With Group I Metal Or Metal Oxide (i.e., Alkali Metal, Ag, Au, Cu, Or Oxide Thereof) Patents (Class 208/120.15)
  • Patent number: 11717813
    Abstract: A method for preparing a zeolite catalyst for catalytic cracking of hydrocarbons to produce propylene is provided, which specifically includes steps of mixing a silicon source, a templating agent, an aluminium source, and a solvent to form a zeolite precursor solution, which is then subjected to hydrothermal crystallization, washing, drying, and calcination to obtain a zeolite precursor; ion-exchanging the zeolite precursor with ammonium ions, followed by drying and calcination; and loading aluminum onto the ion-exchanged zeolite precursor as a carrier via incipient-wetness impregnation by using an aluminium-containing solution, followed by drying and calcination. Zeolite catalysts prepared by the method and use of the catalysts in catalytic cracking of hydrocarbons to produce propylene are also provided.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: August 8, 2023
    Assignee: Henan University
    Inventors: Yajie Tian, Xinyu He, Congzhen Qiao
  • Patent number: 11708311
    Abstract: A process for increase conversion and yield and selectivity to normal paraffins by reducing the hydrogen to hydrocarbon ratio for paraffin feeds with substantial butanes. The process works best with a low concentration of heavies and cyclics in the isomerization feed. High normal ratios of equilibrium, isobutane conversion, normal paraffins yield and selectivities are achieved for naphtha feed at low ratios of hydrogen to hydrocarbons.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: July 25, 2023
    Assignee: UOP LLC
    Inventors: Ram Ganesh Rokkam, Cora Wang Ploentham, Vaibhav Ramesh Thool
  • Patent number: 11213806
    Abstract: A catalyst support comprising at least 95% silicon carbide, having surface areas of ?10 m2/g and pore volumes of ?1 cc/g. A method of producing a catalyst support, the method including mixing SiC particles of 0.1-20 microns, SiO2 and carbonaceous materials to form an extrusion, under inert atmospheres, heating the extrusion at temperatures of greater than 1400° C., and removing residual carbon from the heated support under temperatures below 1000° C. A catalyst on a carrier, comprising a carrier support having at least about 95% SiC, with a silver solution impregnated thereon comprising silver oxide, ethylenediamine, oxalic acid, monoethanolamine and cesium hydroxide. A process for oxidation reactions (e.g., for the production of ethylene oxide, or oxidation reactions using propane or methane), or for endothermic reactions (e.g., dehydrogenation of paraffins, of ethyl benzene, or cracking and hydrocracking hydrocarbons).
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: January 4, 2022
    Inventor: Madan Bhasin
  • Patent number: 10436525
    Abstract: Fractionation, the process used by refineries to break down carbon chains of petroleum compounds so that the desired carbon compound can be achieved. This process typically involves high heat, distillation, re-boiling, and energy intensive cooling processes. This application discloses an invention that will condense vapor produced by a pyrolysis reactor. This system uses one standard cyclone; three cascading cyclones with internal cyclonic rotation fins that force incoming vapor to maintain a fixed amount of rotation regardless of the vapor's velocity, heat sinks that increase condensation, reversing fins that force gases to reverse direction inside the cyclone decreasing vapor velocity to increase heat loss; a main collection tank that allows for the controlling of the fuel flash point; a compact low temperature coil cooler that uses 100 percent of the cooling surface that allows for the production of higher quality fuel; and, bubblers/scrubbers that produce back pressure into the pyrolysis reactor.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: October 8, 2019
    Assignee: Golden Renewable Energy, LLC
    Inventors: Oluwadare Oluwaseun, David W. Fowler, Anthony F. Tenore
  • Patent number: 9499747
    Abstract: A method for cracking hydrocarbon, comprises: providing steam and hydrocarbon; and feeding steam and hydrocarbon into a reactor accessible to hydrocarbon and comprising a perovskite material of formula AaBbCcDdO3-?, wherein 0<a<1.2, 0?b?1.2, 0.9<a+b?1.2, 0<c<1.2, 0?d?1.2, 0.9<c+d?1.2, ?0.5<?<0.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: November 22, 2016
    Assignee: General Electric Company
    Inventors: Shizhong Wang, Wenqing Peng, Qijia Fu, Zhigang Deng, Zhaoping Wu, Chuan Lin, Yanfei Gu, Xiao Zhang, Lawrence Bernard Kool
  • Patent number: 9266101
    Abstract: A composition of a value added RFCC catalyst and a process of preparation of a composition for a dual function additive catalyst from a spent catalyst are disclosed. The value added spent FCC catalyst offers improved performance, options such as either employing as an additive for passivation of both vanadium and nickel and enhancing catalytic activity, for initial start-up or make-up for attrition losses. The value addition process does not harm any of physical properties of starting material with respect to ABD, attrition index, surface area and particle size distribution. Value added catalyst can be used in a range from 1-99 wt % in fluid catalytic cracking process in which, feeds may have higher metals and carbon.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: February 23, 2016
    Assignee: INDIAN OIL CORPORATION LTD.
    Inventors: Prabhu K. Mohan, A. V. Karthikeyani, Manish Agarwal, Biswanath Sarkar, Balaiah Swamy, V. Chidambaram, P. S. Choudhury, S. Rajagopal
  • Patent number: 9126183
    Abstract: The invention relates to a Y-type zeolite having a modified faujasite structure, the intracrystalline structure of which includes at least one network of micropores, at least one network of small mesopores having an average diameter ranging from 2 to 5 nm, and at least one network of large mesopores having an average diameter ranging from 10 to 50 nm. The invention also relates to particles including such zeolites and to the use thereof in a method for processing crude oil, particularly as a hydrocracking catalyst.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 8, 2015
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, TOTAL MARKETING SERVICES
    Inventors: Sander Van Donk, Maxime Lacroix, Régine Kenmogne-Gatchuissi, François Fajula, Métin Bulut, Jean-Pierre Dath, Krijn Pieter De Jong, Petra Elisabeth De Jongh, Jovana Zecevic, Adrianus Nicolaas Cornelis Van Laak
  • Patent number: 8900445
    Abstract: A process for the catalytic conversion of hydrocarbons to convert petroleum hydrocarbons in a higher yield for light olefins, particularly propylene is disclosed, the process involving a hydrocarbon-converting catalyst comprising zeolite, phosphorous and a transition metal, as defined herein.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 2, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang
  • Patent number: 8809216
    Abstract: The present invention relates to a catalyst for converting inferior acid-containing crude oil. Based on the total amount of the catalyst, said catalyst comprises from 1 to 50 wt % of a mesopore material, from 1 to 60 wt % of molecular sieves and from 5 to 98 wt % of thermotolerant inorganic oxides and from 0 to 70 wt % of clays. Said mesopore material is an amorphous material containing alkaline earth oxide, silica and alumina, and has an anhydrous chemical formula of (0-0.3)Na2O.(1-50)MO.(6-58)Al2O3.(40-92)SiO2, based on the weight percent of the oxides, wherein M is one or more selected from Mg, Ca and Ba. Said mesopore material has a specific surface area of 200-400 m2/g, a pore volume of 0.5-2.0 ml/g, an average pore diameter of 8-20 nm, and a most probable pore size of 5-15 nm. The catalyst provided in the present invention is suitable for the catalytic conversion of crude oil having a total acid number of greater than 0.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: August 19, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Jiushun Zhang, Huiping Tian, Yuxia Zhu
  • Publication number: 20130081980
    Abstract: The present invention relates to sulphur reduction catalyst additive composition comprising an inorganic porous support incorporated with metals; an alumino silicate or zeolite component; an alumina component and clay. More particularly the present invention relates to sulphur reduction catalyst additive composition comprising refinery spent catalyst as support. The primary sulphur reduction catalyst additive component of the catalyst composition contains metals of Period III or IV of the Periodic Table, preferably Zinc or Magnesium or combination thereof or one of the transition metals along with other metals.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 4, 2013
    Applicant: BHARAT PETROLEUM CORPORATION LIMITED
    Inventors: Dattatraya Tammannashastri GOKAK, Chiranjeevi THOTA, Pragya RAI, N. JOSE, P.S. VISWANATHAN
  • Patent number: 8084383
    Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention is a cracking catalyst composition comprising a zeolite in combination with a Lewis Acid containing component, wherein the cracking catalyst composition comprises 0.2% Na2O or less. It has been found that sulfur compounds in hydrocarbon feeds to fluid catalytic cracking processes can be reduced by at least 15% compared to the same composition, which does not comprise the aforementioned Lewis Acid containing component.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: December 27, 2011
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Ruizhong Hu, Xinjin Zhao, Richard Franklin Wormsbecher, Michael Scott Ziebarth
  • Publication number: 20110308998
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolitic compositions represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolitic compositions are active and selective in the catalytic cracking of hydrocarbons.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20110230697
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.
    Type: Application
    Filed: June 2, 2011
    Publication date: September 22, 2011
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20110127193
    Abstract: The present invention relates to a catalyst for catalytic cracking fluidized-bed, and the technical problems to be primarily solved by the present invention are high reaction temperature, low cryogenic activity of catalysts and worse selectivity during the preparation of ethylene-propylene by catalytically cracking naphtha. The present invention uses the composition having the chemical formula (on the basis of the atom ratio): AaBbPcOx, so as to magnificently solve said problems. The present invention therefore can be industrially used to produce ethylene and propylene by catalytically cracking naphtha.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 2, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY SINOPEC
    Inventors: Zaiku Xie, Guangwei Ma, Weimin Yang, Hui Yao, Liang Chen
  • Patent number: 7884257
    Abstract: The invention is to provide a catalyst for long-term, high-yield and stable production of ethylene and propylene in an efficient and simple method of catalytic conversion from a hydrocarbon material. The invention relates to a method for producing ethylene and propylene by contacting a hydrocarbon material that contains an olefin having from 4 to 12 carbon atoms in an amount of at least 20% by weight, with a zeolite-containing shaped catalyst satisfying the following requirements (1) to (4), in a reactor for catalytic conversion of that olefin: (1) the zeolite is an intermediate pore-size zeolite having a pore size of from 5 to 6.5 angstroms, (2) the zeolite does not substantially contain a proton, (3) the zeolite contains at least one metal selected from the group consisting of metals belonging to the Group IB of the Periodic Table, (4) the zeolite has a silica/alumina molar ratio (SiO2/Al2O3 molar ratio) of from 800 to 2,000.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 8, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yoshikazu Takamatsu, Kouji Nomura
  • Patent number: 7863494
    Abstract: Provided are a catalyst for hydrocarbon steam cracking for light olefin production and a method for preparing the same. The catalyst is a simple KMgPO4 catalyst, a supported KMgPO4 catalyst, or a KMgPO4-sintered catalyst. The supported KMgPO4 catalyst is prepared by impregnating a carrier with an aqueous solution of a KMgPO4 precursor and the KMgPO4-sintered catalyst is prepared by mixing a KMgPO4 powder or a KMgPO4 precursor powder with metal oxide followed by sintering. Provided is also a method for producing light olefins such as ethylene and propylene by steam cracking in the presence of the catalyst. When the catalyst comprising KMgSO4 as a catalytic component is used in olefin production, the yield of olefins is increased and the amount of cokes deposited on the catalyst is reduced.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: January 4, 2011
    Assignees: LG Chem, Ltd., LG Petrochemical Co., Ltd.
    Inventors: Jun-han Kang, Won-ho Lee, Sang-mun Jeong, Sang-ku Park, Jong-hyun Chae
  • Publication number: 20100252484
    Abstract: A process for the production of high attrition resistant inorganic compositions is provided. The formation of highly attrition resistant compositions is accomplished by forming a slurry of inorganic components, a binder, and optionally clay and matrix materials, milling the slurry, and cooling the milled slurry to a temperature below 17° C., preferably below 10° C. The cooled slurry is subjected to spray-drying, and optionally calcining and/or washing, to provide highly attrition resistant inorganic particles. Catalytic cracking catalysts formed by the process are also disclosed.
    Type: Application
    Filed: December 18, 2008
    Publication date: October 7, 2010
    Inventors: Ranjit Kumar, Bryden J. Kenneth
  • Publication number: 20100236983
    Abstract: A catalytic cracking catalyst is provided which has high cracking activity and with which the production of FCC gasoline having a high octane number can efficiently proceed without lowering a gasoline yield. Also provided are a process for producing the catalyst and a method of the catalytic cracking of a hydrocarbon oil with the catalyst. The catalyst for catalytic cracking of a hydrocarbon oil comprises a crystalline aluminosilicate, a binder, and a clay mineral in a certain proportion, wherein the content of sodium and potassium therein is 0.5% by mass or lower in terms of oxide (Na2O and K2O) amount, the content of at least one rare earth metal therein is 3.0% by mass or lower in terms of oxide (RE2O3, wherein RE is a rare earth element) amount, the [RE2O3+Na2O+K2O]/[crystalline aluminosilicate] ratio by mass is 0.1 or lower, and the catalyst has a xenon adsorption amount, as measured at an adsorption temperature of 25° C. and a partial xenon pressure of 650 torr, of 2.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 23, 2010
    Applicants: Cosmo Oil Co., Ltd., Petroleum Energy Center
    Inventor: Katsuya Watanabe
  • Patent number: 7754934
    Abstract: A process for efficiently and stably producing ethylene and propylene which comprises bringing a hydrocarbon feedstock comprising at least one C4-12 olefin into contact with a zeolite-containing catalyst to obtain a reaction mixture containing ethylene and propylene, separating the reaction mixture into a fraction comprising ingredients ranging from hydrogen to C3 hydrocarbons and a fraction comprising C4 and higher hydrocarbons, and recycling the C4 and higher hydrocarbons as they are to a reactor.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: July 13, 2010
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takashi Tsunoda, Mitsuhiro Sekiguchi
  • Patent number: 7718051
    Abstract: Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Daniel M. Ginosar, Lucia M. Petkovic, David N. Thompson
  • Patent number: 7641787
    Abstract: Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a particulate NOx composition containing particles of a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio of less than about 500. Preferably, the NOx reduction composition contains NOx reduction zeolite particles bound with an inorganic binder. In the alternative, the NOx reduction zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst. Compositions in accordance with the invention are very effective for the reduction of NOx emissions released from the regenerator of a fluid catalytic cracking unit operating under FCC process conditions without a substantial change in conversion or yield of cracked products.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 5, 2010
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, Michael Scott Ziebarth, Xinjin Zhao
  • Publication number: 20090288990
    Abstract: The present invention relates to a catalyst for catalytic cracking fluidized-bed, and the technical problems to be primarily solved by the present invention are high reaction temperature, low cryogenic activity of catalysts and worse selectivity during the preparation of ethylene-propylene by catalytically cracking naphtha. The present invention uses the composition having the chemical formula (on the basis of the atom ratio): AaBbPcOx, so as to magnificently solve said problems. The present invention therefore can be industrially used to produce ethylene and propylene by catalytically cracking naphtha.
    Type: Application
    Filed: August 15, 2006
    Publication date: November 26, 2009
    Applicants: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Guangwei Ma, Weimin Yang, Hui Yao, Jingxian Xiao, Liang Chen
  • Patent number: 7615143
    Abstract: There is provided a catalyst composition having improved hydrothermal stability for the catalytic cracking of a hydrocarbon feedstock to selectively produce propylene. The catalyst composition comprises a first crystalline molecular sieve selected from the group consisting of IM-5, MWW, ITH, FER, MFS, AEL, and AFO and an effective amount of a stabilization metal (copper, zirconium, or mixtures thereof) exchanged into the molecular sieve. The catalyst finds application in the cracking of naphtha and heavy hydrocarbon feedstocks. When used in the catalytic cracking of heavier hydrocarbon feedstocks, the catalyst composition preferably comprises a second molecular sieve having a pore size that is greater than the pore size of the first molecular sieve. The process is carried out by contacting a feedstock containing hydrocarbons having at least 4 carbon atoms is contacted, under catalytic cracking conditions, with the catalyst composition.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Paul F. Keusenkothen, J. Jason Wu, John Scott Buchanan, Guang Cao, Larry L. Iaccino, David L. Stern, Matthew J. Vincent
  • Publication number: 20090050528
    Abstract: Particulate compositions for promoting CO oxidation in FCC processes are provided, the compositions comprising an anionic clay support having at least one dopant, wherein at least one compound comprising iridium, rhodium, palladium, copper, or silver is deposited on the anionic clay support, and the composition is substantially free of platinum.
    Type: Application
    Filed: June 9, 2008
    Publication date: February 26, 2009
    Applicant: ALBEMARLE NETHERLANDS B.V.
    Inventors: Darrell Ray Rainer, Julie Ann Francis, Jorge Alberto Gonzalez, Lin Luo
  • Patent number: 7473348
    Abstract: Production of diesel oil from hydrocarbon-containing residues in an oil circuit with solids separation and product distillation for the diesel product with energy input by means of pumps and counterrotating agitators and by the use of fully crystallized catalysts of potassium, sodium, calcium, and magnesium-aluminum silicates, where all surfaces are cleaned continuously by the agitator mechanisms.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: January 6, 2009
    Assignee: Alphakat GmbH
    Inventor: Christian Koch
  • Patent number: 7435332
    Abstract: This invention relates to a process for cracking hydrocarbon oils. The process comprises contacting a hydrocarbon oil with a catalyst that has been contacted with an atmosphere containing a reducing gas, separating cracked products and the catalyst, and regenerating the catalyst. The catalyst is a cracking catalyst containing a metal component, or a catalyst mixture of a cracking catalyst containing a metal component and a cracking catalyst free of metal component. The catalyst is contacted with the atmosphere containing a reducing gas at a temperature of 100 to 900° C. for at least 1 second, and the amount of the atmosphere containing a reducing gas is not less than 0.03 cubic meters of reducing gas per ton of the cracking catalyst containing a metal component per minute, at a pressure of 0.1-0.5 MPa in the reduction reactor. The process has enhanced capability for desulfurizing and cracking heavy oils.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: October 14, 2008
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Jun Long, Huiping Tian, Yujian Liu, Yuxia Zhu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
  • Patent number: 7416653
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed. In some embodiments, gas is produced during contact with one or more catalysts and the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: August 26, 2008
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Thomas Fairchild Brownscombe, Stanley Nemec Milam
  • Patent number: 7371316
    Abstract: A catalytic composition useful for cracking and reducing the viscosity of heavy hydrocarbons. The catalytic composition comprises Portland cement, a volcanic ash component, titanium dioxide, and a transition metal salt. Optionally, a hydrogen source is added to the catalytic composition.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: May 13, 2008
    Inventor: Jeffrey P. Newton
  • Patent number: 7347930
    Abstract: A novel process for cracking olefins including contacting a hydrocarbon oil with a catalyst in a riser reactor having multiple reaction zones under cracking reaction conditions; separating reaction products and the catalyst; regenerating at least a part of spent catalyst obtained, contacting a part of the regenerated catalyst with the hydrocarbon in the first reaction zone; contacting the other part of the spent catalyst and/or regenerated catalyst in at least one reaction zone after the first reaction zone with the products obtained in previous reaction zones.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: March 25, 2008
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Yuxia Zhu, Huiping Tian, Yujian Liu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
  • Patent number: 7125817
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Group 3 and one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur, wherein the elements from Groups 3, Groups 4–15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: October 24, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Neeraj Sangar
  • Patent number: 7122492
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Groups 1 and 2; one or more elements from Group 3; one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: October 17, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Neeraj Sangar
  • Publication number: 20040262197
    Abstract: The present invention relates to the reduction of the concentrations of nitrogen oxides (NOx) from a fluid catalytic cracking (FCC) regenerator by operating the regenerator in partial CO burn mode with a NOx reducing catalyst system.
    Type: Application
    Filed: April 21, 2004
    Publication date: December 30, 2004
    Inventors: Duane R. McGregor, James O. Guerra
  • Patent number: 6790343
    Abstract: The present invention relates to a sulfur transfer additive for catalytic cracking of hydrocarbons and a catalytic cracking process of hydrocarbons using the sulfur transfer additive, said additive is a uniform liquid comprising at least two metal elements selected from the following three classes: a). alkaline earth metals, b). transition metals and P zone metals, and c). rare earth metals, and wherein there are at least two metal elements from the different classes. The present sulfur transfer additive can reduce the SOx content in the regenerator flue gas and the sulfur content in the light oil products at the same time, and has no negative effect on the activity and selectivity of the catalyst in the FCC system.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: September 14, 2004
    Assignees: China Petro-chemical Corporation, Luoyang Petro-chemical Engineering Corporation, Sinopec
    Inventors: Longyan Wang, Haiqing Guo, Wenyi Qi, Shuqin Su, Xianliang Deng, Jinlong Liu, Shufang Liu
  • Publication number: 20040167013
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Group 3 and one or more elements from Groups 4-15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur, wherein the elements from Groups 3, Groups 4-15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Application
    Filed: February 20, 2003
    Publication date: August 26, 2004
    Inventors: John D.Y. Ou, Neeraj Sangar
  • Patent number: 6726834
    Abstract: A process for catalytic cracking of a hydrocarbon feed, includes the steps of providing an initial hydrocarbon fraction; providing a catalyst comprising an aluminosilicate composition having an aluminosilicate composition having an aluminosilicate framework and containing at least one metal other than aluminum incorporated into the aluminosilicate framework; and exposing the hydrocarbon to the catalyst under catalytic cracking conditions so as to provide an upgraded hydrocarbon product.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: April 27, 2004
    Assignee: Intevep, S.A.
    Inventors: Andrés M. Quesada, Gerardo Vitale-Rojas, José Velásquez, María Nieves Alvarez
  • Publication number: 20040074811
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Application
    Filed: August 18, 2003
    Publication date: April 22, 2004
    Inventors: George Yaluris, John Allen Rudesill
  • Publication number: 20040016676
    Abstract: A catalytic composition useful for cracking and reducing the viscosity of heavy hydrocarbons. The catalytic composition comprises Portland cement, a volcanic ash component, titanium dioxide, and a transition metal salt. Optionally, a hydrogen source is added to the catalytic composition.
    Type: Application
    Filed: July 24, 2003
    Publication date: January 29, 2004
    Inventor: Jeffrey P. Newton
  • Publication number: 20040004024
    Abstract: The present invention relates to non-noble metal catalyst comprising Cu—Al/Ce—Al complex oxides and aluminum oxide support. The catalysts comprise Ce—Al complex oxide and Cu—Al complex oxide successively loaded on the aluminum oxide support, wherein the loading weight ratio is 0.02-0.10 for Ce—Al—O/Al2O3 and 0.05-0.15 for Cu—Al—O/Al2O3, and the Cu—Al complex oxide is dispersed in cluster form on the surface of the aluminum oxide support pre-covered with high dispersed nanoparticles of the Ce—Al complex oxide.
    Type: Application
    Filed: April 21, 2003
    Publication date: January 8, 2004
    Inventors: Bingxiong Lin, Wanjing Zhang, Yingjun Liu, Shijie Li, Neng Li
  • Publication number: 20040004023
    Abstract: An integrated fluid catalytic cracking (FCC) and desulfurization system for processing hydrocarbon-containing fluids. The integrated system employs a cracking/desulfurization unit having a reactor, a regenerator, and a reducer. A mixture of solid FCC catalyst particulates and solid sulfur sorbent particulates are circulated through the reactor, regenerator, and reducer to provide for substantially continuous cracking and desulfurization of the hydrocarbon-containing fluid, as well as substantially continuous regeneration of both the FCC catalyst and the sulfur sorbent.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 8, 2004
    Inventors: Edward L. Sughrue, Gil J. Greenwood
  • Patent number: 6635168
    Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention requires an equilibrium cracking catalyst composition comprises at least one Y-type zeolite having kinetic conversion activity of at least about 3 in combination with a Lewis acid containing alumina composite present in at least 50 weight percent of the composition. The resultant equilibrium catalyst composition has a kinetic conversion activity of at least about 2.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: October 21, 2003
    Assignee: W. R. Grace & Co.-Conn
    Inventors: Xinjin Zhao, Wu-Cheng Cheng, John Allen Rudesill, Richard Franklin Wormsbecher, Pilip Stephen Deitz
  • Publication number: 20020179492
    Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention requires an equilibrium cracking catalyst composition comprises at least one Y-type zeolite having kinetic conversion activity of at least about 3 in combination with a Lewis acid containing alumina composite present in at least 50 weight percent of the composition. The resultant equilibrium catalyst composition has a kinetic conversion activity of at least about 2.
    Type: Application
    Filed: April 13, 2001
    Publication date: December 5, 2002
    Inventors: Xinjin Zhao, Wu-Cheng Cheng, John Allen Rudesill, Richard Franklin Wormsbecher, Philip Stephen Deitz
  • Publication number: 20020092795
    Abstract: Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table provide NOx control performance in FCC processes. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. Cu and Ag are preferred Group I/IIb transition metals. The compositions are especially useful in the cracking of hydrocarbon feedstocks having above average nitrogen content.
    Type: Application
    Filed: February 22, 2002
    Publication date: July 18, 2002
    Inventors: Alan W. Peters, John A. Rudesill, Gordon Dean Weatherbee, Edward F. Rakiewicz, Mary Jane A. Barbato-Grauso
  • Patent number: 6379536
    Abstract: Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table provide NOx control performance in FCC processes. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. Cu and Ag are preferred Group I/IIb transition metals. The compositions are especially useful in the cracking of hydrocarbon feedstocks having above average nitrogen content.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: April 30, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Alan W. Peters, John A. Rudesill, Gordon Dean Weatherbee, Edward F. Rakiewicz, Mary Jane A. Barbato-Grauso
  • Patent number: 6280607
    Abstract: Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table provide NOx control performance in FCC processes. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. Cu and Ag are preferred Group I/IIb transition metals. The compositions are especially useful in the cracking of hydrocarbon feedstocks having above average nitrogen content.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: August 28, 2001
    Assignee: W R Grace & Co.-Conn.
    Inventors: Alan W. Peters, John A. Rudesill, Gordon Dean Weatherbee, Edward F. Rakiewicz, Mary Jane A. Barbato-Grauso, Xinjin Zhao