Tanuma, Chisako Kawakami, Takamichi Kishi
  • Patent number: 5746902
    Abstract: There is provided manganese dioxide to be suitably used for alkaline manganese batteries and manganese batteries to make them excellent both in the initial performance and the storability. There is also provided a method of manufacturing such manganese dioxide. The electrolytic manganese dioxide has a BET specific surface area of less than 30 m.sup.2 /g (preferably less than 27 m.sup.2 /g) and a suspensiveness of less than 50 mg/liter. A method of manufacturing electrolytic manganese dioxide may be a suspension method, wherein manganese oxide is suspended at a rate of 0.01 to 0.2 g/liter in an electrolytic bath containing sulfuric acid at a concentration of 0.4 to 0.55 mol/liter and electrolyzed to produce electrolytic manganese dioxide with an anodic current density of 0.4 to 3.0 A/dm.sup.2 and an electrolytic temperature of 93.degree. to 103.degree. C., the relationship between the anodic current density and the electrolytic temperature being expressed by 103.gtoreq.y.gtoreq.1.67x+92.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: May 5, 1998
    Assignee: Japan Metals & Chemicals Co., Ltd.
    Inventors: Hisao Takehara, Yoshihiro Nakayama, Ryoichi Shimizugawa, Tsutomu Kishikawa, Takumi Murai, Fumiya Takahashi, Koh Takahashi