Uranium Patents (Class 205/46)
  • Patent number: 10550489
    Abstract: A method for recycling molten salt from electrorefining processes, the method having the steps of collecting actinide metal using a first plurality of cathodes from an electrolyte bath, collecting rare earths metal using a second plurality of cathodes from the electrolyte bath, inserting the collected actinide metal and uranium into the bath, and chlorinating the inserted actinide metal and uranium. Also provided is a system for recycling molten salt, the system having a vessel adapted to receive and heat electrolyte salt, a first plurality of cathodes adapted to be removably inserted into the vessel, a second plurality of cathodes adapted to be removably inserted into the vessel, an anode positioned within the vessel so as to be coaxially aligned with the vessel, and a vehicle for inserting uranium into the salt.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: February 4, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: James L. Willit, Magdalena M. Tylka, Mark A. Williamson, Stanley G. Wiedmeyer, Javier Figueroa
  • Patent number: 9368241
    Abstract: A method for processing a coolant includes filtering a coolant using a first filtration system to generate a first filtered material, and filtering the filtered coolant using a second filtration system to generate a second filtered material. The second filtration system is different from the first filtration system. The first filtered material is transferred to a first waste treatment container and converted to a first waste product for permanent disposal, and the second waste product is transferred to a second waste treatment container and converted to a second waste product for permanent disposal.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 14, 2016
    Assignee: GE-HITACHI NUCLEAR ENERGY AMERICAS LLC
    Inventors: Eric P. Loewen, John F. Berger, Brett J. Dooies
  • Patent number: 8535492
    Abstract: A system providing selective spin modification and reaction in an electrolytic cell. An electrolytic cell is coupled to a magnet that provides a level-splitting magnetic field in a region of electrolyte adjacent to a working electrode, thus establishing a spin resonance for an unpaired electron associated with a chemical species in the region of electrolyte adjacent to the working electrode. The working electrode carries an excitation current produced by a switching source or amplifier. The excitation current produces an alternating magnetic field adjacent to the working electrode that alters the spin state population density for the unpaired electron associated with a chemical species within the electrolyte, thereby enhancing or inhibiting the reaction of the chemical species during subsequent electrolysis.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: September 17, 2013
    Inventor: Mehlin Dean Matthews
  • Publication number: 20130206599
    Abstract: A method for measuring the uranium concentration of an aqueous solution including the following successive steps: a) electrochemical reduction towards valence IV, of the uranium present in the aqueous solution with a valence greater than IV, this reduction being implemented at pH<2 and by passing an electrical current in the solution; b) measurement of the absorbance of the solution obtained on completion of step a) at a chosen wavelength between 640 and 660 nm, and preferably 652 nm; and c) determination of the uranium concentration of the aqueous solution by deduction of the uranium concentration of valence (IV) present in the aqueous solution obtained on completion of step a) from measurement of the absorbance obtained in step b).
    Type: Application
    Filed: September 13, 2011
    Publication date: August 15, 2013
    Applicant: AREVA NC
    Inventor: Magali Celier
  • Patent number: 8226910
    Abstract: A process for the extraction of uranium compounds from wet-process phosphoric acid includes lowering the iron concentration of the wet-process phosphoric acid and reducing the valency of any remaining ferric iron in the wet-process phosphoric acid to ferrous iron, and then extracting uranium compounds from the wet-process phosphoric acid. The process can include separating a side stream from a feed stream of wet-process phosphoric acid, wherein the side stream has a greater concentration of the uranium compounds than the feed stream by filtration. Extracting uranium compounds from the wet-process phosphoric acid can be by ion exchange process or by solvent extraction.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: July 24, 2012
    Assignee: Urtek, LLC
    Inventors: Nicholas Warwick Bristow, Mark S. Chalmers, James Andrew Davidson, Bryn Llywelyn Jones, Paul Robert Kucera, Nick Lynn, Peter Douglas Macintosh, Jessica Mary Page, Thomas Charles Pool, Marcus Worsley Richardson, Karin Helene Soldenhoff, Kelvin John Taylor, Colin Weyrauch
  • Patent number: 8177952
    Abstract: Disclosed herein is a method of preparing uranium metal by electrorefining uranium metal, comprising: applying a predetermined current to an anode electrode included in an anode basket receiving fuel segments made of uranium metal and a cathode electrode of carbon material; electrodepositing uranium on the cathode electrode in accordance with the reaction initiated by the applied current; and collecting the electrodeposited uranium by self-weight. An apparatus for electrorefining uranium metal used in the method according to the present invention, comprises: an anode basket (6) receiving fuel segments made of uranium metal and comprising an anode electrode; and a reactor including a cathode electrode (5) made of carbon material and a uranium collector (10) therein.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: May 15, 2012
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Young-Ho Kang, Jong-Hyeon Lee, Sung-Chan Hwang, Joon-Bo Shim, Eung-Ho Kim, Sung-Won Park
  • Patent number: 8066861
    Abstract: A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 29, 2011
    Assignee: The United States of America as represented by the Department of Energy
    Inventor: Jong-Hee Park
  • Patent number: 8043486
    Abstract: A system providing selective spin modification and reaction in an electrolytic cell. An electrolytic cell is coupled to a magnet that provides a level-splitting magnetic field in a region of electrolyte adjacent to a working electrode, thus establishing a spin resonance for an unpaired electron associated with a chemical species in the region of electrolyte adjacent to the working electrode. The working electrode carries an excitation current produced by a switching source or amplifier. The excitation current produces an alternating magnetic field adjacent to the working electrode that alters the spin state population density for the unpaired electron associated with a chemical species within the electrolyte, thereby enhancing or inhibiting the reaction of the chemical species during subsequent electrolysis.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: October 25, 2011
    Inventor: Mehlin Dean Matthews
  • Patent number: 7879216
    Abstract: An anode and cathode for an electrolytic cell configured as a low inductance transmission line to enable control of an interphase at an electrode surface. The anode and cathode are coupled to a switched current source by a low inductance path that includes a parallel plate transmission line, a coaxial transmission line, or both. The switched current source provides fast switching between current sources to provide fast charging and discharging of the double-layer capacitance associated with the electrode surface so that an isotope may be selectively transported to the electrode surface for oxidation or reduction. A photon source may be used to create a population of isotope containing species within the electrolyte. An additional static magnetic field and/or an alternating current magnetic excitation source may be used to modify the composition of the population of species containing the isotope to be separated.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: February 1, 2011
    Inventor: Mehlin Dean Matthews
  • Patent number: 7744734
    Abstract: A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm2.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: June 29, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Shelly X. Li
  • Publication number: 20090050483
    Abstract: A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm2.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventor: Shelly X. Li
  • Publication number: 20090032403
    Abstract: An electrolytic process for recovering uranium produces high quality uranium while reducing the processing necessary as well as the chemicals consumed. The process is environmentally friendly as it significantly reduces the emission of carbon dioxide from the processing system.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 5, 2009
    Inventor: Vinod Malhotra
  • Patent number: 7390392
    Abstract: Disclosed is a method of in-situ monitoring a reduction process of uranium oxides by lithium metal, wherein a conversion yield of uranium metal from uranium oxides upon production of uranium metal through a reaction of uranium oxides (UOx, x?3) with lithium metal in the presence of a high-temperature molten salt is measured according to an electrochemical analysis based on an oxidation of an oxygen ion and a reduction of a lithium ion dissociated from lithium oxide obtained as a by-product of the reaction, by use of a measuring device composed of a potentiostat/galvanostat and a reactor provided with an anode and a cathode. The in-situ monitoring method of the current invention is advantageous in terms of fast and simplified measuring techniques, by directly measuring the reduction process of uranium oxides at the anode and cathode connected to the potentiostat/galvanostat in the presence of the high-temperature molten salt.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: June 24, 2008
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: In-Kyu Choi, Young-Hwan Cho, Jei-Won Yeon, Won-ho Kim, Taek-Jin Kim
  • Publication number: 20070272557
    Abstract: An anode and cathode for an electrolytic cell configured as a low inductance transmission line to enable control of an interphase at an electrode surface. The anode and cathode are coupled to a switched current source by a low inductance path that includes a parallel plate transmission line, a coaxial transmission line, or both. The switched current source provides fast switching between current sources to provide fast charging and discharging of the double-layer capacitance associated with the electrode surface so that an isotope may be selectively transported to the electrode surface for oxidation or reduction. A photon source may be used to create a population of isotope containing species within the electrolyte. An additional static magnetic field and/or an alternating current magnetic excitation source may be used to modify the composition of the population of species containing the isotope to be separated.
    Type: Application
    Filed: November 30, 2006
    Publication date: November 29, 2007
    Inventor: MEHLIN DEAN MATTHEWS
  • Patent number: 7267754
    Abstract: An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: September 11, 2007
    Assignee: U.S. Department of Energy
    Inventor: James L. Willit
  • Patent number: 7238270
    Abstract: The invention provides a process for dissolving actinic oxides, the process comprising performing the steps of (a) introducing the actinic oxides into a solution of nitric acid; (b) treating the acidic solution in order to substantially remove palladium; and (c) treating with divalent silver. Preferably, the actinic oxides are comprised in spent nuclear fuel. Optionally, the process comprises a second treatment of the acidic solution in order to substantially remove palladium and a second treatment with divalent silver. The steps may be performed on a batchwise or continuous basis. The treatment to remove palladium is preferably carried out by solvent extraction or ion exchange, and provides greatly improved rates of dissolution of oxides of plutonium. The treatment with divalent silver preferably involves the addition of a source of monovalent silver, followed by an electrolysis treatment to generate divalent silver.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: July 3, 2007
    Assignee: British Nuclear Fuels PLC
    Inventors: Peter Jonathan Watson Rance, Robert John Bernard
  • Patent number: 7070685
    Abstract: The invention relates to an efficient process and device for the decontamination of waters polluted with heavy metals, semimetals and/or radionuclides by cation exchange and electrochemical deposition of the anions.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: July 4, 2006
    Assignees: Fraunhofer-Gesellschaft, ATC Dr. Mann
    Inventors: Manfred Kühn, Herwig Brunner, Andreas Wolf, Günther Mann
  • Patent number: 7029568
    Abstract: A negative ion generating medium for generating negative ions from the surface of a mother material made of aluminum or aluminum alloy. The negative ion generating medium has the mother material of aluminum or aluminum alloy covered at the surface with an anodized layer on which a rare metal separated from a rare metal solution such as zirconium salt is deposited. As the rare metal is deposited in the pores provided in the anodized layer, its negative ion generating area can be increased thus releasing a large number of negative ions. The negative ion generating medium is manufactured by electrolytically processing the mother material in an electrolyte solution of sulfuric acid doped with a rare metal salt such as lithium salt to develop the anodized layer on the surface of the mother material and deposit the rare metal on the anodized layer.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: April 18, 2006
    Assignee: GHA Corporation
    Inventors: Yuichiro Matsuo, Takayasu Ikeda
  • Patent number: 6911135
    Abstract: A method for separating a metal from a composition including the metal involves forming an electrolytic cell in which the anode comprises a composition including the metal. The electrolyte is an ionic liquid. A sufficient potential difference is applied between the anode and the cathode to cause the metal to transfer from the anode to the cathode deposited thereon.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: June 28, 2005
    Assignee: British Nuclear Fuels PLC
    Inventors: Robert Charles Thied, Justine Elizabeth Hatter, Kenneth Richard Seddon, William Robert Pitner, David William Rooney, David Hebditch
  • Patent number: 6767444
    Abstract: A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: July 27, 2004
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, Michael K. Richmann
  • Publication number: 20040134785
    Abstract: A nuclear fuel electrorefiner for recovering uranium from nuclear material containing uranium. A cylindrical vessel with having a longitudinal axis has a product collector movable axially of the vessel. Circular cathodes extend axially of and radially spaced inwardly of the vessel with a plurality of generally polyhedron-shaped anode baskets having at least one face aligned with a radius of said vessel and circumferentially spaced from adjacent anode baskets and concentric with respect to the cathodes in the vessel. A plurality of axially extending metal rods are insulated from and placed between the anode baskets. Mechanism outside of the vessel rotate the anode baskets and the metal rods with respect to the cathodes, and an electrical power supply in selective electrical communication with said cathode and said anode baskets and said metal rods to cause uranium values to move between the and when current flow is in a first direction uranium values in said anode baskets and the metal rods to the cathodes.
    Type: Application
    Filed: January 9, 2003
    Publication date: July 15, 2004
    Applicant: The University of Chicago
    Inventors: Eddie C. Gay, James L. Willit, Donald E. Preuss
  • Patent number: 6616826
    Abstract: The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: September 9, 2003
    Assignee: The Ohio State University
    Inventors: Kenneth H. Sandhage, Robert L. Snyder
  • Patent number: 6156183
    Abstract: A spent reactor fuel processing method is provided for recovering at least any one of metallic nuclear fuel materials, in which the reactor fuel is composed by covering the metallic nuclear fuel material with a cladding tube made of alloy and having a melting point lower than that of the metallic nuclear fuel material and end plugs made of alloy are mounted to both ends thereof. The processing method comprises a cladding tube smelting separation process, a molten salt electrorefining process and a salt evaporation separation process for recovering metallic uranium, uranium and plutonium, or uranium, plutonium and transuranium elements.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: December 5, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naruhito Kondo, Kenichi Matsumaru, Reiko Fujita, Makoto Fujie
  • Patent number: 5851500
    Abstract: Magnesium fluoride slag contaminated with metallic uranium or uranium compounds is treated by digestion with potassium hydroxide to soluble potassium fluoride and insoluble magnesium hydroxide. The solid and liquid phases are then separated and the solids phase is dissolved in acid to form a solution of metal salts. The liquid phase is treated with lime to precipitate calcium fluoride and convert the potassium back to potassium hydroxide for recycle to the digestion reaction. The metal salts are separated to remove the uranium salt from the magnesium salt. The result is an efficient removal of uranium contamination from the magnesium, the recovery of magnesium in a manner that permits efficient reuse or safe disposal, and the production of calcium fluoride useful for a variety of purposes.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: December 22, 1998
    Assignee: United States Enrichment Corporation
    Inventor: John H. Pashley
  • Patent number: 5776330
    Abstract: Apparatus and methods for decontaminating surfaces are disclosed. A housing is configured with first and second channels and first and second fluid pathways in fluid communication therewith, respectively. First and second applicators are positioned within respective first and second channels and electrodes are electrically connected with the applicators. Electric current of a first polarity is supplied to a first applicator via the first electrode, and electric current of a second polarity is supplied to a second applicator via the second electrode. Decontaminating a surface comprises supplying a first fluid to a first applicator, supplying a second fluid to a second applicator, generating an electrical potential between the first and second applicators, and contacting the contaminated surface with the first and second applicators.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: July 7, 1998
    Assignee: Corpex Technologies, Inc.
    Inventor: Thomas F. D'Muhala
  • Patent number: 5752206
    Abstract: Processes for in-situ decontamination and recovery of metal from radioactive-contaminated metal which is contained in process equipment, including ancillary systems of process equipment, comprise two basic steps. In the first step, an acid decontamination solution is circulated through the equipment and in contact with the radioactive-contaminated metal for removing the radioactive contaminants and a first surface portion of the metal from the metal-containing equipment. In the second step, an acid digestion solution is circulated through the equipment for removing at least a second portion of the metal which is substantially free of radioactive contaminants. The present methods are particularly suitable for in-situ decontamination and recovery of nickel from radioactive-contaminated nickel diffusion barriers in the cascade converters of uranium gas diffusion plants.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: May 12, 1998
    Inventors: Neal A. Frink, Daniel D. Burns, Paul G. Frink, Amy Ciric
  • Patent number: 5745835
    Abstract: A process and apparatus for dissolving a mixed oxide or mixture of oxides of uranium and plutonium. The powder is added with nitric acid to a chamber to dissolve uranium oxide, and the solution is circulated through a circuit of the apparatus with a portion of the solution passing through a filter. At least a portion of the filtered solution containing dissolved uranium oxide is removed from the apparatus, while returning non-filtered circulating solution containing non-dissolved plutonium oxide to the chamber. The removal of solution is then terminated, a monovalent silver salt is added and divalent silver is generated in-situ by electrolysis, the divalent silver causing dissolution of the plutonium oxide.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: April 28, 1998
    Assignee: Compagnie Generale Des Matieres Nucleaires
    Inventors: Marie-Helene Mouliney, Claude Bernard
  • Patent number: 5676819
    Abstract: A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.
    Type: Grant
    Filed: April 23, 1996
    Date of Patent: October 14, 1997
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Eric R. Lindgren, Patrick V. Brady
  • Patent number: 5650053
    Abstract: A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt.
    Type: Grant
    Filed: November 24, 1995
    Date of Patent: July 22, 1997
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Eddie C. Gay, William E. Miller, James J. Laidler
  • Patent number: 5633423
    Abstract: According to the invention, a consumable anode constituted by a metal alloy incorporates between 20 and 70 wt. % iron, between 20 and 40 wt. % cobalt and between 5 and 30 wt. % aluminium. To these basic constituents can optionally be added elements such as nickel and/or titanium and/or copper and/or niobium. The decontamination process involves an electrodissolution of said anode.
    Type: Grant
    Filed: June 12, 1995
    Date of Patent: May 27, 1997
    Assignee: Campagnie Generale des Matieres Nucleaires
    Inventors: Veronique Federici, Eric Tronche, Germain Lacoste