Suspension System Patents (Class 208/127)
  • Publication number: 20040069682
    Abstract: The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents.
    Type: Application
    Filed: April 17, 2003
    Publication date: April 15, 2004
    Inventors: Barry Freel, Jerry F. Kriz, Doug Clarke
  • Publication number: 20030167691
    Abstract: This invention discloses improvements on previous inventions for catalytic conversion of coal and steam to methane. The disclosed improvements permit conversion of petroleum residua or heavy crude petroleum to methane and carbon dioxide such that nearly all of the heating value of the converted hydrocarbons is recovered as heating value of the product methane. The liquid feed is distributed over a fluidized solid particulate catalyst containing alkali metal and carbon as petroleum coke at elevated temperature and pressure from the lower stage and transported to the upper stage of a two-stage reactor. Particulate solids containing carbon and alkali metal are circulated between the two stages. Superheated steam and recycled hydrogen and carbon monoxide are fed to the lower stage, fluidizing the particulate solids and gasifying some of the carbon. The gas phase from the lower stage passes through the upper stage, completing the reaction of the gas phase.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 11, 2003
    Inventor: Nicholas Charles Nahas
  • Publication number: 20030159973
    Abstract: A process for upgrading a residua feedstock using a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles. The residua feedstock is preferably atomized so that the Sauter mean diameter of the residua feedstock entering the reactor is less than about 2500 &mgr;m. One or more horizontally disposed screws is preferably used to fluidize a bed of hot particles.
    Type: Application
    Filed: January 6, 2003
    Publication date: August 28, 2003
    Inventors: Peter S. Maa, Craig Y. Sabottke
  • Publication number: 20030121828
    Abstract: An improved process for deasphalting a residua feedstock by use of a short vapor residence time process unit comprised of a horizontal moving bed of fluidized and/or stirred hot particles. The vapor phase product stream from said process unit is passed to a soaker drum where a high boiling fraction is separated and recycled to the process unit after undergoing reactions causing molecular weight growth. This reactive recycle using the soaker drum results in substantially improved qualities of the liquid products compared with what is achieved by once-through residua deasphalting process alternatives.
    Type: Application
    Filed: October 29, 2002
    Publication date: July 3, 2003
    Inventors: Mitchell Jacobson, Willibald Serrand, Norman H. Sweed, Hans J.M. Weiss, Ingo W. Dreher, Udo Zentner, Jorg H. Schmalfeld
  • Publication number: 20030106838
    Abstract: The invention relates to a method for improving yield in petroleum streams derived from coking processes. In a preferred embodiment, the invention relates to a method for regenerating filters employed to remove particulate matter from coker gas oil to improve coker gas oil yield and yield of upgraded coker gas oil products.
    Type: Application
    Filed: November 12, 2002
    Publication date: June 12, 2003
    Inventors: Michael Siskin, Ramesh R. Hemrajani, Glen E. Phillips, Simon R. Kelemen, Kuangnan Qian
  • Publication number: 20030000868
    Abstract: The process has to do with a circuit involving a fluidized bed coker reactor working in tandem with a fluidized bed coke burner. The burner is operated at a reduced temperature in the range 550° C.-630° C. Simultaneously, the coke circulation rate is increased to ensure the heat requirement of the reactor is met. It is found that sulphur emissions from the burner are significantly reduced.
    Type: Application
    Filed: June 14, 2001
    Publication date: January 2, 2003
    Applicant: AEC OIL SANDS, L.P.
    Inventors: Keng H, Chung, Edward Furimsky
  • Publication number: 20020038778
    Abstract: A process for upgrading a residua feedstock using a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles. The residua feedstock is preferably atomized so that the Sauter mean diameter of the residua feedstock entering the reactor is less than about 2500 &mgr;m. One or more horizontally disposed screws is preferably used to fluidize a bed of hot particles.
    Type: Application
    Filed: April 19, 2001
    Publication date: April 4, 2002
    Inventors: Peter S. Maa, Craig Y. Sabottke
  • Publication number: 20020029996
    Abstract: Used oil is treated in a reactor to remove contaminants. The reactor comprises a rotating vessel housed within a heating chamber. The inside of the vessel is indirectly heated by conduction through the vessel walls. The vessel contains a permanently resident charge of non-ablating, coarse granular solids. Within the vessel, the oil is vaporized and pyrolysed, producing a hydrocarbon vapor. Coke is formed as a byproduct. Contaminants, such as metals and halides become associated with the coke. The coarse granular solids scour and comminute the coke to form fine solids. The fine solids are separated from the coarse solids and are removed from the vessel. The hydrocarbon vapors are separated from any fine solids and are routed to a vapor condensation system for producing a substantially contaminant-free product oil. The contaminant-rich solids are collected for disposal.
    Type: Application
    Filed: May 22, 2001
    Publication date: March 14, 2002
    Applicant: Alberta oil sands Tech and Research Authority
    Inventors: William Taciuk, Steve Odut, Gordon Taciuk, Charlie Wheeler
  • Patent number: 6264829
    Abstract: A coke drum head is hinged to a coke drum body using a compound joint such as a trammel pivot, and the head is moved between open and closed positions using an actuator. In moving between open and closed positions, the head traces out a non-circular path which reduces the required headroom relative to a head using a standard pivot.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: July 24, 2001
    Assignee: Fluor Corporation
    Inventors: Leslie Peter Antalffy, Robert Benoit, Gerald Bryant, Michael B. Knowles, David W. Malek, Samuel Allen Martin
  • Patent number: 6193875
    Abstract: A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: February 27, 2001
    Assignee: Intevep, S.A.
    Inventors: Pedro Pereira, Jose Guitian, Jose Cordova, Ramon Salazar, Monsaris Pimentel, Alice Dupatrocinio
  • Patent number: 6190537
    Abstract: Methods for producing fuel distillates used as raw material in the production of fuel for engines or jet engines. The invention involves mixing residual petroleum raw material (oil fuel, tar) with sapropelite and with a fraction of thermo-cracking or hydro-cracking hydrogenated products having a boiling point of between 300 and 400° C. in an amount of between 1 and 5% relative to the weight of the residual petroleum raw material. The mixture is heated, homogenized at least twice in a dispersing agent at a temperature of between 85 and 105° C., and submitted to a thermo-cracking or hydro-cracking process. The fuel distillates (petrol, diesel fuel and gas oil) are then separated from the thermo- or hydro-cracking products. The invention thus pertains to the production of petroleum fuels and may be used in the oil-conversion industry.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: February 20, 2001
    Assignee: Zakrytoe Aktsionernoye Obschestove “Panjsher- Holding”
    Inventors: Juri Alekseevich Kanataev, Mikhail Konstantinovich Julin, Evgeny Aleksandrovich Ruzhnikov, Valentin Dmitrievich Efimenkov
  • Patent number: 6179993
    Abstract: A process for obtaining a substantial amount of olefinic products from a residual feedstock by use of a vapor short contact time conversion process unit comprised of a bed of fluidized heat transfer solids. The vapor short contact time process unit is operated at conditions which includes steam dilution to reduce partial pressure of hydrocarbon vapors and a vapor residence time less than about 0.5 seconds.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: January 30, 2001
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Noel M. Seimandi, Tony T. Cheng, Willibald Serrand, Mitchell Jacobson, Paul K. Ladwig, John F. Pagel, Michael R. Parrish, Hans A. Weisenberger
  • Patent number: 6179997
    Abstract: A novel apparatus and process, including a perforated-pipe sparger, for atomizing a liquid stream is disclosed. This novel apparatus and process can be utilized in a fluidized catalytic cracking process or in a coking process for atomizing an oil stream prior to contact with a fluidized catalyst.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: January 30, 2001
    Assignee: Phillips Petroleum Company
    Inventors: William J. Vedder, Jr., Jan W. Wells
  • Patent number: 6171476
    Abstract: A cavitation enhanced atomizing process comprises forming a flowing solution of the liquid to be atomized and a lower boiling cavitating liquid. This flowing solution is then contacted with a pressure reducing means, at a temperature below the bubble point of the cavitating liquid in the solution, to produce cavitation bubbles. These bubbles comprise cavitation liquid vapor and the bubble nucleation produces a two-phase fluid of the bubbles and liquid solution. The two-phase fluid is passed downstream into and through an atomizing means, such as an orifice, and into a lower pressure atomizing zone, in which the bubbles vaporize to form a spray of liquid droplets. The nucleated bubbles also grow in size as the so-formed two-phase fluid passes downstream to and through the atomizing means.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: January 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Dean C. Draemel, Nicholas C. Nahas, Teh Chung Ho
  • Patent number: 6126813
    Abstract: The invention relates to a hydrocarbon catalytic cracking method in the presence of a catalyst in fluidized phase, within a tubular type reactor (1) containing an injection area.According to the invention, a substantial part of the load to be cracked is introduced into the injection area using at least one means of injection (3) of such load against the flow, in relation to the direction of flow of the catalyst grains, and a substantial part of the load to be cracked is simultaneously introduced in the same area using at least one means of injection (2) of such load in direction of the flow in relation to the direction of flow of the catalyst grains.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: October 3, 2000
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Marc Fersing, Mariano Del Pozo
  • Patent number: 6045688
    Abstract: The invention relates ro a method of converting hydrocarbons. According to the method, a gaseous or liquid hydrocarbon feed is passed into a circulating fluidized-bed reactor, wherein the feed is converted at a high temperatue under the influence of particulate matter kept in a fluidized state, and the converted hydrocarbon products are removed from the reactor in a gaseous phase. According to the invention, a circulating fluidized-bed reactor (1-3; 41-43) is used having an axially annular cross section and being equipped with a multiport cyclone (14,17; 52,63) for the separation of the particulate matter from the gas-phase reaction products. The reaction space comprises an intershell riser space (13; 50) formed between two concentrically located cylindrical and/or conical envelope surfaces. The separation of particulate matter from the gas-phase reaction products is performed by means of a multiport cyclone equipped with louvered vanes (14; 63).
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: April 4, 2000
    Assignee: Neste OY
    Inventors: Seppo Ruottu, Kari Kaariainen, Jyrki Hiltunen
  • Patent number: 6045690
    Abstract: An object is to increase cracking rate of heavy fraction oils while producing a lessened amount of dry gases generated by the hydrogen transfer reaction and by the overcracking to obtain light fraction olefins in a high yield. A process for the fluid catalytic cracking of heavy fraction oils, which comprises steps of feeding the heavy fraction oils to a raw oil introducing portion provided at a reaction zone inlet; feeding a part of a regenerated catalyst taken out of a catalyst-regenerating zone to a catalyst introducing portion provided at a reaction zone inlet; and feeding another part of the regenerated catalyst taken out of the catalyst-regenerating zone to at least one catalyst introducing portion which is provided between the catalyst introducing portion provided at the reaction zone inlet and reaction zone outlet, the catalytic cracking in the reaction zone being carried out under conditions of a contact time of 0.1 to 3.0 sec. a reaction zone outlet temperature of 530 to 700.degree. C.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: April 4, 2000
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Yuichiro Fujiyama, Michiaki Adachi, Toshiyasu Okuhara, Shunichi Yamamoto
  • Patent number: 5997726
    Abstract: A hydrocarbon catalytic cracking process in which, a substantial portion of the hydrocarbons is pulverized and placed in contact with a specific contact zone, which is composed of: a mixing chamber having a maximum section S.sub.2, the upper part of which is fed with a heated regenerated catalyst through an upper opening delimiting a catalyst-flow section S.sub.1, and a descending-flow reaction area, in which the solid-gas mixture emanating from the mixing chamber is poured through an intermediate opening having a section S.sub.3 located in the lower part of said chamber. The ratios S.sub.2 /S.sub.1 and S.sub.2 /S.sub.3 have values of between 1.5 and 8.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: December 7, 1999
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Marc Fersing, Mariano Del Pozo, Thierry Gauthier
  • Patent number: 5961786
    Abstract: This invention generally relates to a new method and apparatus for the fast pyrolysis of carbonaceous materials involving rapid mixing, high heat transfer rates, precisely controlled short uniform residence times and rapid primary product quench in an upflow, entrained-bed, transport reactor with heat carrier solids recirculation. A carbonaceous feedstock, a non-oxidative transport gas and inorganic particulate heat supplying material are rapidly mixed in a reactor base section, then transported upward through an entrained-bed tubular reactor. A cyclonic hot solids recirculation system separates the solids from the non-condensible gases and primary product vapors and returns them to the mixer. Product vapors are rapidly quenched to provide maximum yields of liquids, petrochemicals, high value gases and selected valuable chemicals.
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: October 5, 1999
    Assignee: Ensyn Technologies Inc.
    Inventors: Barry A. Freel, Robert G. Graham
  • Patent number: 5954942
    Abstract: A process for thermally and catalytically upgrading a heavy feed in a single riser reactor FCC unit is disclosed. A heavy feed is cracked in the base of the riser at higher than normal cracking temperatures for at least 1.0 seconds of vapor residence time, then quenched. Quenching with large amounts of quench, preferably downstream of the mid point of the riser, increases conversion as compared to use of the same amount of quench within one second. Small amounts of quench, near the riser outlet, crack heavy feed roughly as well as large amounts of quench, near the base of the riser. High velocity, atomizing quench nozzles reduce riser pressure and/or catalyst slip in downstream portions of the riser, further increasing gasoline selectivity and reducing coke yields.
    Type: Grant
    Filed: May 4, 1992
    Date of Patent: September 21, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Peter M. Adornato, Amos A. Avidan, David L. Johnson
  • Patent number: 5952539
    Abstract: A process for producing normally gaseous olefins from two different process units sharing common downstream quench and fractionation facilities, wherein one of the process units is a short contact time mechanically fluidized vaporization unit for processing petroleum residual feedstocks and the other is a conventional steam cracking unit.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: September 14, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Noel M. Seimandi, Tony T. Cheng, Willibald Serrand, Mitchell Jacobson, Paul K. Ladwig, John F. Pagel, Michael R. Parrish, Hans A. Weisenberger
  • Patent number: 5919352
    Abstract: A process wherein a residuum feedstock is upgraded in a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles, then fed to a fluid catalytic cracking process unit. Hot flue gases from the fluid catalytic cracking unit is used to circulate solid particles and to provide process heat to the thermal process unit.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: July 6, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Willibald Serrand, David G. Hammond, Mitchell Jacobson, John F. Pagel, Martin C. Poole
  • Patent number: 5916432
    Abstract: A transition metal salt, preferably ammonium heptamolybdate, is dissolved in water to provide a solution containing the dispersed catalyst precursor. The solution is atomized by passing it through an atomizing nozzle submerged in hot oil. The minute atomized droplets are delivered into the hot oil and the water is flashed to form steam bubbles. The precursor forms catalytic particles distributed in the oil.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: June 29, 1999
    Assignee: Alberta Oil Sands Technology and Research Authority
    Inventors: Richard Anthony McFarlane, Ted Cyr, Randall Wayne Tedford Hawkins
  • Patent number: 5914027
    Abstract: A method for thermo-mechanical cracking and hydrogenation of chemical substances such as hydrocarbons in liquid or solid form, waxes, carbonates, lime, oil-shale, oil-sand, oily residue from refineries and crude tank bottoms, plast and the like. The cracking and the hydrogenating of the substances in the presence of hydrogen releasing chemicals as water is performed in a mechanical established fluidized bed (8) of fine grained solids where the mechanical action in the fluidized bed (8) generates the heat participating in the cracking in addition to the mechanical action to the substances whereby the cracking in the cavitating micro bubbles and the hydrogenation takes place in the reactor (1) with an overall temperature and pressure lower than by conventional cracking and/or hydrogenation processes.
    Type: Grant
    Filed: March 11, 1997
    Date of Patent: June 22, 1999
    Assignee: Thermtech A/S
    Inventor: Olav Ellingsen
  • Patent number: 5795464
    Abstract: A process for the thermal conversion of the organic component associated with tar sands to lower boiling, higher value products. The conversion is achieved by subjecting the organic component containing from about 1 to 20 wt. % native solids to elevated temperatures and pressures. Compared to conventional thermal conversion processes, such as visbreaking, much higher conversion of the organic component can be achieved owing to the presence of native solids on which coke is deposited instead of fouling the process equipment. This higher conversion is also associated with enhanced removal of sulfur and metals.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: August 18, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Bruce M. Sankey, Peter S. Maa, Roby Bearden, Jr.
  • Patent number: 5785843
    Abstract: A coke drum head is hinged to a coke drum body using a compound joint such as a trammel pivot, and the head is moved between open and closed positions using an actuator. In moving between open and closed positions, the head traces out a non-circular path which reduces the required headroom relative to a head using a standard pivot.
    Type: Grant
    Filed: October 28, 1996
    Date of Patent: July 28, 1998
    Assignee: Fluor Daniel, Inc.
    Inventors: Leslie Peter Antalffy, Robert Benoit, Gerald Bryant, Michael B. Knowles, David W. Malek, Samuel Allen Martin
  • Patent number: 5714056
    Abstract: A process for deasphalting a residua feedstock by use of a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles. It is preferred that a mechanical means be used to fluidize a bed of hot particles.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: February 3, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: David G. Hammond, Mitchell Jacobson, John F. Pagel, Martin C. Poole, Willibald Serrand
  • Patent number: 5714663
    Abstract: A process for obtaining a substantial amount of olefinic products from a residua feedstock by use of a short vapor contact time thermal process unit comprised of a horizontal moving bed of fluidized hot particles.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: February 3, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Willibald Serrand, Mitchell Jacobson, Paul K. Ladwig, John F. Pagel, Michael R. Parrish, Noel Seimandi, Hans A. Weisenberger
  • Patent number: 5711870
    Abstract: A residual oil feedstock comprises carbon residue measured according to ASTM D-4530. The feedstock is admixed with water/steam in an amount of 10 wt % to 30 wt % and optionally a hydrogen donor, such as methane and/or gas oil derived from recycle. The resulting admixture is subjected to delayed coking reaction conditions. The process yields hydrocarbon liquids in an increased amount. Coke make and gas make are thereby reduced.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: January 27, 1998
    Assignee: Texaco Inc.
    Inventors: David Anthony Storm, Peter Charles Ricci
  • Patent number: 5660716
    Abstract: A fluidized-bed process for catalytic cracking of a hydrocarbon feedstock where the hydrocarbon feedstock, particularly a feedstock with a high content of basic nitrogen compounds, and a catalyst circulate in the tubular zone co-currently from the top to the bottom, where the catalyst, which is under equilibrium conditions at 150.degree. C., and a pressure of 5 mbar, adsorbs less than 250 micromols, and preferably less than 50 micromols, of pyridine/g, and whose pyridine retention, after heating at 350.degree. C. under vacuum, does not exceed 20%, and preferably not 10%, of the amount adsorbed at 150.degree. C.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: August 26, 1997
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Michel Bourgogne, Thierry Patureaux, Nathalie Boisdron
  • Patent number: 5658455
    Abstract: An improved fluidized bed coking process wherein a residuum feedstock is introduced into a first stage comprised of a short vapor contact time reactor containing a horizontal moving bed of fluidized hot particles. Carbonaceous material is deposited onto the hot particles on contact with the hot particles, and a vapor product is produced. The hot particles, containing the carbonaceous deposits, are fed to a second stage fluidized bed coking process.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: August 19, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: David G. Hammond, Mitchell Jacobson, John F. Pagel, Martin C. Poole, Robert C. Green, Willibald Serrand
  • Patent number: 5562818
    Abstract: An FCC feed distributor mixes fresh catalyst entering the riser with steam to cream a dense bubbling bed of catalyst. Fluidized catalyst rises from the dense bed around a conical section supported from the bottom of the riser. The conical section accelerates the catalyst by reducing the flow area into a small width annulus. As fast fluidized catalyst flows to the annulus, a diverter outwardly redirects an axially flowing feed stream to discharge feed radially into the catalyst as it flows by the annular section. A narrow width of the annular section provides good penetration of the catalyst stream by the feed to quickly and completely mix the catalyst and feed. A tapered conical section above the narrow annular section provides an extended region of gradually increasing flow area that controls downstream acceleration of the gas and catalyst mixture by permitting expansion and preventing back mixing over the initial stages of the cracking reaction.
    Type: Grant
    Filed: October 14, 1994
    Date of Patent: October 8, 1996
    Assignee: UOP
    Inventor: Brian W. Hedrick
  • Patent number: 5538625
    Abstract: The present invention relates to a steam cracking process and apparatus which permits the conversion of fractions of petroleum hydrocarbons. The claimed invention provides for the conversion of at least one light hydrocarbon fraction, as well as a heavier hydrocarbon feedstock. The inventive process takes place at a high temperature and in the presence of a dilute fluidized phase of heat-transfer particles. The process comprises contacting the light-hydrocarbon feedstock and then the heavier feedstock, in a sequential manner with catalytic or noncatalytic heat-transfer particles in a continuous flow reactor. The process further provides for separating and stripping, to separate at least 90 percent of the particles which are regenerated before recycling.
    Type: Grant
    Filed: April 10, 1992
    Date of Patent: July 23, 1996
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Jean-Bernard Sigaud, Jean-Louis Mauleon
  • Patent number: 5501789
    Abstract: A process wherein a fluidized particulate solid is contacted with a hydrocarbon feedstock in a vertically extending contacting zone, which process comprises introducing a stream of the particulate solid into the contacting zone and introducing a plurality of streams of liquid hydrocarbon feedstock into the contacting zone to intimately contact the particulate solid therein, the plurality of streams each being introduced into the contacting zone from one of a plurality of nozzles spaced apart in the contacting zone, and each stream having a flow path extending into the contacting zone and a flow pattern having a thickness which is substantially constant and a width which diverges from the point of introduction into the contacting zone.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: March 26, 1996
    Assignee: Bar-Co Processes Joint Venture
    Inventor: David B. Bartholic
  • Patent number: 5472596
    Abstract: An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor and a heater with hot solids recycling between the coker reactor and the heater. A light paraffin stream is introduced into the line wherein the hot particles are recycled to the coking zone. The hot particles act to catalyze the dehydrogenation of the paraffins to olefins.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: December 5, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: Michael C. Kerby, Roby Bearden, Jr., Stephen M. Davis
  • Patent number: 5466361
    Abstract: Aqueous sulfur and caustic component-containing waste streams are disposed of in an environmentally acceptable manner employing a process featuring integrated coking and gasification operations.
    Type: Grant
    Filed: October 28, 1993
    Date of Patent: November 14, 1995
    Assignee: Mobil Oil Corporation
    Inventors: Roland H. Heck, Heinz Heinemann, P. T. Reischman, Paul B. Venuto, D. Duayne Whitehurst
  • Patent number: 5464591
    Abstract: The method of controlling the flow of a fluidizable particulate solid, e.g., FCC catalyst, which comprises: (a) passing a fluidized stream of the particulate solid downwardly from a source of the particulate solid, e.g., an FCC regenerator, in a first conduit to a junction with a second conduit where the solid particulate is mixed with a stream of a fluid transport medium from a third conduit; (b) passing a stream of the resulting mixed solid particulate/transport medium upwardly in the second conduit at an angle less than 90.degree. from the first conduit for a distance at least as great as the diameter of the first conduit at the junction into a fourth conduit; (c) transporting the particulate solid/fluid transport medium stream in the fourth conduit to a desired location; and (d) controlling the mass flow of the particulate solid in the fourth conduit by setting the flow rate of the transport medium in the third conduit.
    Type: Grant
    Filed: February 8, 1994
    Date of Patent: November 7, 1995
    Inventor: David B. Bartholic
  • Patent number: 5430216
    Abstract: An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is diluted with hot solids from the heater then passed to the scrubbing zone of the coker reactor. A light paraffin stream is introduced into this stream of hot solids between the point where the heater solids are introduced and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of the paraffins to olefins.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: July 4, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventors: Michael C. Kerby, Roby Bearden, Jr., Stephen M. Davis
  • Patent number: 5430217
    Abstract: An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to the scrubbing zone or to a satellite fluidized reactor. A first stream containing an effective amount of C.sub.1 to C.sub.2 paraffins is introduced into this stream of hot solids between the point where the diluent is added and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of paraffins to olefins. A second stream containing C.sub.3 to C.sub.10 paraffins is introduced downstream of the introduction of said first stream.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: July 4, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventors: Roby Bearden, Jr., Michael C. Kerby, Stephen M. Davis
  • Patent number: 5348644
    Abstract: In a fluidized catalytic cracking (FLC) type unit for contacting of a hydrocarbon feedstock with hot solid particles in a fluidized bed in an upright tubular-type upflow hydrocarbon conversion reactor, there is provided, between the means for fluidization and the means for injection of the feedstock, a means for causing the fluidized phase at the periphery of the reactor to rotate about the axis of the reactor.
    Type: Grant
    Filed: November 13, 1990
    Date of Patent: September 20, 1994
    Assignee: Compagnie de Raffinage et de Distribution Total France
    Inventors: Pierre Maroy, Roben Loutaty, Thierry Patureaux
  • Patent number: 5346613
    Abstract: An FCC process decouples the circulation of catalyst on the regeneration side of the process from the circulation of catalyst on the reactor side of the FCC process by mixing the spent and regenerated catalyst from the reactor and regenerator side of the process in a common blending vessel that receives all of the spent and regenerated catalyst from the reactor and regenerator. The blending vessel supplies blended catalyst to raise the solids to oil ratio on the reaction side of the process and regulate catalyst temperatures on the reaction and the regeneration sides of the process. The blending vessel can also retain the majority of the catalyst inventory for both the reactor and regenerator sides of the process. Moreover, by the introduction of a stripping gas into the blending vessel it operates as a hot stripper to remove additional hydrocarbons from the blended catalyst that enters the regeneration zone.
    Type: Grant
    Filed: September 24, 1993
    Date of Patent: September 13, 1994
    Assignee: UOP
    Inventors: David A. Lomas, David A. Wegerer
  • Patent number: 5340464
    Abstract: A process for disposing of filter media is provided, which process comprises (a) mixing a filter media with a hydrocarbonaceous mixing stream to form a media-hydrocarbon mixture and (b) feeding said media-hydrocarbon mixture to a coking vessel. Preferred coking vessels include delayed cokers, fluidized cokers, and coke calciners. An apparatus for disposing of filter media is provided, which apparatus comprises (a) a coking vessel; (b) a mixer to mix the filter media with a hydrocarbonaeous mixing fluid to form a media- hydrocarbonaeous fluid mixture; and, (c) a feed means to feed the media-hydrocarbonaeous fluid mixture to the coking vessel. Preferably, the apparatus comprises a size reduction means to reduce the size of the filter media to form a media staple comprising fiber clusters having a desired shape and size.
    Type: Grant
    Filed: September 8, 1992
    Date of Patent: August 23, 1994
    Assignee: Atlantic Richfield Company
    Inventor: Anthony Mickas
  • Patent number: 5338438
    Abstract: A process for the substantial homogenization of the mixture of hot solid particles and of the hydrocarbon vapors to be treated within a tubular reactor (preferably an FCC unit) for the cracking of hydrocarbons in a fluidized bed of hot solid particles. Directly downstream of the zone of injection, in the reaction zone of the feedstock to be or being treated, usually where at least 75 percent of the droplets of the feedstock are vaporized, there is injected into the reactor a fluid in the gaseous state at one or more points on the interior surface of the side wall of the reactor.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: August 16, 1994
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Vincent Demoulin, Marc Fersing, Thierry Patureaux, Denis Pontvianne
  • Patent number: 5284574
    Abstract: A fluid coking-gasification process for converting heavy hydrocarbonaceous chargestocks to lower boiling products in which an inorganic metal composition is used to mitigate slagging in the gasifier, wherein the metal is selected from the alkaline-earths, the rare earths, and zirconium. The inorganic metal composition is added either directly into the gasifier or it is mixed with the coke passing from the heating zone to the gasification zone.
    Type: Grant
    Filed: March 12, 1992
    Date of Patent: February 8, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Tan-Jen Chen, Paul E. Eberly, Jr., Francis X. Mayer
  • Patent number: 5228981
    Abstract: A coking process wherein a heavy hydrocarbonaceous chargestock is mixed with a minor amount of coal and preheated to a temperature from about 500.degree. F. up to, but not including, coking temperatures. The pretreated mixture is then reacted in a coking zone at coking conditions.
    Type: Grant
    Filed: April 16, 1992
    Date of Patent: July 20, 1993
    Assignee: Exxon Research & Engineering Company
    Inventors: William N. Olmstead, Roby Bearden, Jr.
  • Patent number: 5217602
    Abstract: In a fluid catalytic cracking (FCC) process riser reactor effluent is rapidly separated into spent catalyst and hydrocarbon product. The separated hydrocarbon product is immediately quenched to an unreactive temperature in the absence of quenching spent catalyst. An increase in debutanized naphtha yield is achieved. By avoiding catalyst quenching, heat duty is saved in the catalyst regenerator.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: June 8, 1993
    Assignee: Texaco Inc.
    Inventors: Henry C. Chan, Ting Y. Chan
  • Patent number: 5215651
    Abstract: A process for producing coke, which comprises uniformly dispersing and mixing a carbonized product having an average aspect ratio of at least 1.5 to a starting material oil and then coking the mixture.
    Type: Grant
    Filed: June 14, 1991
    Date of Patent: June 1, 1993
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Iwao Yamamoto, Kenji Watanabe
  • Patent number: 5176819
    Abstract: An improved fluid coking process which includes: (a) a fluid coker comprised of a coking zone, a scrubbing zone, and a stripping zone; (b) a heater, and optionally a gasifier. The improvement comprises feeding a portion of the heated solids from the heater and/or the gasifier, to the stripping zone. Consequently, the coking zone can be operated at a temperature lower than the stripping zone.
    Type: Grant
    Filed: July 15, 1991
    Date of Patent: January 5, 1993
    Assignee: Exxon Research & Engineering Company
    Inventor: Robert C. Green
  • Patent number: 5098554
    Abstract: A fluid catalytic cracking unit equipped with multiple feed injection points along the length of the riser is operated such that all of the fresh feed is charged to one of different feed injection points, depending on the ratio of light distillate (gasoline) to middle distillate (light catalytic gas oil) that is desired in the product slate. When all of the fresh feed is charged to one of the upper injection points in the riser in order to increase middle distillate yield, the unconverted slurry oil (650.degree. F.+material) can be recycled to a location below the injection point of the fresh feed so as to increase conversion to middle distillate while lowering the activity of the catalyst (via coke deposition) for single pass conversion of the fresh feed. Steam in excess of levels typically employed for dispersion is used at the bottom of the riser to lift the regenerated catalyst up to the feed injection points.
    Type: Grant
    Filed: September 26, 1990
    Date of Patent: March 24, 1992
    Assignee: Chevron Research Company
    Inventors: Ashok S. Krishna, Alan R. English, Michael F. Raterman
  • Patent number: 5094737
    Abstract: A fluid coking-gasification process for converting heavy hydrocarbonaceous chargestocks to lower boiling products in which calcium silicate is used to mitigate bogging, slagging, or both. The calcium silicate can be added directly to the heavy hydrocarbonaceous chargestock to mitigate both bogging and slagging or it can be added directly into the gasifier to mitigate slagging.
    Type: Grant
    Filed: October 1, 1990
    Date of Patent: March 10, 1992
    Assignee: Exxon Research & Engineering Company
    Inventors: Roby Bearden, Jr., Tan-Jen Chen, William N. Olmstead