Chlorine And Hydrogen Produced Patents (Class 205/620)
  • Patent number: 10418639
    Abstract: Highly anion resistant electrocatalysts suitable for catalyzing an oxygen reduction reaction (ORR) and methods of synthesizing the same are provided. The catalysts contain a transition metal, a heteroatom, and carbon. Preferred catalysts include N as the heteroatom and Fe as the transition metal, with active sites having Fe—N4 stoichiometry (FexNyCz) as part of a metal organic framework (MOF) or sequestered within a MOF. Electrocatalysts further including Fe nanoparticles (FeNPs) are also provided. The catalysts described herein are applicable in the preparation of oxygen decoupled cathodes (ODC) for chlorine evolution processes such as in chlor-alkali cells or HCl electrolyzers. The catalysts are also useful in preparing ODC for use in fuel cells, including phosphoric acid fuel cells.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: September 17, 2019
    Assignee: Northeastern University
    Inventors: Urszula Tylus, Sanjeev Mukerjee, Elise Miner, Kara Strickland
  • Patent number: 9562294
    Abstract: The invention relates to an electrochemical cell comprising an anode and a cathode compartments separated by a membrane, having corresponding electrodes; said anode and cathode compartments each having an external wall, flanged areas designed like frames in the contact area of the compartments, and a gas diffusion electrode comprising a liquid-permeable carrier coated with a catalyst material; said gas diffusion electrode featuring an area not coated with catalyst at its bottom edge, said area, at the bottom end of the electrochemical cell, protruding between the flanged areas of the external wall of the cathode compartment and the flanged areas of the external wall of the anode compartment in the contact area of the compartments; a porous material arranged parallel between the gas diffusion electrode and the membrane, and devices for the supply and discharge of gas and electrolyte, with a gas space separated from an electrolyte space by appropriate means.
    Type: Grant
    Filed: April 7, 2012
    Date of Patent: February 7, 2017
    Assignee: UHDENORA S.P.A.
    Inventors: Peter Woltering, Randolf Kiefer, Rainer Weber, Andreas Bulan
  • Patent number: 9273404
    Abstract: Processes for electrolysis of alkali metal chlorides with oxygen-consuming electrodes having startup and shutdown conditions which prevent damage to the constituents of the electrolysis cell.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 1, 2016
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Andreas Bulan, Rainer Weber, Jürgen Kintrup
  • Publication number: 20150144499
    Abstract: The invention relates to an electrochemical cell, particularly useful in electrochemical processes carried out with periodic reversal of polarity. The cell is equipped with concentric pairs of electrodes arranged in such a way that, in each stage of the process, the cathodic area is equal to the anodic area.
    Type: Application
    Filed: May 16, 2013
    Publication date: May 28, 2015
    Inventor: Mariachiara Benedetto
  • Patent number: 8945489
    Abstract: A process for recovering a metal chloride or mixed metal chloride from a solid waste material comprising recoverable metal containing constituents produced by lead, copper or zinc smelting and refining processes, said process comprising the steps of: (i) heating the solid waste material; (ii) treating the heated material of step (i) with a gaseous chloride to form a gaseous metal chloride containing product; and (iii) treating the gaseous metal chloride containing product of step (ii) to recover the metal chloride or mixed metal chloride. The metal chloride may be further treated to extract the metal itself.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: February 3, 2015
    Assignee: Minex Technologies Limited
    Inventors: Robert John Bowell, Keith Phillip Williams, Brian Matthew Dey
  • Patent number: 8940158
    Abstract: A system and method is disclosed for chlorine generation and distribution for the treatment of a pool, spa, body of water, or other water system.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: January 27, 2015
    Assignee: ChlorKing, Inc.
    Inventors: David Von Broembsen, Chris Warwick, Michael Podolak
  • Patent number: 8927125
    Abstract: A quencher for a flow cell battery is described. The quencher utilizes a quench solution formed from FeCl2 in a dilute HCl solution in order to quench chlorine emissions from the flow cell battery. A quench sensor is further described. The quench sensor monitors the concentration level of FeCl2 in the quench solution and may also monitor the level of the quench solution in the quencher.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: January 6, 2015
    Assignee: Imergy Power Systems, Inc.
    Inventors: Majid Keshavarz, Saroj Kumar Sahu, Ge Zu
  • Publication number: 20140291164
    Abstract: The present invention relates to a technology for producing the production of disinfectants by diaphragm electrolysis of the aqueous solution of sodium chloride. Disinfectants are used in agriculture, public health care and medical institutions, public water supply systems and elsewhere. The purpose of the this invention is to provide the means for producing disinfectants with the adjusting range of the pH value from 2.5 to 8.5 by using devices with various capacities ranging from 1 to 600 g active chlorine per hour, while decreasing the consumption of electric energy and sodium chloride for the production of 1 g of active chlorine over two times compared to prototype methods, and reducing the consumption of fresh water for producing of waste catholyte.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Valeri Iltsenko, Nikolay Nayda
  • Patent number: 8795510
    Abstract: An automated self-propelled robotic pool cleaner having a housing and drive means for moving the pool cleaner over at least the bottom wall of a pool, is provided with an integral on-board electrochemical chlorine generator for producing chlorine from a chlorine compound, e.g., sodium chloride, that is dissolved in the pool water, a source of electrical power operatively connected to the electrochemical chlorine generator, control means for initiating and terminating the operation of the chlorine generator, and an outlet for discharging water containing chlorine ions produced by the electrochemical generator to thereby distribute the chlorine into the water proximate the exterior of the pool cleaner housing as the pool cleaner follows a programmed operational mode across the bottom and/or side walls of the pool.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: August 5, 2014
    Assignee: Aqua Products, Inc.
    Inventor: Joseph Porat
  • Patent number: 8778148
    Abstract: Apparatus for hydrogen chloride electrolysis, comprising a cathode that has a layer of nitrogen-doped carbon nanotubes having functional groups containing nitrogen.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 15, 2014
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Volker Michele, Jens Assmann, Jürgen Kintrup, Rainer Weber
  • Patent number: 8741122
    Abstract: Process for the reduction of oxygen in aqueous chlorine- and/or chloride-containing solutions in the presence of a catalyst comprising nitrogen-doped carbon nanotubes.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: June 3, 2014
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Aurel Wolf, Volker Michele, Leslaw Mleczko, Jens Assmann
  • Patent number: 8702917
    Abstract: A water treatment system is disclosed having electrolytic cell for liberating hydrogen from a base solution. The base solution may be a solution of brine for generating sodium hypochlorite, or potable water to be oxidized. The cell has first and second opposing electrode endplates held apart from each other by a pair of supports such that the supports enclose opposing sides of the endplates to form a cell chamber. One or more inner electrode plates are spaced apart from each other in the cell chamber in between the first and second electrode plates. The supports are configured to electrically isolate the first and second electrode plates and the inner electrode plates from each other. The first and second electrode plates are configured to receive opposite polarity charges that passively charge the inner electrode plates via conduction from the base solution to form a chemical reaction in the base solution as the base solution passes through the cell chamber.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: April 22, 2014
    Assignee: Process Solutions, Inc.
    Inventors: Brent A Simmons, Gunnar T Thordarson, James C. Robertson
  • Patent number: 8674152
    Abstract: The one-step hydrolysis of diverse biomaterials including coal, cellulose materials such as lumber and forestry waste, non-food crop waste, lignin, vegetable oils, animal fats and other source materials used for biofuels under mild processing conditions which results in the formation of a liquid fuel product along with the recovery of a high purity CO2 product is provided.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: March 18, 2014
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventor: Xin Xiao
  • Patent number: 8636893
    Abstract: Chlorine with a low bromine content is produced by electrolyzing brine to produce gaseous chlorine, alkali metal hydroxide and hydrogen, separating the gaseous chlorine from the electrolyte (anolyte in the case of the membrane process), directing electrolyte (anolyte in the case of the membrane process) to a primary dechlorination step using hydrochloric acid to remove gaseous chlorine therefrom, optionally directing depleted electrolyte (anolyte in the case of the membrane process) from the primary dechlorination step to a secondary dechlorination step using a reducing agent for chlorine and oxychlorine species, and recycling dechlorinated depleted electrolyte (anolyte in the case of the membrane process) to salt dissolvers to prepare brine for electrolysis. At least part of the gaseous chlorine generated in the primary dechlorination step is not combined with gaseous chlorine generated in the electrolysis step.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: January 28, 2014
    Assignee: Superior Plus LP
    Inventors: Yuri Alexeevich Omelchenko, Marek Lipsztajn, Tomasz Jerzy Dluzniewski
  • Patent number: 8541121
    Abstract: A quencher for a flow cell battery is described. The quencher utilizes a quench solution formed from FeCl2 in a dilute HCl solution in order to quench chlorine emissions from the flow cell battery. A quench sensor is further described. The quench sensor monitors the concentration level of FeCl2 in the quench solution and may also monitor the level of the quench solution in the quencher.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: September 24, 2013
    Assignee: Deeya Energy, Inc.
    Inventors: Majid Keshavarz, Saroj Kumar Sahu, Ge Zu
  • Patent number: 8518231
    Abstract: The invention relates to a process for production of diaryl carbonate combined with the electrolysis of the resultant alkali metal chloride-containing process wastewater. The process according to the invention makes possible, inter alia, improved utilization in electrolysis of the alkali metal chloride-containing solution obtained in the production of diaryl carbonate.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 27, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Pieter Ooms, Andreas Bulan, Johann Rechner, Rainer Weber, Marc Buts, Johan Vanden Eynde
  • Patent number: 8491764
    Abstract: A chlorine treatment apparatus includes a housing with a cavity containing a chlorine generator for chlorinating a liquid such as water and at least three openings to the cavity. The chlorine generator may be an electrolytic cell. Some embodiments may include one or more plugs for closing the openings. The plugs may be keyed to operate with only certain of the openings. Yet other embodiments may include sensors for monitoring various aspects of the liquid such as temperature, salinity, flow rate, and chlorine concentration.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 23, 2013
    Assignee: Zodiac Pool Systems, Inc.
    Inventors: Yicun Wu, Greg Cwik, Randy Tan
  • Patent number: 8377284
    Abstract: The invention relates to a method for recycling educt-containing process gas (residual gas) in electrochemical processes with at least one gas diffusion electrode while using a gas jet pump for directly reintroducing the residual gas in the electrochemical process.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: February 19, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Fritz Gestermann, Thorsten Leidig, Alfred Soppe
  • Patent number: 8343329
    Abstract: The present invention provides an electrode for hydrogen generation of which the hydrogen overvoltage is sufficiently low and which is not affected by poisoning due to iron ions, and furthermore, of which the durability is superior because during operations and stop-and-start control, the hydrogen overvoltage does not rise and exfoliation of the supported material does not occur. The present invention also provides a method for manufacturing the aforementioned hydrogen generation electrode and an electrolysis method using the electrode for hydrogen generation as a cathode. An electrode for hydrogen generation is used in which a platinum alloy including platinum and one metal selected from the group consisting of nickel, cobalt, copper, silver, and iron, or an amorphous material of a transition metal element and platinum is supported on a conductive base material.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: January 1, 2013
    Assignee: Tosoh Corporation
    Inventors: Yoshinori Shirakura, Akinori Shimono
  • Publication number: 20120305407
    Abstract: Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Marc A. Anderson, Kevin C. Leonard
  • Patent number: 8277634
    Abstract: A highly stable aqueous solution having a molecular cluster with dimensions which are small enough to ensure substantial chemical-physical stability thereof for a relatively long time. To prepare the solution a fluid treatment device is used, which comprises at least one chamber (7) and at least one anode (4) and one cathode (3) arranged in the chamber (7). The anode (4) and cathode (3) are at least partly made of a first metallic material. At least one of the at least one cathode (3) and anode (4) comprises a coating of nanoparticles (5) of a second metallic material.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: October 2, 2012
    Assignee: APR Nanotechnologies S.A.
    Inventors: Yongge Chen, Roberto De Noni
  • Patent number: 8268159
    Abstract: An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 18, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Shekar Balagopal, Vinod Malhotra, Justin Pendleton, Kathy Jo Reid
  • Publication number: 20120186990
    Abstract: Chlorine with a low bromine content is produced by electrolyzing brine to produce gaseous chlorine, alkali metal hydroxide and hydrogen, separating the gaseous chlorine from the electrolyte (anolyte in the case of the membrane process), directing electrolyte (anolyte in the case of the membrane process) to a primary dechlorination step using hydrochloric acid to remove gaseous chlorine therefrom, optionally directing depleted electrolyte (anolyte in the case of the membrane process) from the primary dechlorination step to a secondary dechlorination step using a reducing agent for chlorine and oxychlorine species, and recycling dechlorinated depleted electrolyte (anolyte in the case of the membrane process) to salt dissolvers to prepare brine for electrolysis. At least part of the gaseous chlorine generated in the primary dechlorination step is not combined with gaseous chlorine generated in the electrolysis step.
    Type: Application
    Filed: November 1, 2011
    Publication date: July 26, 2012
    Inventors: Yuri Alexeevich Omelchenko, Marek Lipsztajn, Tomasz Jerzy Dluzniewski
  • Patent number: 8221599
    Abstract: Embodiments of the present disclosure include an anode, devices and systems including the anode (e.g., electrochemical devices and photo-electrochemical devices), methods of using the anode, methods of producing H2 and O2 from H2O, Cl2, oxidixed organic feedstocks, oxidation for the detection and quantification of chemical species, and the like.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 17, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher E. D. Chidsey, Paul C. McIntyre
  • Patent number: 8197665
    Abstract: Aqueous composition containing at least one salt in an amount of at least 30 g/kg of composition, of which the total organic carbon content is at least 1 ?g of C/l and at most 5 g of C/l of composition and which contains at least one carboxylic acid.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: June 12, 2012
    Assignee: Solvay (Societe Anonyme)
    Inventors: Philippe Krafft, Patrick Gilbeau, Dominique Balthasart, Andre Daene
  • Publication number: 20120085659
    Abstract: In a process for chlorine-alkali electrolysis, use is made of an oxygen depletion cathode. The process is run with a high excess of oxygen. The oxygen needed for this is provided for a device of the gas separation, for example a VPSA plant or an air fractionation plant. The large quantities of oxygen produced lead to considerable costs of the process. According to the invention, the oxygen-rich atmosphere remaining after passing through the process is fed back into the device for gas separation as input gas. The device the gas separation is therefore operated with an oxygen-rich input gas and therefore produces a larger quantity of oxygen-rich gas, which in turn is fed to the oxygen depletion cathode. As a result of the circulation of the gas, the economy of the overall process is increased considerably.
    Type: Application
    Filed: May 28, 2010
    Publication date: April 12, 2012
    Applicants: BAYER MATERIAL SCIENCE AG, MESSER GROUP GMBH
    Inventors: Walter Bachleitner, Christoph Erdmann, Joachim Rohovec, Andreas Bulan, Mathias Weis
  • Patent number: 8153838
    Abstract: An isocyanate is produced by: (a) reacting chlorine with carbon monoxide to form phosgene, (b) reacting the phosgene with an organic amine to form an isocyanate and hydrogen chloride, (c) separating the isocyanate and hydrogen chloride, (d) optionally, purifying the hydrogen chloride, (e) preparing an aqueous solution of the hydrogen chloride, (f) optionally, purifying the aqueous solution of hydrogen chloride, (g) subjecting the aqueous hydrogen chloride solution to electrochemical oxidation to form chlorine, and (h) returning at least a portion of the chlorine produced in (g) to (a).
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 10, 2012
    Assignee: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Rainer Weber, Wolfgang Lorenz, Gerhard Moormann, Friedhelm Kämper, Berthold Keggenhoff
  • Publication number: 20120000789
    Abstract: Electrolysis cell for membrane-supported electrolysis, comprising an oxygen-consuming cathode.
    Type: Application
    Filed: December 29, 2009
    Publication date: January 5, 2012
    Applicant: Bayer Technology Services GMBH
    Inventors: Thomas Turek, Imad Moussallem
  • Patent number: 8038854
    Abstract: The invention relates to an electrolysis installation comprising at least two rows of electrodes that are immersed at least in part in a liquid electrolyte giving off one or more gaseous species of corrosive nature at the electrodes, at least one separation membrane being disposed between two adjacent rows of electrodes. Each membrane is constituted by carbon fiber reinforcement stiffened by a carbon matrix and presents porous portion that is permeable to ions and impermeable to the or each gaseous species, given off at the electrolytes.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: October 18, 2011
    Assignee: Snecma Propulsion Solide
    Inventors: Jean-Pierre Maumus, Charles Dumont, François Abbe
  • Patent number: 8025784
    Abstract: Methods and systems for generating biocidal solution having a predetermined level of available free chlorine and pH, including an electrolytic cell that generates the biocidal solution by an electrolytic reaction, the electrolytic cell including an input pipe for receiving an input brine solution, an anode chamber including an anode and a cathode chamber including a cathode separated by a separator, electrical connections for application of voltage to the anode and cathode; temperature sensing means for detecting a temperature of a solution of the electrolytic cell and outputting a signal indicative of the detected temperature; and process control means for adjusting the voltage applied to the electrolytic cell by the process control means thereby maintaining the level of available free chlorine and pH at the predetermined level in response to the signal output from the temperature sensing means.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 27, 2011
    Assignee: Puricore, Inc.
    Inventors: Bruno Tongiani, Claire Sampson
  • Publication number: 20110226634
    Abstract: Novel bismuth based mixed metal oxide materials with pyrochlore structure are disclosed as anodes for electrolytic generation of ozone and perchlorate salts. These materials have high electrical conductivity and excellent stability in acidic electrolytes. These materials are more environmentally friendly than lead dioxide and less expensive than platinum.
    Type: Application
    Filed: June 16, 2010
    Publication date: September 22, 2011
    Inventor: Sai Bhavaraju
  • Patent number: 8007653
    Abstract: An automated self-propelled pool cleaner having a housing, a water pump for moving water through the housing, drive means for moving the pool cleaner over the surface of the salt water pool to be cleaned, and an integral electrochemical chlorine generator mounted in the housing, includes a processor/controller that is programmed to activate the chlorine generator, the pump and drive means in predetermined operational sequences that minimize wear and tear on the water pump and drive means, while at the same time distribute and maintain a safe level of sanitizing chlorine in the pool, to thereby obviate the need for an in-line chlorinator or other chemical additive treatments; an optional automated sensor device can be provided to activate a secondary maintenance program which enables the pool cleaner to operate over prolonged periods of time as the sole means for filtering and sanitizing the pool water.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: August 30, 2011
    Assignee: Aquatron, Inc.
    Inventor: Joseph Porat
  • Patent number: 7955490
    Abstract: A process for the production of sodium hydroxide, hydrogen gas and chlorine gas which comprises (1) forming an aqueous solution of sodium chloride, (2) placing the sodium chloride solution in a cell having two compartments separated by a separator, (3) subjecting the cell to a direct electrical current of about 3-24 volts and 0.1-500 K amperes; thereby generating hydrogen gas, chlorine gas and an aqueous sodium hydroxide solution and wherein the electrical current is generated by a solar panel.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: June 7, 2011
    Inventors: James Fang, John Fang
  • Patent number: 7955481
    Abstract: Method and apparatus for controlling two phase flow in electrolytic cells. The present invention is directed to any electrolytic cell, including but not limited to upflow electrolytic cells that comprise parallel electrodes in a vertical orientation. Fluid control strips are preferably added between the anode and cathode electrodes to control flow of fluid and gas bubbles generated between the electrodes in order to avoid the detrimental effects of gas bubbles on the conductivity of the fluid solution, and thereby increase production and operational efficiency of the electrolytic cell.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 7, 2011
    Assignee: MIOX Corporation
    Inventors: Justin Sanchez, Rodney E. Herrington
  • Patent number: 7922890
    Abstract: Method and apparatus for a low maintenance, high reliability on-site electrolytic generator incorporating automatic cell monitoring for contaminant film buildup, as well as automatically removing or cleaning the contaminant film. This method and apparatus preferably does not require human intervention to clean.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: April 12, 2011
    Assignee: MIOX Corporation
    Inventors: Justin Sanchez, Rodney E. Herrington
  • Publication number: 20110005938
    Abstract: Apparatus for hydrogen chloride electrolysis, comprising a cathode that has a layer of nitrogen-doped carbon nanotubes having functional groups containing nitrogen.
    Type: Application
    Filed: March 25, 2009
    Publication date: January 13, 2011
    Applicant: Bayer Technology Services GmbH
    Inventors: Aurel Wolf, Leslaw Mleczko, Volker Michele, Jens Assmann, Jürgen Kintrup, Rainer Weber
  • Patent number: 7785453
    Abstract: An electrode for electrochemical processes for gas production, which in the installed state is located parallel and opposite to an ion exchange membrane and consists of a multitude of horizontal lamellar elements which are structured and three-dimensionally shaped and are in contact with only one surface with the membrane, wherein the lamellar elements have grooves and holes, the major part of the holes being placed in the grooves and the surfaces of such holes or part thereof are located in the grooves or extend into the grooves whereby the holes are ideally placed in the contact area of the respective lamellar element with the membrane.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: August 31, 2010
    Assignee: Uhdenora S.p.A.
    Inventors: Karl Heinz Dulle, Roland Beckmann, Randolf Kiefer, Peter Woltering
  • Patent number: 7776204
    Abstract: The invention provides an ion exchange membrane electrolytic process unlikely to undergo any current density drop even when brine having a concentration lower than usual. Electrolysis occurs while the concentration of an aqueous solution of an alkaline metal chloride in an anode chamber partitioned by a cation exchange membrane is set at 2.7 mol/l to 3.3 mol/l, and a gap is provided between the cation exchange membrane and the anode.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 17, 2010
    Assignee: Chlorine Engineers Corp., Ltd.
    Inventors: Terumi Hashimoto, Takamichi Kishi
  • Patent number: 7727374
    Abstract: Apparatuses and methods for removing carbon dioxide and other pollutants from a gas stream are provided. The methods include obtaining hydroxide in an aqueous mixture, and mixing the hydroxide with the gas stream to produce carbonate and/or bicarbonate. Some of the apparatuses of the present invention comprise an electrolysis chamber for providing hydroxide and mixing equipment for mixing the hydroxide with a gas stream including carbon dioxide to form an admixture including carbonate and/or bicarbonate.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: June 1, 2010
    Assignee: Skyonic Corporation
    Inventor: Joe David Jones
  • Patent number: 7722746
    Abstract: A water treatment system includes a circulation pump and an electrolytic chamber in fluid communication with a main body of water. Electrolytic plates within the electrolytic chamber generate chlorine. When mineral deposits foul the electrolytic plates, water is isolated within the electrolytic chamber and a minimal amount of a pH-reducing agent is added to the electrolytic chamber to remove the mineral deposits. In a first embodiment, the pH-reducing agent is admitted on a periodic timed basis. In a second embodiment, the pH-reducing agent is added when the pH of the main body of water falls below a predetermined threshold. In both embodiments, cleaning is accomplished by adding the pH-reducing agent when the circulation pump is not operating so that the acid dwells within the electrolytic chamber for a sufficient amount of time. Activation of the circulation pump causes the pH-reducing agent to enter the main body of water.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: May 25, 2010
    Assignee: Maytal Tech, LLC
    Inventor: Omer C. Eyal
  • Publication number: 20100111800
    Abstract: A method of making Gd or Er isotopes from gaseous compounds containing —BH4 and —CH3BH3 ions involves making the Gd or Er compounds (24) in a solid state reactor (10), passing the gaseous compounds (24) to a separation process (16) to provide products enriched in the desired isotopes of Gd or Er heads and Gd or Er tails depleted in these desired isotopes and then reacting the Gd or Er heads and Gd or Er tails with chlorine in a reactor (18) to provide products of 157GdCl3, 155GdCl3 or 167ErCl3 enriched in Gd and Er isotopes.
    Type: Application
    Filed: October 22, 2009
    Publication date: May 6, 2010
    Applicant: Westinghouse Electric Company LLC
    Inventors: Edward J. Lahoda, Lars Hallstadius, Sture Helmersson, Sumit Ray
  • Patent number: 7658823
    Abstract: The invention relates to an electrochemical gas generator including a substrate for providing a surface for electrode deposition, a first electrode deposited on the surface for providing an electrical connection with a conducting medium, a second electrode deposited on the substrate for generating a gas, and a plurality of members extending from at least one side of the first electrode placed alternately with a plurality of extensions protruding from at least one side of the second electrode for improving generator efficiency.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 9, 2010
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Avinash Dalmia, Otto J. Prohaska
  • Patent number: 7648560
    Abstract: The present invention is a method for producing Ti or a Ti alloy through reduction of TiCl4 by Ca, which can produce the high-purity metallic Ti or high-purity Ti alloy. A molten salt containing CaCl2 and having Ca dissolved therein is held in a reactor vessel, and a metallic chloride containing TiCl4 is reacted with Ca in the molten salt to generate Ti particles or Ti alloy particles in a molten CaCl2 solution, which allows enhancement of a feed rate of TiCl4 which is of a raw material of Ti, and also allows a continuous operation. Therefore, the high-purity metallic Ti or the high-purity Ti alloy can economically be produced with high efficiency. Further, the method by the present invention eliminates the need of replenishment of expensive metallic Ca and of the operation for separately handling Ca which is highly reactive and difficult to handle.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: January 19, 2010
    Assignee: Osaka Titanium Technologies Co., Ltd.
    Inventors: Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi, Katsunori Dakeshita
  • Patent number: 7566388
    Abstract: An electrode catalyst comprising a conductive carrier, and a mixture containing a particulate noble metal and at least one particulate rare-earth oxide, the mixture being supported on the conductive carrier wherein the particulate rare-earth oxide has an alkaline-earth metal as solid solution therein.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: July 28, 2009
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takeaki Sasaki, Toshinori Hachiya, Isao Morimoto
  • Patent number: 7507323
    Abstract: A water treatment system includes a circulation pump and an electrolytic chamber in fluid communication with a main body of water. Electrolytic plates within the electrolytic chamber generate chlorine. When mineral deposits foul the electrolytic plates, water is isolated within the electrolytic chamber and a minimal amount of a pH-reducing agent is added to the electrolytic chamber to remove the mineral deposits. In a first embodiment, the pH-reducing agent is admitted on a periodic timed basis. In a second embodiment, the pH-reducing agent is added when the pH of the main body of water falls below a predetermined threshold. In both embodiments, cleaning is accomplished by adding the pH-reducing agent when the circulation pump is not operating so that the acid dwells within the electrolytic chamber for a sufficient amount of time. Activation of the circulation pump causes the pH-reducing agent to enter the main body of water.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: March 24, 2009
    Assignee: Maytal Tech, Inc.
    Inventor: Omer C. Eyal
  • Patent number: 7341654
    Abstract: Chlorine is produced by electrolysis of aqueous HCl, in a membrane electrolyzer, using cathodic mediators such as Fe(III) and/or Cu(II) chlorides and a non-catalysed 3-dimensional cathode, with the real surface area at least ten times higher than its projected area. The HCl electrolysis section is combined with an oxidizer for regeneration of the mediator, product water removal step and optional HCl recovery step. Under optimized conditions chlorine can be produced at very high current densities of 30 kA/m2, without initiating undesired H2 evolution reaction at the cathode.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: March 11, 2008
    Assignee: Aker Kvaerner Canada Inc.
    Inventors: Zbigniew Twardowski, Thomas Drackett, Stuart R. Harper
  • Patent number: 7214296
    Abstract: Object of the invention is an anodic structure for mercury cathode cells for the industrial electrolysis of sodium chloride. The new structure is constituted by a grid array comprising a multiplicity of vertically disposed and mutually parallel titanium blades, covered by an electrocatalytic coating specific for the discharge of chlorine. The ratio between the thickness and the height of the blades is comprised between 1:16 and 1:100 and the ratio between the surface of free passage between the blades and the projected surface is comprised between 15:17 and 25:30. The new grid array is perpendicularly fixed to new or existing frames having the function of mechanical support and current conduction to the grid array. Scope of the invention is simultaneously reducing the energetic consumption of the cell and the costs for restoring the exhausted electrocatalytic coating.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: May 8, 2007
    Assignee: De Nora Elettrodi, S.p.A.
    Inventor: Giovanni Meneghini
  • Patent number: 7128824
    Abstract: A method for the electrolysis of aqueous solutions of hydrogen chloride in order to produce chlorine, characterized in that the following process parameters are maintained for initial operation: the anode half-element is filled with a 5 to 20% strength by weight hydrochloric acid, the concentration of the hydrochloric acid is more than 5% by weight during initial operation, the volumetric flow of the hydrochloric acid through the anode half-element is set in such a way that, at the start of electrolysis, the velocity of the hydrochloric acid in the anode space is from 0.05 cm/s to 0.15 cm/s, the electrolysis is started with a current density of 0.5 to 2 kA/m2, and the current density is then increased continuously or discontinuously until the desired current density is reached.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: October 31, 2006
    Assignee: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Walter Hansen, Fritz Gestermann, Michael Grossholz, Hans-Dieter Pinter
  • Patent number: 7074306
    Abstract: An oxygen-depolarized cathode for aqueous hydrochloric acid electrolysis membrane cells is described, the cathode being in contact with the membrane and capable of preventing the release of hydrogen into oxygen even at the highest current densities. Hydrochloric acid may also be of technical grade with a concentration limited to 15%, whereas the operating temperature must not exceed 60° C. The cathode contains a mixture of rhodium sulphide and a metal of the platinum group applied in a single layer or alternatively applied separately in two distinct layers.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: July 11, 2006
    Assignee: De Nora Electtrodi S.p.A.
    Inventors: Gian Nicola Martelli, Fulvio Federico
  • Patent number: 6884337
    Abstract: A method of generating basic hydrogen peroxide (BHP) fuel for a chemical oxygen-iodine laser (COIL) using stored alkali chloride, typically potassium chloride, and water. The alkali chloride and water are mixed to form a saturated or nearly saturated aqueous salt solution for use as an anolyte feed to a chlor-alkali cell. The chlor-alkali cell generates alkali hydroxide, hydrogen, and chlorine. Water and oxygen are reacted to form peroxide which is combined with the alkali hydroxide from the chlor-alkali cell to form a dilute solution of BHP, a mixture of hydrogen peroxide and alkali hydroxide, which dissociates into O2H? and ?OH. The BHP is concentrated and the molar ratio of hydrogen peroxide to alkali hydroxide is adjusted to 1:1 before the BHP is supplied to a COIL apparatus as fuel for the lasing process.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: April 26, 2005
    Assignee: The Boeing Company
    Inventors: Peter D. Amdisen, Thomas L. Bunn, Alan Z. Ullman