Polycyclo Ring System Having The Hetero Ring As One Of The Cyclos Patents (Class 205/424)
  • Patent number: 9825308
    Abstract: A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: November 21, 2017
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Di-Jia Liu, Lina Chong
  • Patent number: 9662632
    Abstract: A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: May 30, 2017
    Assignee: Sandia Corporation
    Inventors: Mark D. Allendorf, Jeffery A. Greathouse, Chad Staiger
  • Patent number: 9096616
    Abstract: Described is a process for preparing a porous metal-organic framework comprising at least one at least bidentate organic compound coordinated to at least one metal ion, where the at least one metal ion is a zinc ion and the at least one at least bidentate organic compound is based on 2-methylimidazole, which comprises the steps (a) addition of a first water-based solution comprising zinc ions to a second water-based solution comprising 2-methylimidazole, with a suspension being formed after addition of the second solution; (b) addition of a third solution comprising a strong base to the suspension formed in step (a).
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: August 4, 2015
    Assignee: BASF SE
    Inventors: Natalia Trukhan, Ulrich Müller
  • Patent number: 8092771
    Abstract: The present invention provides a process for producing a nitrogen-containing carbon material, comprising a first step of subjecting azulmic acid to a first heat treatment in an oxygen-containing gas atmosphere, thereby preparing a heat-treated product, and a second step of subjecting the heat-treated product to a second heat treatment in an inert gas atmosphere.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 10, 2012
    Assignee: Asahi Kasei Chemicals Corporation
    Inventor: Hidenori Hinago
  • Publication number: 20110308963
    Abstract: In an electrolytic bath partitioned with an anion exchange membrane, water is supplied to the cathode chamber and an aromatic compound and a polar organic solvent, and depending on the case also a transition metal catalyst, are supplied to the anode chamber, and then electrolysis is carried out in the presence of a halogenating agent, to introduce a halogen onto the aromatic ring of the aromatic compound.
    Type: Application
    Filed: March 8, 2010
    Publication date: December 22, 2011
    Inventor: Fumitoshi Kakiuchi
  • Publication number: 20110105760
    Abstract: The present invention relates to a process for preparing substituted 2-aminobiphenyls and to a process for preparing (Het)arylamides of such 2-aminobiphenyls.
    Type: Application
    Filed: July 3, 2009
    Publication date: May 5, 2011
    Applicant: BASF SE
    Inventors: Michael Keil, Michael Rack, Thomas Zierke, Markus Heinrich, Alexander Wetzel
  • Patent number: 7918982
    Abstract: The object of the disclosure is to provide a nano-scale molecular assembly such as a conductive nano-wire. Specifically, there is provided an electrochemical apparatus for forming a molecular assembly, including two electrodes and an electrochemical cell holding an electrolytic solution and the two electrodes, wherein the gap between the two electrodes is from 1 nm to 100 ?m, by allowing the electrochemical cell to hold an electrolytic solution containing molecules that is to constitute the molecular assembly, and applying a voltage across the two electrodes in the state wherein the electrolyte and the two electrodes are in contact.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 5, 2011
    Assignee: National Institute of Information and Communications Technology Incorporated Administrative Agency
    Inventors: Hiroyuki Hasegawa, Tohru Kubota, Shinro Mashiko
  • Patent number: 7910732
    Abstract: The present invention relates to processes for preparing a porous metal-organic framework comprising at least two organic compounds coordinated to at least one metal ion, the porous metal-organic frameworks prepared by the process and their use, in particular for gas storage and gas separation.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: March 22, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Markus Schubert, Michael Hesse, Ulrich Mueller, Hermann Puetter, Markus Tonigold
  • Patent number: 7811441
    Abstract: Processes for making organic photosensitive pigments for charge generating layers of imaging members. The pigments may include titanyl phthalocyanine. The pigments may be synthesized through a partially electrochemical or purely electrochemical process. The pigments may be used in a charge generating layer of an imaging member having a substrate, the charge generating layer, and a charge transfer layer.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: October 12, 2010
    Assignee: Xerox Corporation
    Inventors: Liang-bih Lin, William Herbert, Jin Wu, Daniel Levy, Francisco Lopez
  • Publication number: 20090183996
    Abstract: Processes comprising: (i) providing an anode comprising zinc; and (ii) oxidizing the anode in a reaction medium in the presence of at least one organic compound to form a porous metal organic framework comprising the least one organic compound coordinated to at least one zinc ion; wherein the at least one organic compound comprises a ring system selected from the group consisting of compounds corresponding to the following structures wherein the ring system optionally bears one or more substituents selected independently from the group consisting of halogens, C1-6-alkyls, phenyl, NH2, NH(C1-6-alkyls), N(C1-6-alkyls)2, OH, O-phenyl and O—C1-6-alkyls, and wherein each C1-6-alkyl and phenyl substituent may independently and optionally bear one or more substituents selected independently from the group consisting of halogens, NH2, NH(C1-6-alkyls), N(C1-6-alkyls)2, OH, O-phenyl and O—C1-6-alkyls.
    Type: Application
    Filed: May 11, 2007
    Publication date: July 23, 2009
    Applicant: Basf SE
    Inventors: Ingo Richter, Markus Schubert, Ulrich Müller
  • Publication number: 20080214806
    Abstract: The present invention relates to processes for preparing a porous metal-organic framework comprising at least two organic compounds coordinated to at least one metal ion, the porous metal-organic frameworks prepared by the process and their use, in particular for gas storage and gas separation.
    Type: Application
    Filed: May 22, 2006
    Publication date: September 4, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Markus Schubert, Michael Hesse, Ulrich Muller, Hermann Putter, Markus Tonigold
  • Patent number: 7125479
    Abstract: Polymers and copolymers comprising repeating units of 5 thieno[3,4-b]thiophene. Water-borne dispersions of such polymers and copolymers can be cast by conventional methods to provide uniform, thin films which possess utility in numerous electroactive applications including electrochromic displays, optically transparent electrodes and antistatic coatings. The compositions of this invention can be doped with conventional p-dopants or n-dopants. The invention also presents an aqueous process for preparing such polymeric compositions.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: October 24, 2006
    Assignee: The University of Connecticut
    Inventor: Gregory Allen Sotzing
  • Patent number: 7052593
    Abstract: The present invention provides an electrochemical method for producing diaryl iodonium compounds wherein application of an electric current to an electrochemical cell containing a reaction mixture composed of a solvent, an iodoaryl compound and an electrolyte forms an oxidizing agent in situ. In this first step, the oxidizing agent is subsequently converted into a stable oxidized iodoaryl intermediate, typically an iodosyl compound. The electric potential is removed and in a second step a target aryl compound is introduced to the reaction mixture to react with the oxidized iodoaryl intermediate to form a diaryl iodonium compound.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: May 30, 2006
    Assignee: Cornell Development Corporation LLC
    Inventors: Leonard H. Wojcik, Jr., David D. Cornell
  • Patent number: 6969451
    Abstract: A fluid-type multiple electrochemical system. The system includes a substrate for an electric circuit having a plurality of electrode parts formed at regular intervals. The electrode parts each include a reference electrode and an auxiliary electrode. Also provided is a fluid-type substrate having a fluid injection part, a fluid ejection part and a plurality of fluid storages. The fluid storages are formed at the same regular intervals as the electrode parts of the substrate and are connected with each other through fluid passages. The system also includes a sensor substrate having a plurality of unit sensors formed at the same regular intervals as the electrode parts of the substrate. Each unit sensor has an electrode part, an electrode pad for supplying power voltage simultaneously, and an electrode wiring.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: November 29, 2005
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dong-Ho Shin, Sun Kil Kang, Hyokyum Kim, Haesik Yang, Youn Tae Kim
  • Patent number: 6787020
    Abstract: A method and apparatus for producing water containing ozone by electrolysis includes an anodic electrode, a cathode electrode, and a mechanism for advancing and reversing both or at least one of the electrodes, wherein DC voltage is applied between both electrodes in the state of a solid polymer electrolyte membrane pressed by both electrodes, water flows on both sides of the solid polymer electrolyte membrane, water containing ozone is produced at the anodic electrode, and an operation for changing a pressing force is carried out, after which, the pressing force returns to an original pressing force, thereby carrying out a recovery of the solid polymer electrolyte membrane while continuing the production of the water containing ozone.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: September 7, 2004
    Assignee: Shinko Plant Construction Co., Ltd.
    Inventors: Takafumi Kanaya, Noriaki Okubo
  • Patent number: 6419814
    Abstract: Organoiodonium salts, including certain novel symmetrical and unsymmetrical diaryliodonium;. polyiodonium and cyclic iodonium salts are synthesized by a significantly improved electrochemical coupling reaction which provides greater control and selectivity over the end product produced. Reaction mixtures comprising aryliodides and/or aromatic substrates are electrolyzed in novel reaction mediums comprising strong acid electrolyte, lower carboxylic acid, and preferably in the presence of acid anhydride in amounts >10 percent by-weight, and up to 50 percent by-weight or more, to provide a high degree of product selectivity, and at yields which can even be quantitative. The methods are conducted by introducing the electrolysis reaction mixture into an undivided electrochemical cell equipped with a cathode and preferably a conductive carbon anode.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: July 16, 2002
    Assignee: Cornell Development LLC
    Inventors: Derek Pletcher, Norman L. Weinberg
  • Patent number: 6294069
    Abstract: A process for the preparation of chiral 2-aryl or 2-heterocyclyl-propionic acids of the formula wherein the substituents are as defined in the specification.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: September 25, 2001
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Muriel Durandetti, Isabelle Lachaise, Jean-Yves Nedelec, Jacques Perichon
  • Patent number: 5810989
    Abstract: A method of photoelectro-synthesizing probe arrays including the steps of providing a photoconductive layer of material having a layer of electrically conductive material on a first surface thereof and a solution of a plurality of a first oligonucleotide modified monomer positioned in electrical contact with an opposing second surface thereof such that a potential is connected therebetween. A beam of light is directed through a portion of the photoconductive layer of material to complete an electrical circuit between the layer of electrically conductive material and the solution through the portion of the photoconductive layer, whereby the monomers in the solution are electropolymerized on a surface area which is coupled into the electrical circuit by the beam of light.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: September 22, 1998
    Assignee: Motorola, Inc.
    Inventors: Michael Krihak, Chan-Long Shieh, Hsing-Chung Lee
  • Patent number: 5766445
    Abstract: The present invention provides a method for forming a novel carbonaceous material, which has properties such as acceptor properly useful as a secondary cell electrode material and a host material for catalyst, comprising of the steps of electrochemically polymerizing a nitrogen-containing organic compound as a monomer constituent, and heat-treating the resultant polymer as a carbon precursor.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: June 16, 1998
    Assignees: Research Development Corporation of Japan, Japan Carlit Co., Ltd.
    Inventors: Kenichi Hashizume, Miho Tsutsui, Tomohiko Kaneko, Sugio Otani
  • Patent number: 5679235
    Abstract: An electrolyte contains a tetravalent salt of titanium and a trivalent salt of cerium in a methanesulfonic acid solution. A reducing agent consisting of trivalent titanium and an oxidizing agent consisting of tetravalent cerium are provided in the same solution. An electrochemical cell is disclosed wherein the catholyte and anolyte utilize this electrolyte. The reduction of tetravalent titanium into trivalent titanium is accomplished by electrolysis in the presence of extraneous trivalent cerium ions. The oxidation of trivalent cerium into tetravalent cerium is accomplished by electrolysis in the presence of extraneous tetravalent titanium ions. Simultaneous reduction of tetravalent titanium into trivalent titanium and oxidation of trivalent cerium to tetravalent cerium by electrolysis is also disclosed. Reduction of organic compounds using trivalent titanium in the presence of trivalent cerium in methanesulfonic acid is disclosed.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: October 21, 1997
    Assignee: Hydro-Quebec
    Inventor: Stephen Harrison