With Group Ib Metal Or Compound Patents (Class 208/246)
  • Patent number: 11643867
    Abstract: There is provided a gas trapping material and vacuum heat insulation equipment where the gas trapping material can be activated in a sealing step of the vacuum heat insulation equipment, and production efficiency can be enhanced by maintaining a high gas trapping characteristic even when a gas is released in a baking step or in a sealing step under an air atmosphere. The gas trapping material contains porous metal oxide and silver particles having an average particle size of 0.5 nm to 100 nm inclusive.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 9, 2023
    Assignee: Panasonic Holdings Corporation
    Inventors: Taigo Onodera, Takashi Naito, Tatsuya Miyake, Takuya Aoyagi, Shinichi Tachizono, Yuji Hashiba, Takahiro Ikabata
  • Patent number: 9963644
    Abstract: The invention relates to a method for cleaning hydrocarbon mixtures, in which a contaminated hydrocarbon mixture comprising hydrocarbons having three to eight carbon atoms is at least partly freed of impurities by contacting with a solid sorbent, wherein the hydrocarbon mixture is exclusively in the liquid state during contact with the sorbent. The object of the invention is to specify a process for cleaning liquid C3 to C8 hydrocarbon mixtures, which is based on a readily available but non-carcinogenic sorbent and which achieves better purities compared to traditional molecular sieves. This object is achieved by using, as sorbents, solid materials of the following composition: copper oxide: 10% to 60% by weight (calculated as CuO); zinc oxide: 10% to 60% by weight (calculated as ZnO); aluminum oxide: 10% to 30% by weight (calculated as Al2O3); other substances: 0% to 5% by weight. Materials of this kind are otherwise used as catalysts in methanol synthesis.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: May 8, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Frank Geilen, Stephan Peitz, Guido Stochniol, Markus Winterberg, Dietrich Maschmeyer, Armin Rix, Mathias Vogt
  • Patent number: 9383326
    Abstract: A technique, including associated method and system, for on-line measurement of a trace element in a crude or heavy fuel stream for a refinery, including in one embodiment: providing at least one x-ray fluorescence (“XRF”) analyzer at a point for the refinery; analyzing the petroleum stream for chlorine using the analyzer; and providing results from the analyzer to refinery operators, to improve refinery operations. The analyzer may be a monochromatic wavelength XRF analyzer, wherein the analyzer focuses energy to/from the stream using an x-ray engine having at least one focusing, monochromating x-ray optic. The analyzer may be an MWDXRF or ME-EDXRF analyzer; and the trace element may be one or more of the following elements: S, Cl, P, K, Ca, V, Mn, Fe, Co, Ni, Cu, Zn, Hg, As, Pb, and Se; and in one embodiment the stream is crude, and the trace element is chlorine.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: July 5, 2016
    Assignee: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Albertus Beumer, Zewu Chen
  • Patent number: 9193608
    Abstract: The removal of heavy metals from aqueous solutions using metal-doped titanium dioxide nanoparticles is a method that comprises contacting the aqueous solution with metal-doped titanium dioxide nanoparticles. The three transition metals tungsten, vanadium and iron were selected for doping of titanium dioxide. Removal of the toxic heavy metals Pb(II), Zn(II) and Cd(II) was studied intensively by using metal-doped titanium dioxide to measure the isotherms and kinetics. The isotherms studies showed that the highest removal percentage of Pb(II) was achieved by W-doped titanium dioxide, while Fe-doped titanium dioxide and V-doped titanium dioxide performed better for removal of Zn(II) and Cd(II), respectively.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: November 24, 2015
    Assignees: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY
    Inventors: Mousab Salah Aldeen Mirghani, Reyad Awwad Khalaf Shawabkeh, Naim Moh'd Abdallah Faqir, Mamdouh Ahmed Al-Harthi, Mohammad Ba Shammakh
  • Publication number: 20150027927
    Abstract: Catalysts for oxidative sulfur removal and methods of making and using thereof are described herein. The catalysts contain one or more reactive metal salts dispersed on one or more substrates. Suitable reactive metal salts include those salts containing multivariable metals having variable valence or oxidation states and having catalytic activity with sulfur compounds present in gaseous fuel streams. In some embodiments, the catalyst contains one or more compounds that function as an oxygen sponge under the reaction conditions for oxidative sulfur removal. The catalysts can be used to oxidatively remove sulfur-containing compounds from fuel streams, particularly gaseous fuel streams having high sulfur content.
    Type: Application
    Filed: January 17, 2013
    Publication date: January 29, 2015
    Applicant: INTRAMICRON, INC.
    Inventors: Hongyun Yang, Paul S. Dimick
  • Patent number: 8940957
    Abstract: A method of removing heterocyclic sulfide impurities from a fluid stream is presented. The method comprises contacting the fluid stream with a sorbent comprising metallic copper.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Vladislav Ivanov Kanazirev, Stephen Caskey, Thomas Traynor, Dante Simonetti
  • Patent number: 8920635
    Abstract: Desulfurization of hydrocarbon feeds is achieved by flashing the feed at a target cut point temperature to obtain two fractions. A first fraction contains refractory organosulfur compounds, which boils at or above the target cut point temperature. A second fraction boiling below the target cut point temperature is substantially free of refractory sulfur-containing compounds. The second fraction is contacted with a hydrodesulfurization catalyst in a hydrodesulfurization reaction zone operating under mild conditions to reduce the quantity of organosulfur compounds to an ultra-low level. The first fraction is contacted with gaseous oxidizing agent over an oxidation catalyst having a formula CuxZn1-xAl2O4 in a gas phase catalytic oxidation reaction zone to convert the refractory organosulfur compounds to SOx and low sulfur hydrocarbons. The by-product SOx is subsequently removed, producing a stream containing a reduced level of organo sulfur compounds.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: December 30, 2014
    Assignees: Saudi Arabian Oil Company, Boreskov Instutite of Catalysis
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Zinfer Ismagilov, Svetlana Yashnik, Mikhail Kerzhentsev, Valentin Parmon
  • Patent number: 8906227
    Abstract: Desulfurization of hydrocarbon feeds is achieved by first contacting the entire feed with a hydrodesulfurization catalyst in a hydrodesulfurization reaction zone operating under mild conditions; a flashing column downstream of the hydrodesulfurization reaction zone fractionates the effluent to obtain a first fraction which contains refractory organosulfur compounds and a second fraction that is substantially free of organosulfur compounds, since the organosulfur compounds boiling in the range of this fraction were the labile organosulfur compounds which were initially removed by mild hydrodesulfurization. The first fraction is contacted with a gaseous oxidizing agent over an oxidation catalyst having a formula CuxZn1-xAl2O4 in a gas phase catalytic oxidation reaction zone to convert the refractory organosulfur compounds to SOx and low sulfur hydrocarbons. The by-product SOx is subsequently removed, producing a stream containing a reduced level of organosulfur compounds.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: December 9, 2014
    Assignees: Suadi Arabian Oil Company, Boreskov Institute of Catalysis
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Zinfer Ismagilov, Svetlana Yashnik, Mikhail Kerzhentsev, Valentin Parmon
  • Patent number: 8524072
    Abstract: A catalyst for alkali-free purification of oil raw material, consisting of a metalocomplex selected from the group consisting of a solid metalocomplex and a liquid metalocomplex with a general formula (CuIICl)2O(L1)2-4(L2)1-4, where L1 is amino alcohol L2 is acetonitrol or single atom alcohol.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: September 3, 2013
    Assignee: Greendane Limited
    Inventors: Vladmir Konovalov, Irina Tarkhanova, Sergey Chernyshev
  • Publication number: 20130109895
    Abstract: The present invention relates to methods for removing sulfur from a hydrocarbon fuel or fuel precursor feedstream, such as methods comprising contacting a hydrocarbon fuel or fuel precursor feedstream having a relatively low sulfur content with a sulfur sorbent material comprising an active copper component disposed on a zeolitic and/or mesoporous support under conditions sufficient to reduce the sulfur content by at least 20 wt % and/or to about 15 wppm or below, thus forming a hydrocarbon fuel product. In some advantageous embodiments, the contacting conditions can include a temperature of about 392° F. (about 200° C.) or less.
    Type: Application
    Filed: September 18, 2012
    Publication date: May 2, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: William J. Novak, Joseph E. Gatt
  • Patent number: 8425763
    Abstract: Disclosed are sorbent compositions that include a porous titanium dioxide support impregnated with a silver material. The sorbent compositions may be utilized in systems and methods for removing sulfur compounds from hydrocarbon streams such as jet fuel.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: April 23, 2013
    Assignee: Auburn University
    Inventors: Bruce Tatarchuk, Hongyun Yang, Sachin Nair
  • Patent number: 8409426
    Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: April 2, 2013
    Assignee: Petrosonics, LLC
    Inventor: Mark Cullen
  • Patent number: 8377290
    Abstract: Provided are methods of reducing a sulfur concentration in a liquid fuel and methods of forming a thiophene/metal complex in a liquid fuel. The method can involve combining a liquid fuel and at least one metal acetate to form a thiophene/metal complex and substantially removing the thiophene/metal complexes from the liquid fuel. A thiophene concentration in a liquid fuel is reduced by the formation of an insoluble complex salt, which can be removed by, for example, centrifuge, filtration, decantation, and/or distillation.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: February 19, 2013
    Assignee: James K. and Mary A. Sanders Family L.L.C.
    Inventors: Richard William Tock, James Kenneth Sanders, Duck Joo Yang
  • Patent number: 8197674
    Abstract: This invention relates to thioetherification processes for the removal of mercaptans in charge gas streams. In particular, the invention relates to thioetherification processes for the removal of mercaptans using a catalyst comprising palladium and silver.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: June 12, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Thomas Skourlis, Robert J. Gartside, Robert E. Trubac
  • Publication number: 20120018351
    Abstract: Disclosed are sorbent compositions that include a porous titanium dioxide support impregnated with a silver material. The sorbent compositions may be utilized in systems and methods for removing sulfur compounds from hydrocarbon streams such as jet fuel.
    Type: Application
    Filed: August 24, 2011
    Publication date: January 26, 2012
    Applicant: AUBURN UNIVERSITY
    Inventors: Bruce Tatarchuk, Hongyun Yang, Sachin Nair
  • Publication number: 20120018350
    Abstract: The desulfurization of fossil fuels is provided by the combination of fossil fuels with an aqueous mixture of ozone or hydrogen peroxide and a Tetraoctylphosphonium salt phase transfer catalyst, and the mixture is then subjected to reactive mixing to form oxidize sulfur compounds in the fuel. The polar oxidized sulfones species are removed via another mixing step. The desulfurization device can be in the form of a portable device which provides for continuous mixing-assisted desulfurization for the removal of sulfur containing compounds from fossil fuels such as diesel fuel.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Inventors: Hsin Tung Lin, Meng-Wei Wan, Ming-Chun Lu
  • Publication number: 20120000825
    Abstract: The service life and deactivation rate of a reforming catalyst is improved through use of a new sulfur guard bed containing a chloride additive. This sulfur guard bed, which contains supported CuO material having an increased resistance to reduction, shows such improvement. Thus, the danger of run-away reduction followed by a massive release of water causing process upsets in a catalytic reforming process is practically eliminated. The fact that the guard bed material preserves the active metal phase—copper in an active (oxide) form is an important advantage leading to very low sulfur content in the product stream. The sulfur capacity per unit weight of sorbent is also significantly increased, making this sorbent a superior cost effective sulfur guard product.
    Type: Application
    Filed: June 2, 2011
    Publication date: January 5, 2012
  • Patent number: 8043989
    Abstract: A system is provided for desulfurizing a hydrocarbon fuel containing a light amount of methanol and a slight amount of water. The desulfurization system uses a Y-type zeolite-based desulfurizing agent containing at least copper arranged upstream of the system and an X-type zeolite-based desulfurizing agent containing at least silver arranged downstream of the system and thus can maintain desulfurization effect for a long period of time.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 25, 2011
    Assignee: Nippon Oil Corporation
    Inventors: Yoshiyuki Nagayasu, Atsushi Segawa, Kazunori Miyazawa, Yoshihiro Kobori
  • Patent number: 8002971
    Abstract: Processes and systems associated with hydrodynamic cavitation-catalyzed oxidation of sulfur-containing substances in a fluid are described. In one example method, carbonaceous fluid is combined with at least one oxidant to form a mixture and then the mixture is flowed through at least one local constriction in a flow-through chamber at a sufficient pressure and flow rate to create hydrodynamic cavitation in the flowing mixture having a power density of between about 3,600 kWatts/cm2 and about 56,000 kWatts/cm2 measured at the surface of the local constriction normal to the direction of fluid flow. The creation of hydrodynamic cavitation in the flowing mixture initiates one or more chemical reactions that, at least in part, oxidize at least some of the sulfur-containing substances in the carbonaceous fluid.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 23, 2011
    Assignee: Arisdyne Systems, Inc.
    Inventor: Oleg V. Kozyuk
  • Publication number: 20110143229
    Abstract: A simple, compact process for cleansing hydrocarbon fuel such as jet fuel is disclosed. This process involves subjecting the fuel to an oxidative desulfurization process in a desulfurization reactor followed by passing the fuel through an adsorption bed. The cleansed desulfurized fuel may then be utilized directly in generation of hydrogen for fuel cell applications.
    Type: Application
    Filed: August 24, 2007
    Publication date: June 16, 2011
    Inventors: Anand S. Chellappa, Donovan Pena, Zachary Wilson
  • Publication number: 20110108465
    Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.
    Type: Application
    Filed: January 18, 2011
    Publication date: May 12, 2011
    Inventor: MARK CULLEN
  • Patent number: 7935248
    Abstract: The present invention provides adsorbents for deep denitrogenation/desulfurization of hydrocarbon oils, and more particularly to an adsorbent material that selectively adsorbs organonitrogen and organosulfur from transportation fuels at room temperature and atmospheric pressure.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 3, 2011
    Assignee: The University of New Brunswick
    Inventors: Ying Zheng, Lingjun Chou
  • Patent number: 7871512
    Abstract: In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: January 18, 2011
    Assignee: Petrosonics, LLC
    Inventor: Mark Cullen
  • Patent number: 7842181
    Abstract: A composition and process for removing sulfur from middle distillate petroleum hydrocarbon fuels. The composition includes an alumina component and a carbon component. The composition is present in an amount effective to adsorb sulfur compounds from the fuel. The alumina component and the carbon component preferably collectively comprise a composite material. The composition can further include a sulfur component, preferably a metal sulfide or sulfur oxide. The composition can also further include at least one compound having a Group VI or Group VIII metal from the periodic table.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: November 30, 2010
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Publication number: 20100270211
    Abstract: This invention relates to a process for the desulfurization and denitrogenation of petroleum based hydrocarbon feeds with a mixture of at least one ionic liquid and at least one metal salt. Liquid or gas phase hydrocarbons contacted with the mixture to allow complexation of the sulfur and nitrogen species that are present in the processed stream.
    Type: Application
    Filed: April 27, 2009
    Publication date: October 28, 2010
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventor: Ryszard A. Wolny
  • Patent number: 7820037
    Abstract: A desulfurizing agent is produced by mixing a copper compound, a zinc compound and an ammonium compound with an aqueous solution of an alkali substance to prepare or precipitate followed by calcitrating the resulting precipitate to form a calcined precipitate into a shape form of a copper oxide-zinc oxide-aluminum oxide mixture. The shaped form is impregnated with iron or nickel and calcined to produce a calcined oxide and reduced with hydrogen to form a sulfur-absorption desulfurizing agent.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 26, 2010
    Assignee: Osaka Gas Company Limited
    Inventors: Masataka Masuda, Shin-ichi Nagase, Susumu Takami, Osamu Okada
  • Publication number: 20100243531
    Abstract: Provided are methods of reducing a sulfur concentration in a liquid fuel and methods of forming a thiophene/metal complex in a liquid fuel. The method can involve combining a liquid fuel and at least one metal acetate to form a thiophene/metal complex and substantially removing the thiophene/metal complexes from the liquid fuel. A thiophene concentration in a liquid fuel is reduced by the formation of an insoluble complex salt, which can be removed by, for example, centrifuge, filtration, decantation, and/or distillation.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Richard William Tock, James Kenneth Sanders, Duck Joo Yang
  • Patent number: 7749376
    Abstract: The present invention is a method for the adsorption of sulfur-containing compounds from a hydrocarbon feedstream, and in particular, an olefin feedstream. The method comprises contacting the sulfur-containing compound with a copper oxide/zinc oxide/aluminum oxide catalyst optionally promoted with a metal.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: July 6, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Wayne Turbevillle, Nora Yap, Yeping Cai, Jürgen Ladebeck
  • Patent number: 7674368
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude product is a liquid mixture at 25° C. and 0.101 MPa. Contacting conditions are controlled such that the crude feed, during contact, uptakes hydrogen at a selected rate to inhibit phase separation of the crude feed during contact. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: March 9, 2010
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Publication number: 20090283448
    Abstract: A hydrocarbon desulfurization system that circulates fluidizable solid particles through a fluidized bed reactor, a fluidized bed regenerator, and a fluidized bed reducer to thereby provide for substantially continuous desulfurization of a hydrocarbon-containing fluid stream and substantially continuous regeneration of the solid particles. A novel transport system is employed for transporting the solid particles between the reactor, the regenerator, and the reducer. The transport system uses close-coupled vessels and gravity flow between various vessels to minimize equipment cost and particle attrition.
    Type: Application
    Filed: October 2, 2006
    Publication date: November 19, 2009
    Applicant: ConocoPhillips Company
    Inventors: Victor G. Hoover, Max W. Thompson, Darrin D. Barnes, Joe D. Cox, Philip L. Collins, Christopher J. Lafrancois, Ricky E. Snelling, Jean B. Thesee, Robert Zapata
  • Publication number: 20090065400
    Abstract: Compositions and processes are disclosed for removing sulfur and sulfur compounds from hydrocarbon fuel feedstocks. The feedstock is contacted with a regenerable sorbent such as a compound of the formula TixCeyO2 where 0<x/y?1 and where 0<x?1 and 0<y?1 capable of selectively adsorbing sulfur compounds present in the hydrocarbon feedstock at about 0° C. to about 100° C. such as at about 25° C.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 12, 2009
    Applicant: The Penn State Research Foundation
    Inventors: Chunshan Song, Xiaoliang Ma, Shingo Watanabe, Fuxia Sun
  • Publication number: 20090050535
    Abstract: The present invention provides an epoxidation reactor system for preparing an olefin oxide comprising: one or more purification zones comprising one or more purification vessels containing an absorbent comprising copper and zinc; and a reaction zone comprising one or more reactor vessels containing an epoxidation catalyst, wherein the reaction zone is positioned downstream from the one or more purification zones; a process for preparing an olefin oxide; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, and an alkanolamine.
    Type: Application
    Filed: May 15, 2008
    Publication date: February 26, 2009
    Inventor: Wayne Errol Evans
  • Patent number: 7491317
    Abstract: A method and apparatus for removing sulfur from a hydrocarbon-containing fluid stream wherein desulfurization is enhanced by improving the contacting of the hydrocarbon-containing fluid stream and sulfur-sorbing solid particulates in a fluidized bed reactor.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: February 17, 2009
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Paul F. Meier, Max W. Thompson, Victor G. Hoover, Guido R. Germana
  • Publication number: 20090008295
    Abstract: Processes and systems associated with hydrodynamic cavitation-catalyzed oxidation of sulfur-containing substances in a fluid are described. In one example method, carbonaceous fluid is combined with at least one oxidant to form a mixture and then the mixture is flowed through at least one local constriction in a flow-through chamber at a sufficient pressure and flow rate to create hydrodynamic cavitation in the flowing mixture having a power density of between about 3,600 kWatts/cm2 and about 56,000 kWatts/cm2 measured at the surface of the local constriction normal to the direction of fluid flow. The creation of hydrodynamic cavitation in the flowing mixture initiates one or more chemical reactions that, at least in part, oxidize at least some of the sulfur-containing substances in the carbonaceous fluid.
    Type: Application
    Filed: June 9, 2008
    Publication date: January 8, 2009
    Applicant: Arisdyne Systems, Inc.
    Inventor: Oleg V. Kozyuk
  • Patent number: 7473350
    Abstract: A desulfurization system is operated in a manner which optimizes sulfur removal and octane retention. When the desulfurization reactor is operated at a specific ratio of total pressure to hydrogen partial pressure (PT/PH) and/or within a specific temperature range, optimum sulfur removal and octane retention are realized. The desulfurization reactor can be maintained at these optimized operating conditions by automatically adjusting one or more operating parameters of the desulfurization reactor in order to maintain a substantially constant hydrogen partial pressure (PH) in the reactor. Maintaining a relatively constant hydrogen partial pressure (PH) in the desulfurization reactor helps ensure a relatively consistent degree of desulfurization.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: January 6, 2009
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Ronald Eugene Brown, Warren Matthew Ewert
  • Publication number: 20080308461
    Abstract: A method for removal of corrosive compounds from insulating oil. The insulating oil is exposed to at least one reducing agent.
    Type: Application
    Filed: December 28, 2006
    Publication date: December 18, 2008
    Applicant: ABB RESEARCH LTD.
    Inventor: Mats Dahlund
  • Publication number: 20080283446
    Abstract: Disclosed are sorbent compositions that include a porous titanium dioxide support impregnated with a silver material. The sorbent compositions may be utilized in systems and methods for removing sulfur compounds from hydrocarbon streams such as jet fuel.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 20, 2008
    Applicant: Auburn University
    Inventors: Bruce Tatarchuk, Hongyun Yang, Sachin Nair
  • Patent number: 7445702
    Abstract: Propane and/or butanes are separated from a hydrocarbon feedstock contaminated with alkyl mercaptans by fractional distillation at such a pressure that the separated overheads stream containing said propane and/or butanes is at a temperature in the range 50 to 100° C. Sufficient oxygen is introduced into the hydrocarbon feedstock to oxidise the mercaptans therein and the resultant mixture is subjected to the fractional distillation in a column including at least one bed of a catalyst capable, under the prevailing conditions, of oxidising the mercaptans to higher boiling point sulphur compounds. These higher boiling point sulphur compounds are separated as part of the liquid phase from the distillation.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: November 4, 2008
    Assignee: Johnson Matthey PLC
    Inventor: Peter Edward James Abbott
  • Publication number: 20080251424
    Abstract: A method for removing sulfur from insulating oil. The oil is exposed to at least one sulfur scavenging material and at least one polar sorbent.
    Type: Application
    Filed: April 29, 2005
    Publication date: October 16, 2008
    Applicant: ABB Technology Ltd.
    Inventor: Mats O. Dahlund
  • Patent number: 7416655
    Abstract: An adsorbent composition comprising a nanostructured titanium oxide material of the formula TiO2-, where 0?×?1 with nanotubular and/or nanofibrilar morphology, high oxygen deficiency, having an orthorhombic JT crystalline phase described by at least one of the space groups 59 Pmmn, 63 Amma, 71Immm or 63 Bmmb, and comprising between 0 and 20 weight percent of a transition metal oxide is used for the selective adsorption of nitrogen compounds and/or sulfur compounds from light and intermediate petroleum fractions.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 26, 2008
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, María Antonia Cortés Jacome, Gerardo Ferrat Torres, Carlos Angeles Chávez, Luis Francisco Flores Ortiz, Maria de Lourdes Araceli Mosqueira Mondragon, Esteban López Salinas, Jose Escobar Aguilar, Rodolfo Juventino Mora Vallejo, Fernando Alvarez Ramírez, Yosadara Ruiz Morales, Marcelo Lozada y Cassou
  • Publication number: 20080197051
    Abstract: Disclosed herein are a desulfurizing agent for removing organic sulfur compounds, a preparation method thereof, and a method for removing organic sulfur compounds using the same. The desulfurizing agent consists of a copper-zinc-aluminum complex free of alkaline metal, with a large surface area. When being contacted with organic sulfur compounds, such as t-butylmercaptan, tetrahydrothiophene, dimethylsulfide, etc., the desulfurizing agent exhibits excellent desulfurization ability and is not de-graded especially at high temperatures as high as 150˜350° C.
    Type: Application
    Filed: July 31, 2006
    Publication date: August 21, 2008
    Applicant: SK ENERGY CO., LTD.
    Inventors: Byong Sung Kwak, Young Seek Yoon, Jin Hong Kim, Il Su Kim, Keun Seob Choi, Jin Hwan Bang, Ki Won Jun, Hyung Tae Kim, Seung Moon Kim
  • Publication number: 20070295648
    Abstract: An apparatus and method for the direct measurement of corrosive sulfur and other corrosive compounds is provided. The method and apparatus of the current invention provides a rapid, reliable and cost effective method to directly measure the content of corrosive compounds in various fluids, and in particular liquid petroleum and liquid petroleum products such as gasoline. The apparatus can be retrofit to existing analyzers where they exist, or easily installed in locations that require such analysis.
    Type: Application
    Filed: February 2, 2007
    Publication date: December 27, 2007
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Robert J. Falkiner, Tian C. Lau
  • Patent number: 7268097
    Abstract: A desulfurizing agent comprising a silica-alumina carrier having an Si/Al mole ratio of 10 or less and nickel carried thereon; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a specific surface area of pores having a pore diameter of 3 nm or less of 100 m2/g or more; an Ni-Cu based desulfurizing agent comprising a carrier and, carried thereon, (A) nickel, (B) copper, and (C) an alkali metal or another metal; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a hydrogen adsorption capacity of 0.4 mmol/g or more; and methods for producing these nickel-based and nickel-copper-based desulfurizing agents. The above desulfurizing agents are capable of adsorbing and removing with good efficiency the sulfur contained in hydrocarbons derived from petroleum to a content of 0.2 wt. ppm or less and have a long service life.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 11, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Hisashi Katsuno, Satoshi Matsuda, Kazuhito Saito, Masahiro Yoshinaka
  • Patent number: 7147769
    Abstract: A composition comprising a metal oxide and a promoter, wherein at least a portion of the promoter is present as a reduced valence promoter, and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: December 12, 2006
    Assignee: ConocoPhillips Company
    Inventors: Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Edward L. Sughrue, II, Robert W. Morton
  • Publication number: 20040251168
    Abstract: A desulfurization system employing fluidizable and circulatable finely divided solid sorbent particulates that are transported between reactor, regenerator, and reducer vessels. Agglomeration of the sorbent particulates is minimized and circulation of the sorbent particulates is enhanced by controlling the location at which the sorbent particulates are withdrawn from the reducer.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 16, 2004
    Inventors: Paul F. Meier, Steven L. Lacy, Jason J. Gislason
  • Publication number: 20040200758
    Abstract: A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form &pgr;-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by &pgr;-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.
    Type: Application
    Filed: December 3, 2003
    Publication date: October 14, 2004
    Inventors: Ralph T. Yang, Arturo J. Hernandez-Maldonado, Frances H. Yang, Akira Takahashi
  • Publication number: 20040178117
    Abstract: A composition comprising a promoter, a metal oxide, a support component, and a silicon-containing material, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Inventors: Robert W. Morton, M. Bruce Welch, Roland Schmidt, Jason J. Gislason
  • Publication number: 20040118748
    Abstract: The present invention is directed to the removal of nitrogen and sulfur containing impurities from high molecular weight petroleum feedstock obtained from fluid cracking catalyst or distillation zone of a petroleum treatment plant. The present process comprises first treating C12 and higher hydrocarbon petroleum feedstock having nitrogen and sulfur containing compounds therein with a porous, particulate adsorbent comprising a silica matrix having an effective amount of metal atoms therein to cause the adsorbent to have Lewis acidity of at least 500 &mgr;mol/g and then treating the resultant feedstock to catalytic hydrodesulfurization to produce a hydrocarbon fuel having low sulfur and nitrogen content.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Inventors: Markus Friedrich Manfred Lesemann, Constanze Setzer
  • Publication number: 20040118747
    Abstract: Desulfurization reactors, and fuel desulfurization systems incorporating them, comprise monolithic sulfur-adsorbent reactor packings having internal void spaces bounded by internal fuel contacting surfaces that support or contain active sulfur adsorbents for sulfur trapping, the reactors providing efficient fuel feed desulfurization at high liquid and/or gas feed rates and low pressure drops.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Inventors: Willard A. Cutler, Lin He, Lorraine K. Owens, Charles M. Sorensen
  • Publication number: 20040118751
    Abstract: A novel hydrocarbon feedstream catalyst bed for the desulfurization of a gas or a liquid hydrocarbon feedstream and a process comprising passing a hydrocarbon feedstream over the catalyst bed is described. The bed comprises at least two catalysts having different sulfur compound affinities and/or specificities thereby improving the overall amount of sulfur compound removal. The process reduces the sulfur content in a gas hydrocarbon feedstream from up to about 300 ppm to less than about 500 ppb, and in a liquid hydrocarbon feedstream from up to about 3% to less than about 500 ppb.
    Type: Application
    Filed: December 24, 2002
    Publication date: June 24, 2004
    Inventors: Jon P. Wagner, Eric J. Weston, R. Steve Spivey, R. Scott Osborne