Utilizing Specified Electrode Patents (Class 205/630)
  • Patent number: 10820588
    Abstract: Provided are compositions which may be used in agricultural applications. Also provided are methods of making and using the compositions. In embodiments, a plant fungicide or plant bactericide is provided comprising a nanostructured chemical compound, the chemical compound comprising a metal and a coordinating anion, wherein the nanostructured chemical compound is in the form of a plurality of planar, two-dimensional nanostructures.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: November 3, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Robert John Hamers, Jaya Borgatta
  • Patent number: 10638649
    Abstract: Discrete, individualized carbon nanotubes having targeted, or selective, oxidation levels and/or content on the interior and exterior of the tube walls are claimed. Such carbon nanotubes can have little to no inner tube surface oxidation, or differing amounts and/or types of oxidation between the tubes' inner and outer surfaces. These new discrete carbon nanotubes are useful in electromagnetic and radio frequency shielding applications, especially where the shielding is essentially constant over a relatively wide range of frequencies. Additives such as plasticizers, can be used in compounding and formulation of elastomeric, thermoplastic and thermoset composite for improvement of mechanical, electrical and thermal properties.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: April 28, 2020
    Assignee: Molecular Rebar Design, LLC
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 9040012
    Abstract: System and method for sustainable economic development which includes hydrogen extracted from substances, for example, sea water, industrial waste water, agricultural waste water, sewage, and landfill waste water. The hydrogen extraction is accomplished by thermal dissociation, electrical dissociation, optical dissociation, and magnetic dissociation. The hydrogen extraction further includes operation in conjunction with energy addition from renewable resources, for example, solar, wind, moving water, geothermal, or biomass resources.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 26, 2015
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20150136614
    Abstract: The present invention discloses an electrochemical process for water splitting for production of oxygen using porous Co3O4 nanorods with a considerably low overpotential and high exchange current density. The present invention further discloses a simple, industrially feasible process of for preparation of said nanostructured porous cobalt oxide catalyst thereof.
    Type: Application
    Filed: April 25, 2013
    Publication date: May 21, 2015
    Inventors: Alias Joy Pattayil, Vijayamohanan Kunjikrishnan Pillai, Rani Mohan Ramasundar, Joyashish Debgupta
  • Publication number: 20150129431
    Abstract: A gas permeable or breathable electrode and method of manufacture thereof. In one example there is an electrolytic cell having an electrode comprising a porous material, wherein gas produced at the electrode diffuses out of the cell via the porous material. In operation the gas is produced at the at least one electrode without substantial bubble formation. In another example there is an electrode having a porous conducting material with a hydrophobic layer or coating applied to a side of the porous conducting material. A catalyst may be applied to another side. The gas permeable or breathable electrode can be used in an electrolytic cell, electrochemical cell, battery and/or fuel cell. Gas produced at the electrode diffuses out of a cell via at least part of the electrode, separating the gas from the reaction at the electrode.
    Type: Application
    Filed: June 11, 2013
    Publication date: May 14, 2015
    Inventors: Bjorn Winther-Jensen, Douglas MacFarlane, Orawan Winther-Jensen
  • Patent number: 8986518
    Abstract: The present aspects of an embodiment make more efficient use of hydrogen on-demand (hereinafter “HoD”) systems, thereby improving fossil-fuel-powered systems on the market. One main aspect uses a disposable cartridge in which the electrolytic process takes place to separate gas molecules from a solution that uses a substantially dry-cell design. Generally, the aspects include a replaceable and reusable cartridge for the flow of electrolyte solution using a pump, which may include a variety of safety features. A HoD cartridge generator has a plurality of staggered conductive material members that require electrolyte solution to flow between them, from one or more inlets to one or more outlets, using one or more specified paths. A conventional or specially-formulated electrolyte solution may be used. One or more sensors allow the generator to have a steady flow of solution in and a steady flow of liquid-gas mixture out of the system.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: March 24, 2015
    Assignee: Cleanworld Fuels, LLC
    Inventor: Marc Daniel Moncion
  • Publication number: 20150068917
    Abstract: The present invention relates to the electrolytic splitting of water using a carbon-supported manganese oxide (MnOx) composite. Specifically, the present electrolytic splitting of water is carried under neutral electrolyte conditions with a high electrolytic activity, while using an oxygen evolution reaction (OER)-electrode comprising the present carbon-supported MnOx composite. Next, the present invention relates to a process for producing such a carbon-supported MnOx composite as well as to a composite obtainable by the present process for producing the same and to an OER-electrode comprising the carbon-supported MnOx composite obtainable by the present process.
    Type: Application
    Filed: February 28, 2013
    Publication date: March 12, 2015
    Applicant: Fritz Haber Institut der Max Planck Gesellschaft
    Inventors: Robert Schlögl, Katharina Mette, Malte Behrens, Jean-Philippe Tessonnier, Arno Bergmann, Peter Strasser
  • Patent number: 8956525
    Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and buffering electrolytes (e.g. fluoride). They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and an anionic buffering electrolyte. The catalysts will facilitate the conversion of water to oxygen and hydrogen gas at a range of mildly acidic conditions. Alternatively, these anodes can be used with cathodes that facilitate other desirable reactions such as converting carbon dioxide to methanol.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: February 17, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James B. Gerken, Shannon S. Stahl
  • Publication number: 20150034492
    Abstract: Membrane-less electrolysis systems including an electrolysis chamber having an inlet for water, a cathode associated with the electrolysis chamber that includes a plurality of apertures within the cathode that fluidly couple the chamber with a cathode fluid pathway that is fluidly coupled to a hydrogen gas collector, an anode associated with the electrolysis chamber that similarly includes a plurality of apertures fluidly coupling the chamber with an anode fluid pathway that is fluidly coupled to an oxygen gas collector, a power source electrically coupled to the cathode and anode, and a pump fluidly coupled with the water reservoir and electrolysis chamber so that the pump is configured to pump water into the electrolysis chamber, through the cathode and anode apertures, into the cathode and anode fluid pathways, respectively, and into the product gas collectors.
    Type: Application
    Filed: October 29, 2012
    Publication date: February 5, 2015
    Applicant: ADVANCED HYDROGEN PRODUCTS, LLC
    Inventor: ADVANCED HYDROGEN PRODUCTS, LLC
  • Publication number: 20150034493
    Abstract: This invention relates to electrolysis apparatus 10 adapted to produce oxygenated and hydrogenated fluid, formed during the electrolysis of an electrolytic solution passed into the apparatus 10. The apparatus 10 comprises a first and second outer end members 12 and 14 and first and second permeable electrodes 16 and 18 spaced from one another. Each permeable electrode 16 and 18 are of a foraminous or perforated material. An inlet chamber 20 has two inlets 26 for allowing electrolytic solution to pass into said chamber 20. The apparatus 10 also has an oxygen outlet 28 as well as a hydrogen outlet 30. The flow of electrolytic solution through the permeable electrodes 16 and 18 will carry with it the oxygen and hydrogen gasses generated on the positive and negative (first and second) permeable electrodes respectively.
    Type: Application
    Filed: February 11, 2013
    Publication date: February 5, 2015
    Inventor: George Anagnostopoulos
  • Publication number: 20140326611
    Abstract: Oxygen reduction catalysts for fuel cells are provided. The catalyst can be based on platinum-coated palladium nanotubes, or multiple twinned, crystalline silver nanowires. Also provided is a method of removing carbon dioxide using a membrane having basic functional groups, and a method of water electrolysis using a membrane having basic functional groups.
    Type: Application
    Filed: October 10, 2012
    Publication date: November 6, 2014
    Inventors: Yushan Yan, Christopher Lew, Qian Xu, Feng Wang, Shuang Gu, Wenchao Sheng, Shaun Alia, Laj Xiong
  • Publication number: 20140311916
    Abstract: The present invention provides, in some embodiments, hybrid materials having reticulated vitreous carbon (RVC) and nanoparticles of a conductive, transparent metal oxide such as tin-doped indium oxide (ITO). The material can further include one or more transition metal catalysts, such as {Ru(Mebimpy)[4,4?-((HO)2OPCH2)2bpy](OH2)}2+. Oxidation of water, benzyl alcohol, and other useful reactants is possible when the material is employed as an electrode.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 23, 2014
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Manuel Mendez Agudelo, Leila Alibabaei, Javier J. Concepcion, Christopher J. Dares, Thomas J. Meyer
  • Publication number: 20140246330
    Abstract: A cathode for hydrogen evolution in an electrolytic cell, comprising a metallic substrate, and a coating consisting of substantially pure ruthenium oxide, is disclosed. The inventive cathode provides enhanced performance and service life under unsteady and intermittent powering, such as powering from solar cells; a process for coating the metallic substrate is also disclosed.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: Casale Chemicals S.A.
    Inventors: Giancarlo SIOLI, Roberto MATTONE
  • Patent number: 8821700
    Abstract: A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121), a first n-type semiconductor layer (122) having a nanotube array structure, and a second n-type semiconductor layer (123); a counter electrode (130) connected to the conductor (121); an electrolyte (140) in contact with the second n-type semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140).
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: September 2, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Kuroha, Takaiki Nomura, Kazuhito Hato, Noboru Taniguchi, Takahiro Suzuki, Kenichi Tokuhiro
  • Publication number: 20140202878
    Abstract: An apparatus for the electrolytic splitting of water into hydrogen and oxygen gases is disclosed. The apparatus comprises: (i) a first hemi-enclosure; (ii) a second hemi-enclosure; (iii) a diaphragm electrode array positioned between the first hemi-enclosure and the second hemi-enclosure comprising: (a) a diaphragm, that passes ions and impedes the passage of gases, comprising a first side and a second opposed side; (b) a first plurality of electrodes in a first vicinity of the first side of the diaphragm; and (c) a second plurality of electrodes in a second vicinity of the second opposed side of the diaphragm; (iv) a fastener, for leak-tight fastening of the first hemi-enclosure, the diaphragm electrode array, and the second hemi-enclosure, whereby a leak-tight enclosure is formed; (v) contacts, for electrically powering the first and second pluralities of electrodes, and; (vi) pathways, configured to remove hydrogen and oxygen gases from the enclosure.
    Type: Application
    Filed: February 12, 2014
    Publication date: July 24, 2014
    Applicant: GTA, Inc.
    Inventor: Elias Stanley Greenbaum
  • Publication number: 20140202877
    Abstract: An apparatus for the electrolytic splitting of water into hydrogen and oxygen gases is disclosed. The apparatus comprises: (i) a first hemi-enclosure; (ii) a second hemi-enclosure; (iii) a diaphragm electrode array positioned between the first hemi-enclosure and the second hemi-enclosure comprising: (a) a diaphragm, that passes ions and impedes the passage of gases, comprising a first side and a second opposed side; (b) a first plurality of electrodes in a first vicinity of the first side of the diaphragm; and (c) a second plurality of electrodes in a second vicinity of the second opposed side of the diaphragm; (iv) a fastener, for leak-tight fastening of the first hemi-enclosure, the diaphragm electrode array, and the second hemi-enclosure, whereby a leak-tight enclosure is formed; (v) contacts, for electrically powering the first and second pluralities of electrodes, and; (vi) pathways, configured to remove hydrogen and oxygen gases from the enclosure.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: HYDROGEN PRODUCTION ASSOCIATES, INC.
    Inventor: Elias Greenbaum
  • Patent number: 8702916
    Abstract: A hydrogen supplementation fuel apparatus and method having a power source, a hydrogen generator and an accumulator for supplementing hydrogen gas to improve the fuel efficiency of internal combustion engines. The hydrogen generator uses electrodes that are helically wound about a separator to increase the hydrogen generation output.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Clean-Fuel Technologies, Inc.
    Inventors: Daniel McBride, Dominic Ciacelli
  • Publication number: 20140034510
    Abstract: The present invention relates to a catalyst comprising (i) a semiconductor preferably comprising one or more metal-(Group VIb) semiconductors, and (ii) a semiconductor material having elevated phosphorous content preferably comprising one or more metal-(Group VIb))-phosphorous species
    Type: Application
    Filed: March 22, 2012
    Publication date: February 6, 2014
    Applicant: MONASH UNIVERSITY
    Inventors: Douglas Macfarlane, Bjorn Winther-Jensen, Alexey Izgorodin
  • Publication number: 20140034511
    Abstract: An electrolytic cell, a method for manufacturing the cell, and a method of operating same. The electrolytic cell has at least two bipolar plates, at least one fluid inflow and outflow, as well as at least one laminated core arranged between the at least two bipolar plates. The laminated core is constructed from laminations which are stacked one on top of the other. At least two laminations have recesses which are designed to extend through the entire thickness of the respective lamination. The at least two laminations are arranged one on top of the other in such a way that recesses in adjacent laminations overlap partially, but not completely, as a result of which ducts, which are continuous in the direction of the plane of the lamination, are formed.
    Type: Application
    Filed: March 27, 2012
    Publication date: February 6, 2014
    Inventors: Ralf Cordes, Klaus Dennerlein, Alexander Hahn, Hagen Hertsch, Norbert Huber, Carola Kuehn
  • Patent number: 8632672
    Abstract: The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: January 21, 2014
    Assignee: General Electric Company
    Inventor: Grigorii Lev Soloveichik
  • Publication number: 20130206608
    Abstract: Disclosed are methods for generating oxygen via an electrolysis reaction. One places an anode and a cathode in aqueous solution, and uses an external source of electricity to drive the electrolysis reaction from the anode and cathode. The anode has at least three metal oxides, preferably with nickel oxide or cobalt oxide as at least one of the oxides. Also disclosed are electrodes designed for catalyzing oxygen consumption or formation reactions, where the electrodes have a mix of such three metal oxides.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 15, 2013
    Applicant: Wisconsin Alumni Research Foundation
    Inventor: Wisconsin Alumni Research Foundation
  • Publication number: 20130192999
    Abstract: A process for oxidizing water using amorphous cobalt tungstate is disclosed. A plurality of amorphous cobalt tungstate nanoparticles are supported on an electrode and are able to catalytically interact with water molecules generating oxygen. The catalyst can be used as part of a electrochemical or photo-electrochemical cell for the generation of electrical energy.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicants: Toyota Motor Corporation, Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Hongfei Jia, Takeshi Sekito
  • Patent number: 8440146
    Abstract: Cells and methods of producing hydrogen and oxygen from an aqueous solution at about 90% of the Faraday Limit are provided. An exemplary method includes the steps of placing a graphite electrode and a nickel electrode in an alkaline solution comprising colloidal silver, colloidal magnesium and a powdered metal such as aluminum, and applying a constant positive voltage to the nickel electrode. Further, the example includes cyclically applying a negative voltage potential to the graphite electrode by turning on the negative applied voltage for a first time period and switching off the negative voltage for a second time period. The second time period should be sufficient to permit removal of substantially all or at least some of any aluminum or zinc deposited on the graphite electrode. Graphite-containing electrodes may be pretreated to infuse with a precious metal.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: May 14, 2013
    Assignee: G & M Energy Systems, LLC
    Inventor: Linnard Gene Griffin
  • Publication number: 20120305407
    Abstract: Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Marc A. Anderson, Kevin C. Leonard
  • Publication number: 20120305408
    Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and buffering electrolytes (e.g. fluoride). They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and an anionic buffering electrolyte. The catalysts will facilitate the conversion of water to oxygen and hydrogen gas at a range of mildly acidic conditions. Alternatively, these anodes can be used with cathodes that facilitate other desirable reactions such as converting carbon dioxide to methanol.
    Type: Application
    Filed: November 29, 2010
    Publication date: December 6, 2012
    Inventors: James B. Gerken, Shannon S. Stahl
  • Patent number: 8236149
    Abstract: A multi-cell or single-cell electrolysis type electrolyzer for the production of hydrogen gas and oxygen gas with a delivery system through tubes, bubbler and check valve to internal combustion engine, generator, turbine or similar combustion device for the enhancement of hydrocarbon fuels and/or gas combustion device is disclosed. This device comprises at least one or more chambers of sealed containers, distilled water, a variety of electrolytes, multi or single strand stainless steel, nickel or platinum wire, a plastic, glass, or ceramic insulator within a stainless steel, nickel, or platinum tube and an ultrasonic piezo crystal allowing water and or a weak electrolyte solution to decompose into hydrogen gas and oxygen gas.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: August 7, 2012
    Inventor: David M. Wilson
  • Patent number: 8236146
    Abstract: A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a conductor (121) and an n-type semiconductor layer (122); a counter electrode (130) connected electrically to the conductor (121); an electrolyte (140) in contact with the surfaces of the n-type semiconductor layer (122) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140). The photoelectrochemical cell (100) generates hydrogen by irradiation of the n-type semiconductor layer (122) with light.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 7, 2012
    Assignee: Panasonic Corporation
    Inventors: Takaiki Nomura, Takahiro Suzuki, Kenichi Tokuhiro, Tomohiro Kuroha, Noboru Taniguchi, Kazuhito Hatoh, Shuzo Tokumitsu
  • Patent number: 8221599
    Abstract: Embodiments of the present disclosure include an anode, devices and systems including the anode (e.g., electrochemical devices and photo-electrochemical devices), methods of using the anode, methods of producing H2 and O2 from H2O, Cl2, oxidixed organic feedstocks, oxidation for the detection and quantification of chemical species, and the like.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 17, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher E. D. Chidsey, Paul C. McIntyre
  • Patent number: 8216436
    Abstract: The embodiments disclosed herein relate to hetero-nanostructures for efficient solar energy conversions, and more particularly to the fabrication of titanium dioxide hetero-nanostructures and methods of using same for water splitting. In an embodiment, a hetero-nanostructure includes a plurality of connected and spaced-apart nanobeams linked together at an about 90-degree angle, the plurality of nanobeams including a conductive silicide core having an n-type photoactive titanium dioxide shell.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 10, 2012
    Assignee: The Trustees of Boston College
    Inventors: Dunwei Wang, Yongjing Lin
  • Patent number: 8192609
    Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and fluorine. They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and fluoride. The catalysts will facilitate the conversion of water to hydrogen gas and oxygen gas, even at pH neutral/room temperature reaction conditions. The resulting hydrogen gas is a means of storing renewable energy for use in hydrogen powered vehicles or the like.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: June 5, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James B. Gerken, Shannon S. Stahl
  • Patent number: 8172990
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising: a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the first electrode is configured to control the location of nucleation of the gas by substantially separating the location of electron transfer and nucleation.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: May 8, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8075750
    Abstract: In one embodiment of the present invention an electrolytic cell is provided comprising a containment vessel; a first electrode; a second electrode; a source of electrical current in electrical communication with the first electrode and the second electrode; an electrolyte in fluid communication with the first electrode and the second electrode; a gas, wherein the gas is formed during electrolysis at or near the first electrode; and a separator; wherein the separator includes an inclined surface to direct flow of the electrolyte and the gas due to a difference between density of the electrolyte and the combined density of the electrolyte and the gas such that the gas substantially flows in a direction distal to the second electrode.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: December 13, 2011
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 7909979
    Abstract: The present invention provides a water photolysis system comprising: a casing 1 into which incident sunlight L can enter from the outside and a photolytic layer 5 which is disposed inside the casing 1; wherein the photolytic layer 5 has a light-transmissive porous material 51 and photocatalyst particles 52 supported thereon; a water layer 4 containing water in its liquid state is disposed below the photolytic layer 5 with a first space 6 disposed between the water layer and the photolytic layer; a sealed second space 7 is formed above the photolytic layer 5 in the casing 1; vapor generated from the water layer 4 is introduced into the photolytic layer 5 via the first space 6; and the vapor is decomposed into hydrogen and oxygen by the photocatalyst particles 52, which are excited by the sunlight L.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 22, 2011
    Assignee: Panasonic Corporation
    Inventors: Yuka Yamada, Masa-aki Suzuki, Nobuyasu Suzuki, Hidehiro Sasaki, Yasunori Morinaga
  • Publication number: 20110005939
    Abstract: A device and method for generation of high octane hydrogen gas from acetic acid includes providing an electrolysis unit having a cathode, an anode, neutral elements, gaskets, and an electrolyte including acetic acid; applying pulse-width-modulated power to the cathode and anode to produce hydrogen and oxygen gas from the electrolyte; transporting the gas and some of the electrolyte from the electrolysis unit to a reservoir; transporting the electrolyte in the reservoir back to the electrolysis unit, thereby reusing the electrolyte; refilling the reservoir with distilled water when the level of electrolyte in the reservoir is low; utilizing a condensate trap to dump water that condenses out of the gas in the reservoir; and transporting the gas in the condensate trap for use. The hydrogen and oxygen gas may be provided to the air intake of an engine.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: HAYLIN HYDROGEN SYSTEMS, LLC
    Inventor: Jim Haywood
  • Patent number: 7722757
    Abstract: A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 25, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, Victor A. Maroni, James L. Willit
  • Patent number: 7510640
    Abstract: A method for configuring a solar hydrogen generation system and the system optimization are disclosed. The system utilizes photovoltaic modules and an electrolyte solution to efficiently split water into hydrogen and oxygen. The efficiency of solar powered electrolysis of water is optimized by matching the most efficient voltage generated by photovoltaic cells to the most efficient input voltage required by the electrolysis cell(s). Optimizing PV-electrolysis systems makes solar powered hydrogen generation cheaper and more practical for use as an environmentally clean alternative fuel.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: March 31, 2009
    Assignee: General Motors Corporation
    Inventors: Thomas L Gibson, Nelson A Kelly
  • Patent number: 7491309
    Abstract: Disclosed herein are a system and a method for the production of hydrogen. The system advantageously combines an independent high temperature heat source with a solid oxide electrolyzer cell and a heat exchanger. The heat exchanger is used to extract heat from the molecular components such as hydrogen derived from the electrolysis. A portion of the hydrogen generated in the solid oxide electrolyzer cell is recombined with steam and recycled to the solid oxide electrolyzer cell. The oxygen generated on the anode side is swept with compressed air and used to drive a gas turbine that is in operative communication with a generator. Electricity generated by the generator is used to drive the electrolysis in the solid oxide electrolyzer cell.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: February 17, 2009
    Assignee: General Electric Company
    Inventors: Andrew Maxwell Peter, Chellappa Balan, James Anthony Ruud, Stephane Renou, Kenneth Walter Browall
  • Patent number: 7481914
    Abstract: A photoelectrolysis cell is described herein. The cell includes a photoelectrode based on a material having the general formula (Ln1?xMx)(Nb1?yTay)O1+xN2?x. Ln is at least one lanthanide element; M is at least one alkaline earth metal; 0?x?0.99; and 0?y?1. The photoelectrolysis cell further includes a counter-electrode formed from at least one metal or metallic alloy. An electrolyte which is in contact with both the photoelectrode and the counter-electrode is another component of the cell, along with a means for collecting hydrogen produced by the cell. A related process for producing hydrogen in a photoelectrolysis cell is also described.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: January 27, 2009
    Assignee: General Electric Company
    Inventors: Thomas Francis McNulty, Anant Achyut Setlur
  • Patent number: 7351316
    Abstract: Water electrolysis device determining stable isotopic composition of water and a water electrolysis method for stable isotopic composition of water capable of analyzing many samples easily, safely and at low cost in very short time, and rapidly analyzing 17O are provided. The water electrolysis device performing mass spectrometry of hydrogen or oxygen stable isotopic composition includes a proton exchange membrane of fluorocarbon polymer plated non-electrolytically with platinum, iridium, rhodium or iridium-rhodium alloy, and a cathode and an anode of porous titanium plated with platinum and sandwiching the proton exchange membrane, wherein water electrolyzes by introduction into the anode side chamber and supplying DC current between the anode and the cathode, and oxygen gas generated at the anode and hydrogen gas generated at the cathode respectively flows into an isotope ratio mass spectrometer.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: April 1, 2008
    Assignees: Japan Science and Technology Agency, Tokyo Institute of Technology
    Inventors: Naohiro Yoshida, Osamu Abe, Ryu Uemura, Hiroshi Watanabe
  • Patent number: 7338590
    Abstract: A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: March 4, 2008
    Assignee: Sandia Corporation
    Inventors: John A. Shelnutt, James E. Miller, Zhongchun Wang, Craig J. Medforth
  • Patent number: 7326329
    Abstract: Large quantities of low cost hydrogen free of carbon oxides are required as fuel for the hydrogen economy. Commercial quantities of hydrogen can be produced from the electrolysis of water using a diaphragm-less electrolytic cell. The electrolytic cell has an anode cell (31) and a cathode cell (32) connected by a DC power source (53) and an external conductor (52). An alternate apparatus method to produce hydrogen is to electrolyze water using unipolar activation. Unipolar activation uses separate anode and cathode circuits and can use secondary cathode (132) and anode (139) cells to recover energy and produce further hydrogen.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: February 5, 2008
    Inventor: Rodolfo Antonio M. Gomez
  • Patent number: 7258779
    Abstract: A method and means for producing a combustible mixture of hydrogen and oxygen by electrolysis of water using a pulsed application of water onto electrodes while applying an electrical potential between electrodes and where the electrodes are not immersed in the water which flows between the electrodes while undergoing electrolysis.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: August 21, 2007
    Inventors: Alan Patrick Casey, Stewart Smith
  • Patent number: 7247229
    Abstract: A process for electroplating of metal utilizing a valve metal electrode substrate containing multiple coating layers is disclosed. A top coating layer of a valve metal oxide is applied over a first coating layer of an electrochemically active coating. The electrode may find use in an electroplating system containing organic substituents in which the consumption of the organic substituent is significantly decreased or in systems where it is desirable to suppress the oxidation of a species in an electrochemical cell.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 24, 2007
    Assignee: ELTECH Systems Corporation
    Inventor: Kenneth I Hardee
  • Patent number: 7232509
    Abstract: Highly active hydrogen evolving cathode using a platinum group metal catalyst in an amount smaller than that used in the conventional hydrogen evolving cathode. The hydrogen evolving cathode includes a conductive substrate, and a catalyst layer comprising at least one selected from the group consisting of silver and a silver oxide compound, and at least one selected from the group consisting of a platinum group metal, a platinum group metal oxide and a platinum group metal hydroxide, formed on a surface of the conductive substrate.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: June 19, 2007
    Assignee: Permelec Electrode Ltd.
    Inventors: Miwako Nara, Yoshinori Nishiki, Tsuneto Furuta
  • Patent number: 6827838
    Abstract: A method of separating and recovering 18F from 18O water at high purity and efficiency while maintaining the purity of the 18O water. By using a solid electrode (1) as an anode and a container (electrodeposition vessel) (2) made of platinum as a cathode, 18F in a solution (4) is electrodeposited on the solid electrode surface by applying a voltage. Then, by using the solid electrode (1) on which 18F is electrodeposited as a cathode and a container (recovery vessel) (5) holding pure water therein as an anode, 18F is recovered in the pure water by applying a voltage of opposite polarity to that of the electrodeposition. In this process, little 18O water is lost. The initial concentration of the 18O water is maintained even after the electrodeposition of 18F, so that the 18O water can be repeatedly used as an irradiation target for production of 18F.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: December 7, 2004
    Assignee: Riken
    Inventors: Toshio Hyodo, Yoshiko Itoh, Fuminori Saito, Yasuyuki Nagashima, Toshikazu Kurihara, Akira Goto, Masayuki Kase, Yasushige Yano, Katsumi Senoo
  • Patent number: 6783885
    Abstract: An electrochemical cell system includes a hydrogen electrode; an oxygen electrode; a membrane disposed between the hydrogen electrode and the oxygen electrode; and a compartmentalized storage tank. The compartmentalized storage tank has a first fluid storage section and a second fluid storage section separated by a movable divider. The compartmentalized storage tank is in fluid communication with the electrochemical cell. Further, an electrochemical cell includes a hydrogen electrode; an oxygen electrode; an electrolyte membrane disposed between and in intimate contact with the hydrogen electrode and said oxygen electrode; an oxygen flow field disposed adjacent to and in intimate contact with the oxygen electrode; a hydrogen flow field disposed adjacent to and in intimate contact with the hydrogen electrode; a water flow field disposed in fluid communication with the oxygen flow field; and a media divider disposed between the oxygen flow field and the water flow field.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: August 31, 2004
    Assignee: Proton Energy Systems, Inc.
    Inventors: Jason K. Shiepe, Trent M. Molter
  • Publication number: 20040004005
    Abstract: An improved scheme for dissociating water into hydrogen and oxygen is provided in which a two dimensional matrix of electrodes is provided in a reaction vessel. The electrodes are connected to a source of electrical power for providing a potential difference there between sufficient for dissociating the water. The matrix includes a smallest two dimensional repeating group that consists of four electrodes arranged in a quadrilateral clockwise plus, minus, plus, minus. The hydrogen can be used for burning, running an internal combustion engine, or for providing electrical power in a fuel cell. Core water from the matrix can also be used directly as heating water. Direct current, or switched direct current can be used for generating hydrogen while AC sources can be used for generating heat.
    Type: Application
    Filed: December 24, 2002
    Publication date: January 8, 2004
    Inventor: Carlton W. Sheldon
  • Publication number: 20030205482
    Abstract: A hydrogen and oxygen gas generator (100) is provided that uses electrodes (160) made of carbon graphite and disposed in a vessel (110) containing a conductive solution of water and salt (165). The carbon graphite electrodes may be made of graphite baked with a binder to form rods, and may include a conductive cladding over a portion of the rods. An electric potential is applied between the electrodes, causing a current through the saline solution that results in dissociation of water into hydrogen and oxygen, which is expelled through a gas discharge port (156) in the vessel. The generator may be used as a stand-alone combustible gas generator, or in a vehicle (90), powered by an alternator (96) driven by the vehicle engine (98), and providing hydrogen and oxygen to the engine to improve the efficiency of the engine.
    Type: Application
    Filed: April 25, 2003
    Publication date: November 6, 2003
    Inventor: Larry D. Allen
  • Patent number: 6576115
    Abstract: A first electrode layer and a second electrode layer cover the surface of an object. The electrode layers are separated by a relatively large interelectrode distance, usually not exceeding 10 mm. Conductive ice or liquid water fills the interelectrode space between the electrodes, providing electrical connection of the electrodes. A DC or a low-frequency AC voltage is applied across the electrodes. The applied voltage causes electrolysis of water molecules at the electrodes, resulting in generation of hydrogen and oxygen gas bubbles. Optionally, a DC power supply generates sparks that ignite a mixture of the hydrogen and oxygen gases.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: June 10, 2003
    Assignee: The Trustees of Dartmouth College
    Inventor: Victor F. Petrenko
  • Publication number: 20020060161
    Abstract: An apparatus and method for performing electrolysis on materials such as water, thereby electrically separating the electrolyte into its elemental components. More specifically, according to a preferred aspect of the instant invention, there is provided an apparatus for splitting water into hydrogen and oxygen that uses a specially prepared cathode in conjunction with incident light energy to increase the efficiency of that process. A preferred embodiment of this apparatus uses the photo collector/cathode which comprises a thin layer of metal, preferably nickel, deposited by electroplating or a similar technique onto a conductive surface (e.g., a sheet of copper metal). During the electrolysis process, the cathode is irradiated with light, thereby reducing the amount of electrical energy necessary to separate a given quantity of electrolytic material.
    Type: Application
    Filed: January 31, 2001
    Publication date: May 23, 2002
    Inventors: A. Nicholas Roe, Arthur N. Roe