Plural Stages Of Sulfur Removal Patents (Class 208/220)
  • Patent number: 11118098
    Abstract: Solvent mixtures for dissolving elemental sulfur, methods of utilizing the solvent mixtures, and methods of forming the solvent mixtures. The solvent mixtures include an elemental sulfur solvent fraction and an odorant fraction. The elemental sulfur solvent fraction includes an elemental sulfur solvent that has a solvent odor and a solvent sulfur solubility of at least 10 weight percent (wt %). The odorant fraction includes at least one odorant that has an odorant odor that differs from the solvent odor. The solvent mixture includes at least 20 wt % and at most 80 wt % of both the elemental sulfur solvent fraction and the odorant fraction. The presence of the odorant fraction, within the solvent mixture, decreases an intensity of the mixture odor relative to the solvent odor and/or decreases an offensiveness of the mixture odor relative to the solvent odor.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: September 14, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: P. Scott Northrop, Kevin A. Harnsberry
  • Patent number: 8936719
    Abstract: A process for the deep desulfurisation of hydrocarbons (HC), in particular Natural Gas Condensate (NGC), and HC comprising diesel, pre-extracted diesel and naphtha, is described which is capable of reducing the sulfur content of these HC from 500 to 30 ppm. The process comprises contacting the hydrocarbon material with an oxidant selected from organic peroxy acids, organic peroxides, inorganic peroxides and mixtures thereof, in at least a stochiometric amount sufficient to oxidise a sulfur compound to a sulfone compound; contacting the hydrocarbon material with an aqueous extractant to allow at least a portion of the oxidised sulfur compounds to be extracted into the aqueous extractant, and separating the hydrocarbon material from the aqueous extractant to give a hydrocarbon material of reduced sulfur content. Optionally, the process may include a second and subsequent extractions with the aqueous extractant to further reduce sulfur content. A final extraction with an IL may be conducted.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: January 20, 2015
    Assignee: Ultraclean Fuel Pty Ltd.
    Inventors: John Gargano Gordon, Thomas Ruether, Friederike Elisabeth Agel, Andreas Bösmann
  • Patent number: 8894843
    Abstract: A method of upgrading a heteroatom-containing hydrocarbon feed by removing heteroatom contaminants is disclosed. The method includes contacting the heteroatom-containing hydrocarbon feed with an oxidant and an immiscible acid to oxidize the heteroatoms, contacting the oxidized- heteroatom-containing hydrocarbon feed with caustic and a selectivity promoter, and removing the heteroatom contaminants from the heteroatom-containing hydrocarbon feed. The oxidant may be used in the presence of a catalyst.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: November 25, 2014
    Assignee: Auterra, Inc.
    Inventors: Jonathan P. Rankin, Jennifer L. Vreeland, Kyle E. Litz, Tracey M. Jordan, Mark N. Rossetti, Eric H. Burnett, Trent A. McCaskill
  • Publication number: 20120285864
    Abstract: A method of upgrading a heteroatom-containing hydrocarbon feed by removing heteroatom contaminants is disclosed. The method includes contacting the heteroatom-containing hydrocarbon feed with an oxidant and an immiscible acid to oxidize the heteroatoms, contacting the oxidized- heteroatom-containing hydrocarbon feed with caustic and a selectivity promoter, and removing the heteroatom contaminants from the heteroatom-containing hydrocarbon feed. The oxidant may be used in the presence of a catalyst.
    Type: Application
    Filed: June 11, 2012
    Publication date: November 15, 2012
    Applicant: AUTERRA, INC.
    Inventors: Jonathan P. Rankin, Jennifer L. Vreeland, Kyle E. Litz, Tracey M. Jordan, Mark N. Rossetti, Eric H. Burnett, Trent A. McCaskill
  • Patent number: 8298404
    Abstract: A reaction system and method for removing heteroatoms from oxidized-heteroatom-containing hydrocarbon streams and products derived therefrom are disclosed. An oxidized-heteroatom-containing hydrocarbon feed is reacted in a reaction system thereby forming non-ionic hydrocarbon products. The products derived therefrom are useful as transportation fuels, lubricants, refinery intermediates, or refinery feeds.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: October 30, 2012
    Assignee: Auterra, Inc.
    Inventors: Kyle E. Litz, Jennifer L. Vreeland, Jonathan P. Rankin, Thomas W. DeLancey, Timothy A. Thompson
  • Patent number: 8241490
    Abstract: A method of upgrading a heteroatom-containing hydrocarbon feed by removing heteroatom contaminants is disclosed. The method includes contacting the heteroatom-containing hydrocarbon feed with an oxidant to oxidize the heteroatoms, contacting the oxidized-heteroatom-containing hydrocarbon feed with caustic and a selectivity promoter, and removing the heteroatom contaminants from the heteroatom-containing hydrocarbon feed. The oxidant may be used in the presence of a catalyst.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: August 14, 2012
    Assignee: Auterra, Inc.
    Inventors: Kyle E. Litz, Jennifer L. Vreeland, Jonathan P. Rankin, Mark N. Rossetti, Tracey M. Jordan
  • Patent number: 8197671
    Abstract: A method of upgrading a heteroatom-containing hydrocarbon feed by removing heteroatom contaminants is disclosed. The method includes contacting the heteroatom-containing hydrocarbon feed with an oxidant and an immiscible acid to oxidize the heteroatoms, contacting the oxidized-heteroatom-containing hydrocarbon feed with caustic and a selectivity promoter, and removing the heteroatom contaminants from the heteroatom-containing hydrocarbon feed. The oxidant may be used in the presence of a catalyst.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 12, 2012
    Assignee: Auterra, Inc.
    Inventors: Jonathan P. Rankin, Jennifer L. Vreeland, Kyle E. Litz, Tracey M. Jordan, Mark N. Rossetti, Eric H. Burnett
  • Publication number: 20110108464
    Abstract: A method of upgrading a heteroatom-containing hydrocarbon feed by removing heteroatom contaminants is disclosed. The method includes contacting the heteroatom-containing hydrocarbon feed with an oxidant and an immiscible acid to oxidize the heteroatoms, contacting the oxidized-heteroatom-containing hydrocarbon feed with caustic and a selectivity promoter, and removing the heteroatom contaminants from the heteroatom-containing hydrocarbon feed. The oxidant may be used in the presence of a catalyst.
    Type: Application
    Filed: December 23, 2010
    Publication date: May 12, 2011
    Inventors: Jonathan P. Rankin, Jennifer L. Vreeland, Kyle E. Litz, Tracey M. Jordan, Mark N. Rossetti, Eric H. Burnett
  • Patent number: 7785461
    Abstract: A process for the selective hydrodesulfurization of a naphtha containing olefins and organosulfur compounds is disclosed, which minimizes the hydrogenation of the olefins and results in a product with a low sulfur content. The process involves a two-stage hydrodesulfurization with H2S removed from the first stage effluent. A flow of hydrogen and at least one added non-reactive compound is fed into the first stage, wherein the H2 molar fraction ranges from 0.2 to 1.0, and with H2S at the reactor intake limited to a maximum of 0.1% by volume. The second stage involves a feedstream of hydrogen and at least one added non-reactive compound, wherein the H2 molar fraction ranges from 0.2 to 0.7 and with H2S at the reactor intake limited to a maximum of 0.05% by volume.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: August 31, 2010
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Rafael Menegassi De Almeida, Jefferson Roberto Gomes, Marcelo Edral Pacheco, Marcus Vinicius Eiffle Duarte, Rogerio Oddone, Giane Ribeiro Stuart
  • Publication number: 20090200205
    Abstract: A process for reducing the sulfur content of a gasoline fraction comprising one or more organic sulfur compounds including mercaptans, thiophenes, and mono- and di-sulfides, the process including: contacting a gasoline fraction having an initial organic sulfur content with a sulfuric acid-rich composition to extract organic sulfur compounds from the gasoline fraction and produce a gasoline fraction having reduced sulfur content and a sulfuric acid fraction having increased organic sulfur content; and separating the gasoline fraction having reduced organic sulfur content and the sulfuric acid-rich fraction having increased organic sulfur content.
    Type: Application
    Filed: February 11, 2008
    Publication date: August 13, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, JR., William M. Cross, JR.
  • Publication number: 20090065398
    Abstract: The instant invention relates to a process to produce low sulfur diesel products through the hydrodesulfurization of low nitrogen diesel boiling range feedstreams in the presence of solid acidic materials.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 12, 2009
    Inventors: Jonathan M. McConnachie, Catalina L. Coker, Madhav Acharya
  • Patent number: 7473351
    Abstract: The present invention provides a process for reducing the nitrogen content of a liquid hydrocarbon feed wherein said process comprises a) contacting a liquid hydrocarbon feed comprising an alkylating agent and organic nitrogen species with an acidic catalyst at elevated temperature in a first reaction zone to generate a liquid hydrocarbon feed comprising a reduced alkylating agent content and organic nitrogen species of higher boiling point. b) fractionating the liquid hydrocarbon feed comprising a reduced alkylating agent content and organic nitrogen species of higher boiling point to remove the organic nitrogen species of higher boiling point to generate a liquid hydrocarbon feed comprising a reduced alkylating agent content and a reduced nitrogen content.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: January 6, 2009
    Assignee: BP Corporation North America Inc.
    Inventors: Ptoshia Avon Burnett, Michael Graham Hodges, Thomas Knox
  • Patent number: 7452404
    Abstract: A process and system for separating a fuel stream containing a low concentration of sulfur compounds from a primary fuel stream is disclosed. The process includes isolating a stage-one permeate stream and a stage-one retentate stream from the primary fuel stream, evaporating the stage-one permeate stream at a vacuum, and isolating a stage-two permeate stream and a stage-two retentate stream from the stage-one permeate stream. The stage-two retentate stream is a fuel stream containing low concentrations of sulfur compounds. The system includes a fuel supply, a stage-one separator for separating a fuel stream into a stage-one permeate stream and a stage-one retentate stream, a stage-two separator, a first supply line connecting a portion of the fuel supply to the stage-one separator, and a second supply line connecting the stage-one separator permeate stream to the stage-two separator.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: November 18, 2008
    Assignee: Intelligent Energy, Inc.
    Inventors: Kandaswamy Duraiswamy, Richard Root Woods
  • Patent number: 7318845
    Abstract: A distillate fuel steam reformer system in which a fuel feed stream is first separated into two process streams: an aliphatics-rich, sulfur-depleted gas stream, and an aromatics- and sulfur-rich liquid residue stream. The aliphatics-rich gas stream is desulfurized, mixed with steam, and converted in a reforming reactor to a hydrogen-rich product stream. The aromatics-rich residue stream is mixed with air and combusted to provide heat necessary for endothermic process operations. Reducing the amounts of sulfur and aromatic hydrocarbons directed to desulfurzation and reforming operations minimizes the size and weight of the overall apparatus. The process of the invention is well suited to the use of microchannel apparatuses for heat exchangers, reactors, and other system components, which may be assembled in slab configuration, further reducing system size and weight.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: January 15, 2008
    Assignee: Applied Research Associates, Inc.
    Inventors: Aly H. Shaaban, Timothy J. Campbell
  • Patent number: 7252756
    Abstract: A process is disclosed for the production of refinery transportation fuel or components for refinery blending of transportation fuels having a reduced amount of sulfur and/or nitrogen-containing impurities. The process involves contacting a hydrocarbon feedstock containing the above impurities with an immiscible phase containing hydrogen peroxide and acetic acid in an oxidation zone to selectively oxidize the impurities. After a gravity phase separation, the hydrocarbon phase containing any remaining oxidized impurities, is passed to an extraction zone wherein aqueous acetic acid is used to extract a portion of any remaining oxidized impurities. A hydrocarbon stream having reduced impurities can then be recovered. The acetic acid phase effluents from the oxidation and the extraction zones can then be passed to a common separation zone for recovery of the acetic acid and for optional recycle back to the oxidation and extraction zones.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: August 7, 2007
    Assignee: BP Corporation North America Inc.
    Inventors: William H. Gong, Larry W. Kruse, George A. Huff, Michael Muskett
  • Patent number: 7112311
    Abstract: A cooling method of a hydrotreating plant having a desulfurization section (1) including a furnace (12) for heating liquid to be processed, reactors (14, 15) for hydrotreating sulfur to generate hydrogen sulfide, a hydrogen sulfide absorber (19) for absorbing the hydrogen sulfide generated in the reactors (14, 15), and a compressor (21) for compressing and transferring fluid from the hydrogen sulfide absorber (19) toward the reactors (14, 15), the cooling method comprising the steps of gradually depressurizing the hydrotreating plant at the desulfurization section (1) to a pressure level at which reactor material does not embrittle and gas does not leak due to difference of mechanical thermal expansion in the plant after stopping supply of the liquid to be processed, operating the compressor (21) approximately at the maximum rotation number, and completely extinguishing burners (12A, 12B) in the furnace (12) during plant shutdown operation.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: September 26, 2006
    Assignees: Nippon Petroleum Refining Co., Ltd., Softard Industries Co., Ltd.
    Inventors: Yuji Yoshizumi, Hidekatsu Honda, Masayuki Shoji, Toshihiko Nasu, Katsuhiko Kawakami, Junichi Takano
  • Publication number: 20040118750
    Abstract: A process is disclosed for the production of refinery transportation fuel or components for refinery blending of transportation fuels having a reduced amount of sulfur and/or nitrogen-containing impurities. The process involves contacting a hydrocarbon feedstock containing the above impurities with an immiscible phase containing hydrogen peroxide and acetic acid in an oxidation zone to selectively oxidize the impurities. After a gravity phase separation, the hydrocarbon phase containing any remaining oxidized impurities, is passed to an extraction zone wherein aqueous acetic acid is used to extract a portion of any remaining oxidized impurities. A hydrocarbon stream having reduced impurities can then be recovered. The acetic acid phase effluents from the oxidation and the extraction zones can then be passed to a common separation zone for recovery of the acetic acid and for optional recycle back to the oxidation and extraction zones.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Inventors: William H. Gong, Larry W. Kruse, George A. Huff, Michael Muskett
  • Patent number: 6673230
    Abstract: Economical processes are disclosed for production of components for refinery blending of transportation fuels which are liquid at ambient conditions by selective oxygenation of refinery feedstocks comprising a mixture of organic compounds. The organic compounds are oxygenated in a liquid reaction medium with an oxidizing agent and heterogeneous oxygenation catalyst system which exhibits a capability to enhance the incorporation of oxygen into a mixture of liquid organic compounds to form a mixture comprising hydrocarbons, oxygenated organic compounds, water of reaction, and acidic co-products. The mixture is separated to recover at least a first organic liquid of low density and at least a portions of the catalyst metal, water of reaction and acidic co-products. Advantageously, the organic liquid is washed with an aqueous solution of sodium bicarbonate solution, or other soluble chemical base capable to neutralize and/or remove acidic co-products of oxidation, and recover oxygenated product.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: January 6, 2004
    Assignee: BP Corporation North America Inc.
    Inventors: Gary P. Hagen, George A. Huff, Jr., William H. Gong, Monica Cristina Regalbuto
  • Patent number: 6596914
    Abstract: A multi-step process for desulfurizing liquid petroleum fuels that also removes nitrogen-containing compounds and aromatics. The process steps are: thiophene extraction; thiophene oxidation; thiophene-oxide and -dioxide extraction; raffinate solvent recovery and polishing; extract solvent recovery; and recycle-solvent purification. The thiophene oxidation is accomplished with hydrogen peroxide and the extraction solvent is acetic acid in combination with secondary solvents. The operating conditions in the process are relatively mild at near ambient pressure and less than 145° C. throughout the process, and the only chemical consumed in the process is hydrogen peroxide. The process design can be modified to accommodate a variety of liquid hydrocarbon feeds.
    Type: Grant
    Filed: August 25, 2001
    Date of Patent: July 22, 2003
    Inventors: Walter Gore, Steve Bonde, Geoffrey E. Dolbear, Ebbe R. Skov
  • Publication number: 20030010674
    Abstract: Economical processes are disclosed for production of components for refinery blending of transportation fuels which are liquid at ambient conditions by selective oxygenation of refinery feedstocks comprising a mixture of organic compounds. The organic compounds are oxygenated in a liquid reaction medium with an oxidizing agent and heterogeneous oxygenation catalyst system which exhibits a capability to enhance the incorporation of oxygen into a mixture of liquid organic compounds to form a mixture comprising hydrocarbons, oxygenated organic compounds, water of reaction, and acidic co-products. The mixture is separated to recover at least a first organic liquid of low density and at least a portions of the catalyst metal, water of reaction and acidic co-products. Advantageously, the organic liquid is washed with an aqueous solution of sodium bicarbonate solution, or other soluble chemical base capable to neutralize and/or remove acidic co-products of oxidation, and recover oxygenated product.
    Type: Application
    Filed: February 8, 2001
    Publication date: January 16, 2003
    Inventors: Gary P. Hagen, George A. Huff, William H. Gong, Monica Cristina Regalbuto
  • Patent number: 6344136
    Abstract: A process is disclosed for the hydrotreatment of feedstocks for fluidic cat crackers comprising reacting such feedstocks over high-conversion catalyst contain grate nickel-tungsten.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: February 5, 2002
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Mark Kuchenmeister
  • Patent number: 6231753
    Abstract: Selective and deep desulfurization of a high sulfur content mogas naphtha, with reduced product mercaptans and olefin loss, is achieved by a two stage, vapor phase hydrodesulfurization process with interstage separation of at least 80 vol. % of the H2S formed in the first stage from the first stage, partially desulfurized naphtha vapor effluent fed into the second stage. At least 70 wt. % of the sulfur is removed in the first stage and at least 80 wt. % of the remaining sulfur is removed in the second stage, to achieve a total at least 95 wt. % feed desulfurization, with no more than a 60 vol. % feed olefin loss. The second stage temperature and space velocity are preferably greater than in the first. The hydrodesulfurization catalyst preferably contains a low metal loading of Co and Mo metal catalytic components on an alumina support.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: May 15, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Craig A. McKnight, Thomas R. Halbert, John P. Greeley, Garland B. Brignac, Richard A. Demmin, William E. Winter, Jr., Bruce R. Cook
  • Patent number: 6048451
    Abstract: A product of reduced sulfur content is produced from a feedstock which is comprised of a mixture of hydrocarbons and contains organic sulfur compounds as unwanted impurities. The process comprises converting at least a portion of the sulfur-containing impurities to sulfur-containing products of higher boiling point by treatment with an alkylating agent in the presence of an acid catalyst and removing at least a portion of these higher boiling products by fractional distillation. Suitable alkylating agents include alcohols and olefins. In a preferred embodiment, catalytic cracking products which contain aromatic sulfur compounds as impurities are used as a feedstock for the process.
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: April 11, 2000
    Assignee: BP Amoco Corporation
    Inventors: George A. Huff, Jr., Bruce D. Alexander, Douglas N. Rundell, William J. Reagan, Ozie S. Owen, Jin S. Yoo
  • Patent number: 5863419
    Abstract: A product of reduced sulfur content is produced from a feedstock which is comprised of a mixture of hydrocarbons and contains organic sulfur compounds as unwanted impurities. The process comprises converting at least a portion of the sulfur-containing impurities to sulfur-containing products of higher boiling point by treatment with an alkylating agent in the presence of an acid catalyst and removing at least a portion of these higher boiling products by fractional distillation. The process can be carried out in a distillation column reactor wherein the acid catalyzed reaction and fractional distillation are carried out simultaneously. Suitable alkylating agents include alcohols and olefins.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: January 26, 1999
    Assignee: Amoco Corporation
    Inventors: George A. Huff, Jr., Ozie S. Owen, Bruce D. Alexander, Douglas N. Rundell, William J. Reagan, Jin S. Yoo
  • Patent number: 5591325
    Abstract: The present invention provides a process for hydrotreating a heavy oil, comprising the steps of (a) feeding a heavy oil into a fixed-bed reactor packed with a hydrotreating catalyst to thereby effect hydrotreating of the heavy oil, and (b) feeding the heavy oil hydrotreated in the step (a) into a suspended-bed reactor packed with a hydrotreating catalyst for hydrotreating the heavy oil to thereby effect further hydrotreating of the heavy oil, and also provides a hydrotreating apparatus comprising (a') a fixed-bed reactor packed with a catalyst for hydrotreating a feed heavy oil and (b') a suspended-bed reactor packed with a hydrotreating catalyst for hydrotreating the heavy oil hydrotreated in the fixed-bed reactor. The hydrotreating of the heavy oil can be conducted for a prolonged period of time.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: January 7, 1997
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventor: Hidehiro Higashi
  • Patent number: 5034118
    Abstract: Hydrogen sulfide can be conveniently removed from streams containing up to about 1,000 ppm of H.sub.2 S by reacting the latter with an olefin using a bed of an acidic solid catalyst in a non-oxidative process for the removal of hydrogen sulfide. The reaction can be effected under relatively mild conditions and is very selective for the removal of hydrogen sulfide without being attended by other unwanted reactions such as oligomerization, disproportionation, and skeletal rearrangement. Levels of hydrogen sulfide in the treated product of no more than about 5 ppm can be readily attained using a broad variety of acidic solid catalysts and unsaturated hydrocarbons, especially olefins.
    Type: Grant
    Filed: September 29, 1989
    Date of Patent: July 23, 1991
    Assignee: UOP
    Inventors: Jeffery C. Bricker, Tamotsu Imai
  • Patent number: 4786405
    Abstract: Sulfur-bearing liquid hydrocarbon feedstocks such as kerosene undergo desulfurization and deodorization by contacting such feedstocks with sodium hydride at normal atmospheric pressure and at elevated temperatures. The resulting liquid is further contacted with a mineral acid such as sulfuric acid and an alkaline neutralizing agent such as caustic soda. The liquid may also be contacted with an oxidizying agent such as sodium hyprochlorite prior to being contacted with the neutralizing agent and with a dehydrating agent such as soda ash after being contacted with the neutralizing agent.
    Type: Grant
    Filed: March 4, 1986
    Date of Patent: November 22, 1988
    Assignee: Al Sanea Chemical Products
    Inventors: Keloth K. Kutty, Velamkalam A. James