With Group Iii Metal Or Compound Patents (Class 208/248)
  • Publication number: 20150136654
    Abstract: A process for treating a pitch fraction from coal tar is described. The pitch fraction is contacted with a solvent, an extraction agent, or an adsorbent to remove at least one contaminant, such as oxygenate compounds, nitrogen containing compounds, and sulfur containing compounds. The solvent can be an ionic liquid, the extraction agent can be at least one of amphiphilic block copolymers, cyclodextrins, functionalized cyclodextrins, and cyclodextrin-functionalized polymers, and the adsorbent can be exfoliated graphite oxide, thermally exfoliated graphite oxide or intercalated graphite compounds.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 21, 2015
  • Publication number: 20150027927
    Abstract: Catalysts for oxidative sulfur removal and methods of making and using thereof are described herein. The catalysts contain one or more reactive metal salts dispersed on one or more substrates. Suitable reactive metal salts include those salts containing multivariable metals having variable valence or oxidation states and having catalytic activity with sulfur compounds present in gaseous fuel streams. In some embodiments, the catalyst contains one or more compounds that function as an oxygen sponge under the reaction conditions for oxidative sulfur removal. The catalysts can be used to oxidatively remove sulfur-containing compounds from fuel streams, particularly gaseous fuel streams having high sulfur content.
    Type: Application
    Filed: January 17, 2013
    Publication date: January 29, 2015
    Applicant: INTRAMICRON, INC.
    Inventors: Hongyun Yang, Paul S. Dimick
  • Patent number: 8940952
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Mark A. Miller
  • Patent number: 8933287
    Abstract: A new family of crystalline microporous silicometallophosphates designated MAPSO-64 and modified forms thereof have been synthesized. These silicometallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as ETMA+ or DEDMA+, M is an alkaline earth or transition metal cation of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The MAPSO-64 compositions are characterized by a BPH framework topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 13, 2015
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8916738
    Abstract: A new family of crystalline microporous metallophosphates designated AlPO-67 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+ or DEDMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-67 compositions have the LEV topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 23, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8877043
    Abstract: A reaction system and method for removing heteroatoms from oxidized-heteroatom-containing hydrocarbon streams and products derived therefrom are disclosed. An oxidized-heteroatom-containing hydrocarbon feed is reacted in a reaction system thereby forming non-ionic hydrocarbon products. The products derived therefrom are useful as transportation fuels, lubricants, refinery intermediates, or refinery feeds.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: November 4, 2014
    Assignee: Auterra, Inc.
    Inventors: Kyle E. Litz, Jennifer L. Vreeland, Jonathan P. Rankin, Thomas W. DeLancey, Timothy A. Thompson
  • Patent number: 8754279
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Mark A. Miller, Christopher P. Nicholas, Stephen T. Wilson
  • Patent number: 8323480
    Abstract: A composition and process for removing sulfur from middle distillate petroleum hydrocarbon fuels. The composition includes an alumina component and a carbon component. The composition is present in an amount effective to adsorb sulfur compounds from the fuel. The alumina component and the carbon component preferably collectively comprise a composite material. The composition can further include a sulfur component, preferably a metal sulfide or sulfur oxide. The composition can also further include at least one compound having a Group VI or Group VIII metal from the periodic table.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: December 4, 2012
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Publication number: 20120152808
    Abstract: A process for upgrading hydrocarbon oil feedstreams employs a solid adsorption material to lower sulfur and nitrogen content by contacting the hydrocarbon oil, with a solid adsorbents in a mixing vessel; passing the slurry to a membrane separation zone to separate the solid adsorption material with the adsorbed sulfur and nitrogen compounds from the treated oil; recovering the upgraded hydrocarbon product having a significantly reduced nitrogen and sulfur content as the membrane permeate; mixing the solid adsorbent material with aromatic solvent to remove and stabilize the sulfur and nitrogen compounds; transferring the solvent mixture to a fractionation tower to recover the solvent, which can be recycled for use in the process; and recovering the hydrocarbons that are rich in sulfur and nitrogen for processing in a relatively small high-pressure hydrotreating unit or transferring them to a fuel oil pool for blending.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventor: Omer Refa KOSEOGLU
  • Patent number: 8088708
    Abstract: The present invention provides a catalyst precursor substance containing copper, zinc, and aluminum and exhibiting an X-ray diffraction pattern having a broad peak at a specific interplanar spacing d (?). The present invention also provides a method for producing the catalyst precursor substance by mixing a solution containing a copper salt, a zinc salt, and an aluminum salt with a solution containing an alkali metal hydroxide or an alkaline earth metal hydroxide, thereby forming a precipitate. In the present invention, a catalyst is prepared through calcining of the catalyst precursor; the catalyst is employed for water gas shift reaction; and carbon monoxide conversion is carried out by use of the catalyst.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: January 3, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kozo Takatsu, Yoshimi Kawashima, Satoshi Nakai
  • Patent number: 8043989
    Abstract: A system is provided for desulfurizing a hydrocarbon fuel containing a light amount of methanol and a slight amount of water. The desulfurization system uses a Y-type zeolite-based desulfurizing agent containing at least copper arranged upstream of the system and an X-type zeolite-based desulfurizing agent containing at least silver arranged downstream of the system and thus can maintain desulfurization effect for a long period of time.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 25, 2011
    Assignee: Nippon Oil Corporation
    Inventors: Yoshiyuki Nagayasu, Atsushi Segawa, Kazunori Miyazawa, Yoshihiro Kobori
  • Patent number: 8021540
    Abstract: A method of desulfurizing/refining a hydrocarbon oil by which sulfur compounds are diminished to an extremely low concentration at a relatively low equipment cost and operating cost. The method of desulfurizing/refining a hydrocarbon oil comprises bringing a hydrocarbon oil containing at least one sulfur compound selected from the group consisting of thiophene compounds, benzothiophene compounds, and dibenzothiophene compounds and optionally further containing aromatic hydrocarbons into contact with a solid acid catalyst and/or an activated carbon having a transition metal oxide supported thereon to thereby desulfurize the oil. The solid acid catalyst preferably is a solid ultrastrong-acid catalyst selected among sulfuric acid radical/zirconia, sulfuric acid radical/alumina, sulfuric acid radical/tin oxide, sulfuric acid radical/iron oxide, tungstic acid/zirconia, and tungstic acid/tin oxide.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: September 20, 2011
    Assignee: Japan Energy Corporation
    Inventor: Yasuhiro Toida
  • Publication number: 20110143229
    Abstract: A simple, compact process for cleansing hydrocarbon fuel such as jet fuel is disclosed. This process involves subjecting the fuel to an oxidative desulfurization process in a desulfurization reactor followed by passing the fuel through an adsorption bed. The cleansed desulfurized fuel may then be utilized directly in generation of hydrogen for fuel cell applications.
    Type: Application
    Filed: August 24, 2007
    Publication date: June 16, 2011
    Inventors: Anand S. Chellappa, Donovan Pena, Zachary Wilson
  • Publication number: 20110120912
    Abstract: Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.
    Type: Application
    Filed: July 30, 2009
    Publication date: May 26, 2011
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Musaed Salem Al-Ghrami, Christopher F. Dean, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Patent number: 7923410
    Abstract: A sorbent for use in removing sulfur contaminants from hydrocarbon feedstocks is provided, wherein the sorbent contains zinc aluminate in an amount of at least 40 wt % (calculated as ZnAl2O4); free alumina in an amount of from about 5 wt % to about 25 wt % (calculated as Al2O3); and iron oxide in an amount of from about 10 wt % to about 30 wt % (calculated as Fe2O3); wherein each of the free alumina and iron oxide are present in non-crystalline form as determined by X-ray diffraction analysis, and a method for producing the sorbent and method for using the sorbent to reduce sulfur contaminants in hydrocarbon feedstocks.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: April 12, 2011
    Assignee: Research Triangle Institute
    Inventors: Brian S. Turk, Santosh K. Gangwal, Raghubir P. Gupta
  • Patent number: 7892418
    Abstract: The present invention relates to a process for reducing sulfur content in petroleum fuel, such as diesel fuel, and raising the Cetane Number to a value above 50.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 22, 2011
    Assignee: Oil Tech SARL
    Inventor: Hassan Agha
  • Patent number: 7842181
    Abstract: A composition and process for removing sulfur from middle distillate petroleum hydrocarbon fuels. The composition includes an alumina component and a carbon component. The composition is present in an amount effective to adsorb sulfur compounds from the fuel. The alumina component and the carbon component preferably collectively comprise a composite material. The composition can further include a sulfur component, preferably a metal sulfide or sulfur oxide. The composition can also further include at least one compound having a Group VI or Group VIII metal from the periodic table.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: November 30, 2010
    Assignee: Saudi Arabian Oil Company
    Inventor: Ki-Hyouk Choi
  • Patent number: 7820037
    Abstract: A desulfurizing agent is produced by mixing a copper compound, a zinc compound and an ammonium compound with an aqueous solution of an alkali substance to prepare or precipitate followed by calcitrating the resulting precipitate to form a calcined precipitate into a shape form of a copper oxide-zinc oxide-aluminum oxide mixture. The shaped form is impregnated with iron or nickel and calcined to produce a calcined oxide and reduced with hydrogen to form a sulfur-absorption desulfurizing agent.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 26, 2010
    Assignee: Osaka Gas Company Limited
    Inventors: Masataka Masuda, Shin-ichi Nagase, Susumu Takami, Osamu Okada
  • Publication number: 20100227229
    Abstract: [Problems] To provide a method for desulfurization with a desulfurizing agent, which can efficiently desulfurize, for example, a hydrocarbon oil as a raw material and fuel for generating hydrogen for use in fuel cells, particularly kerosenes and light oils, without the need to use reduction treatment and hydrogen and at a temperature from room temperature to about 100° C., and a fuel cell system using the desulfurization method. There are also provided a solid acid useful as a constituent of the desulfurizing agent for use in the desulfurization method, and a process for producing the solid acid. [Means for Solving Problems] A solid acid comprising 20 to 99.9% by mass of aluminum oxide and 0.10 to 3.00% by mass of sulfur and having a specific surface area of not less than 150 m2/g and a pore volume of not less than 0.35 ml/g, and an I1540/I1450 ratio of 0.
    Type: Application
    Filed: September 4, 2008
    Publication date: September 9, 2010
    Applicant: JAPAN ENERGY CORPORATION
    Inventors: Yasuhiro Toida, Masataka Herai
  • Patent number: 7749376
    Abstract: The present invention is a method for the adsorption of sulfur-containing compounds from a hydrocarbon feedstream, and in particular, an olefin feedstream. The method comprises contacting the sulfur-containing compound with a copper oxide/zinc oxide/aluminum oxide catalyst optionally promoted with a metal.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: July 6, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Wayne Turbevillle, Nora Yap, Yeping Cai, Jürgen Ladebeck
  • Publication number: 20100032343
    Abstract: Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 11, 2010
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Musaed Salem Al-Ghrami, Christopher F. Dean, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Publication number: 20090321309
    Abstract: A process for upgrading crude oil fractions or other hydrocarbon oil feedstreams boiling in the range of 36° to 520° C., and preferably naphtha and gas oil fractions boiling in the range of 36° to 400° C., employs a solid adsorption material to lower sulfur and nitrogen content by contacting the hydrocarbon oil, and optionally a viscosity-reducing solvent, with one or more solid adsorbents such as silica gel or silica, silica alumina, alumina, attapulgus clay and activated carbon in a mixing vessel for a predetermined period of time; passing the resulting slurry to a membrane separation zone, optionally preceded by a primary filtration step (i.e.
    Type: Application
    Filed: May 15, 2009
    Publication date: December 31, 2009
    Inventor: Omer Refa Koseoglu
  • Publication number: 20090139902
    Abstract: A continuous process for upgrading sour crude oil by treating the sour crude oil in a two step process that includes a hydro-demetallization section and a hydro-desulfurization section, both of which are constructed in a permutable fashion so as to optimize the operating conditions and catalyst lifespan to produce a high value crude oil having low sulfur and low organometallic impurities.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Applicant: Saudi Arabian Oil Company
    Inventors: Stephane Cyrille Kressmann, Raheel Shafi, Esam Z. Hamad, Bashir Osama Dabbousi
  • Publication number: 20090071876
    Abstract: A desulfurizing agent is produced by mixing a copper compound, a zinc compound and an ammonium compound with an aqueous solution of an alkali substance to prepare or precipitate followed by calcitrating the resulting precipitate to form a calcined precipitate into a shape form of a copper oxide-zinc oxide-aluminum oxide mixture. The shaped form is impregnated with iron or nickel and calcined to produce a calcined oxide and reduced with hydrogen to form a sulfur-absorption desulfurizing agent.
    Type: Application
    Filed: November 19, 2008
    Publication date: March 19, 2009
    Inventors: Masataka MASUDA, Shin-ichi NAGASE, Susumu TAKAMI, Osamu OKADA
  • Publication number: 20090065400
    Abstract: Compositions and processes are disclosed for removing sulfur and sulfur compounds from hydrocarbon fuel feedstocks. The feedstock is contacted with a regenerable sorbent such as a compound of the formula TixCeyO2 where 0<x/y?1 and where 0<x?1 and 0<y?1 capable of selectively adsorbing sulfur compounds present in the hydrocarbon feedstock at about 0° C. to about 100° C. such as at about 25° C.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 12, 2009
    Applicant: The Penn State Research Foundation
    Inventors: Chunshan Song, Xiaoliang Ma, Shingo Watanabe, Fuxia Sun
  • Patent number: 7491317
    Abstract: A method and apparatus for removing sulfur from a hydrocarbon-containing fluid stream wherein desulfurization is enhanced by improving the contacting of the hydrocarbon-containing fluid stream and sulfur-sorbing solid particulates in a fluidized bed reactor.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: February 17, 2009
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Paul F. Meier, Max W. Thompson, Victor G. Hoover, Guido R. Germana
  • Patent number: 7473350
    Abstract: A desulfurization system is operated in a manner which optimizes sulfur removal and octane retention. When the desulfurization reactor is operated at a specific ratio of total pressure to hydrogen partial pressure (PT/PH) and/or within a specific temperature range, optimum sulfur removal and octane retention are realized. The desulfurization reactor can be maintained at these optimized operating conditions by automatically adjusting one or more operating parameters of the desulfurization reactor in order to maintain a substantially constant hydrogen partial pressure (PH) in the reactor. Maintaining a relatively constant hydrogen partial pressure (PH) in the desulfurization reactor helps ensure a relatively consistent degree of desulfurization.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: January 6, 2009
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Ronald Eugene Brown, Warren Matthew Ewert
  • Publication number: 20080251423
    Abstract: A sorbent for use in removing sulfur contaminants from hydrocarbon feedstocks is provided, wherein the sorbent contains zinc aluminate in an amount of at least 40 wt % (calculated as ZnAl2O4); free alumina in an amount of from about 5 wt % to about 25 wt % (calculated as Al2O3); and iron oxide in an amount of from about 10 wt % to about 30 wt % (calculated as Fe2O3); wherein each of the free alumina and iron oxide are present in non-crystalline form as determined by X-ray diffraction analysis, and a method for producing the sorbent and method for using the sorbent to reduce sulfur contaminants in hydrocarbon feedstocks.
    Type: Application
    Filed: September 27, 2006
    Publication date: October 16, 2008
    Applicant: Research Triangle Institute
    Inventors: Brian S. Turk, Santosh K. Gangwal, Raghubir Gupta
  • Patent number: 7435337
    Abstract: The invention describes the application of caesium-exchanged X, Y or LSX type faujasite zeolites for intense desulphurization of FCC gasoline, and to a method for preparing said zeolites.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 14, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Michel Thomas, Alexandre Nicolaos
  • Patent number: 7416655
    Abstract: An adsorbent composition comprising a nanostructured titanium oxide material of the formula TiO2-, where 0?×?1 with nanotubular and/or nanofibrilar morphology, high oxygen deficiency, having an orthorhombic JT crystalline phase described by at least one of the space groups 59 Pmmn, 63 Amma, 71Immm or 63 Bmmb, and comprising between 0 and 20 weight percent of a transition metal oxide is used for the selective adsorption of nitrogen compounds and/or sulfur compounds from light and intermediate petroleum fractions.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 26, 2008
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, María Antonia Cortés Jacome, Gerardo Ferrat Torres, Carlos Angeles Chávez, Luis Francisco Flores Ortiz, Maria de Lourdes Araceli Mosqueira Mondragon, Esteban López Salinas, Jose Escobar Aguilar, Rodolfo Juventino Mora Vallejo, Fernando Alvarez Ramírez, Yosadara Ruiz Morales, Marcelo Lozada y Cassou
  • Publication number: 20080135454
    Abstract: A composition and process for removing sulfur from middle distillate petroleum hydrocarbon fuels. The composition includes an alumina component and a carbon component. The composition is present in an amount effective to adsorb sulfur compounds from the fuel. The alumina component and the carbon component preferably collectively comprise a composite material. The composition can further include a sulfur component, preferably a metal sulfide or sulfur oxide. The composition can also further include at least one compound having a Group VI or Group VIII metal from the periodic table.
    Type: Application
    Filed: December 6, 2006
    Publication date: June 12, 2008
    Inventor: Ki-Hyouk Choi
  • Patent number: 7374666
    Abstract: A method for desulfurizing a hydrocarbon stream (10) containing heterocyclic sulfur compounds, which process comprises contacting the heterocyclic sulfur compounds in the gas phase (60) in the presence of oxygen (70) with a supported metal oxide catalyst, or with a bulk metal oxide catalyst (600) to convert at least a portion of the heterocyclic sulfur compounds to oxygenated products as well as sulfur-deficient hydrocarbons and separately recovering the oxygenated products separately from a hydrocarbon stream with substantially reduced sulfur.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: May 20, 2008
    Assignee: Lehigh University
    Inventor: Israel E Wachs
  • Patent number: 7160438
    Abstract: The present invention is directed to the removal of nitrogen and sulfur containing impurities from high molecular weight petroleum feedstock obtained from fluid cracking catalyst or distillation zone of a petroleum treatment plant. The present process comprises first treating C12 and higher hydrocarbon petroleum feedstock having nitrogen and sulfur containing compounds therein with a porous, particulate adsorbent comprising a silica matrix having an effective amount of metal atoms therein to cause the adsorbent to have Lewis acidity of at least 500 ?mol/g and then treating the resultant feedstock to catalytic hydrodesulfurization to produce a hydrocarbon fuel having low sulfur and nitrogen content.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: January 9, 2007
    Assignee: W.R. Grace & Co. - Conn.
    Inventors: Markus Friedrich Manfred Lesemann, Constance Setzer
  • Patent number: 6955752
    Abstract: Sorbent compositions for the removal of sulfur from cracked-gasoline and diesel fuels are prepared by the impregnation of a sorbent support comprising zinc oxide, expanded perlite, and alumina with a promotor metal followed by reduction of the valence of the promotor metal in the resulting promotor metal sorbent support composition.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: October 18, 2005
    Assignee: ConocoPhilips Company
    Inventor: Glenn W. Dodwell
  • Patent number: 6923903
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: August 2, 2005
    Assignees: ExxonMobil Oil Corporation, W.R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Patent number: 6905592
    Abstract: The invention relates to: a process for the desulphurization of feed streams comprising: supplying a hot process stream to a lead catalyst bed (8) comprising a first sulphur-removing catalyst and a second sulphur-removing catalyst under conditions whereby sulphur is removed from the process stream by the first sulphur-removing catalyst and said second sulphur-removing catalyst does not effectively remove sulphur from the stream at the operating temperature of the lead catalyst bed for the duration of the bed's life; collecting a hot partially sulphur-depleted stream from the lead catalyst bed and cooling said stream; passing said cooled stream through a lag catalyst bed (11) comprising the first sulphur-removing catalyst and the second sulphur-removing catalyst under conditions whereby sulphur is removed from the process stream by the second sulphur-removing catalyst and said first sulphur-removing catalyst removes sulphur less efficiently from the stream at the operating temperature of the lag catalyst bed;
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: June 14, 2005
    Inventors: Roger Bence, Stephen Caig Littlewood, Philip Henry Donald Eastland
  • Patent number: 6858133
    Abstract: A process for desulfurising an olefin-containing hydrocarbon feedstock including sulfur-containing hydrocarbon compounds as impurities, the process comprising passing a hydrocarbon feedstock containing one or more olefins through a reactor containing a crystalline silicate selected from the group consisting of an MFI-type crystalline silicate having a silicon/aluminum atomic ratio of at least 180 and an MEL-type crystalline silicate having a silicon/aluminum atomic ratio of from 150 to 800 which has been subjected to a steaming step to produce an effluent with an olefin content of lower molecular weight than that of the feedstock and removing hydrogen sulphide from the effluent.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: February 22, 2005
    Assignee: Atofina Research S.A.
    Inventors: Jean-Pierre Dath, Walter Vermeiren, Koen Herrebout
  • Patent number: 6852214
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction additive comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve. The molecular sieve is normally a large pore size zeolite such as USY or zeolite beta or an intermediate pore size zeolite such as ZSM-5. The metal is normally a metal of Period 4 of the Periodic Table, preferably zinc or vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: February 8, 2005
    Assignees: Mobil Oil Corporation, W. R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Michael S. Ziebarth, Terry G. Roberie
  • Patent number: 6846403
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a rare earth component which enhances the cracking activity of the cracking catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 4 of the Periodic Table, preferably vanadium. The rare earth component preferably includes cerium which enhances the sulfur reduction activity of the catalyst. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: January 25, 2005
    Assignees: Mobil Oil Corporation, W.R. Grace & Co.-Conn.
    Inventors: Wu-Cheng Cheng, Scott Kevin Purnell, Terry G. Roberie, Hye Kyung Cho Timken, Xinjin Zhao
  • Publication number: 20040260139
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Publication number: 20040200758
    Abstract: A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form &pgr;-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by &pgr;-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.
    Type: Application
    Filed: December 3, 2003
    Publication date: October 14, 2004
    Inventors: Ralph T. Yang, Arturo J. Hernandez-Maldonado, Frances H. Yang, Akira Takahashi
  • Publication number: 20040178117
    Abstract: A composition comprising a promoter, a metal oxide, a support component, and a silicon-containing material, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 16, 2004
    Inventors: Robert W. Morton, M. Bruce Welch, Roland Schmidt, Jason J. Gislason
  • Publication number: 20040129607
    Abstract: A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on said support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition. A process for the removal of sulfur from a hydrocarbon stream, wherein the hydrocarbon stream is a combination of cracked gasoline and diesel fuel, is also disclosed.
    Type: Application
    Filed: November 26, 2003
    Publication date: July 8, 2004
    Inventors: Peter N. Slater, Byron G. Johnson, Edward L. Sughrue, Dennis R. Kidd
  • Publication number: 20040118748
    Abstract: The present invention is directed to the removal of nitrogen and sulfur containing impurities from high molecular weight petroleum feedstock obtained from fluid cracking catalyst or distillation zone of a petroleum treatment plant. The present process comprises first treating C12 and higher hydrocarbon petroleum feedstock having nitrogen and sulfur containing compounds therein with a porous, particulate adsorbent comprising a silica matrix having an effective amount of metal atoms therein to cause the adsorbent to have Lewis acidity of at least 500 &mgr;mol/g and then treating the resultant feedstock to catalytic hydrodesulfurization to produce a hydrocarbon fuel having low sulfur and nitrogen content.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Inventors: Markus Friedrich Manfred Lesemann, Constanze Setzer
  • Publication number: 20040118749
    Abstract: The present invention is directed to the removal of nitrogen and sulfur containing impurities from high molecular weight petroleum feedstock obtained from fluid cracking catalyst or distillation zone of a petroleum treatment plant. The present process comprises first treating C12 and higher hydrocarbon petroleum feedstock having nitrogen and sulfur containing compounds therein with a porous, particulate adsorbent comprising a silica matrix having an effective amount of metal atoms therein to cause the adsorbent to have Lewis acidity of at least 500 &mgr;mol/g and then treating the resultant feedstock to catalytic hydrodesulfurization to produce a hydrocarbon fuel having low sulfur and nitrogen content.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Inventors: Markus Friedrich Manfred Lesemann, Constance Setzer
  • Patent number: 6746598
    Abstract: The present invention relates to the use of a catalytic system comprising a metal of group VIII, a metal of group VI, a metal oxide as carrier and suitable quantities of a component selected from a zeolite of the FER type, phosphorous, and a mixture thereof, in upgrading of hydrocarbons boiling in the naphtha range containing sulfur impurities, namely in hydrodesulfurization with contemporaneous skeleton isomerization of olefins contained in said hydrocarbons and/or with reduction of olefins hydrogenation, carried out in a single step.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: June 8, 2004
    Assignees: Enitecnologie S.p.A., Repsol Petroleo S.A., Elf Antar France S.A., AGIP Petroli S.p.A.
    Inventors: Laura Zanibelli, Virginio Arrigoni, Fernando Albertos, Evangelina Atanes, Thierry Cholley, Febronio Panarello
  • Publication number: 20040044262
    Abstract: CuY and AgY zeolites as selective sorbents for desulfurization of liquid fuels. Thiophene and benzene were used as the model system, and vapor phase isotherms were measured. Compared with NaY, CuY and AgY adsorbed significantly larger amounts of both thiophene and benzene at low pressures. It is hypothesized that this is due to &pgr;-complexation with Cu+ and Ag+. On a per-cation basis, more thiophene was adsorbed by Cu+ than by Ag+, e.g., 0.92 molecule/Cu+ versus 0.42 molecule/Ag+ at 2×10−5 atm and 120° C. Molecular orbital calculations confirmed the relative strengths of &pgr;-complexation: thiophene>benzene and Cu+>Ag+. The experimental heats of adsorption for &pgr;-complexation are in qualitative agreement with theoretical predictions. The invention further comprises a process and sorbents for removal of aromatics from hydrocarbons.
    Type: Application
    Filed: July 3, 2003
    Publication date: March 4, 2004
    Inventors: Ralph T. Yang, Frances H. Yang, Akira Takahashi, Arturo J. Hernandez-Maldonado
  • Publication number: 20040040891
    Abstract: CuY and AgY zeolites as selective sorbents for desulfurization of liquid fuels. Thiophene and benzene were used as the model system, and vapor phase isotherms were measured. Compared with NaY, CuY and AgY adsorbed significantly larger amounts of both thiophene and benzene at low pressures. It is hypothesized that this is due to &pgr;-complexation with Cu+ and Ag+. On a per-cation basis, more thiophene was adsorbed by Cu+ than by Ag+, e.g., 0.92 molecule/Cu+ versus 0.42 molecule/Ag+ at 2×10−5 atm and 120° C. Molecular orbital calculations confirmed the relative strengths of &pgr;-complexation: thiophene>benzene and Cu+>Ag+. The experimental heats of adsorption for &pgr;-complexation are in qualitative agreement with theoretical predictions. The invention further comprises a process and sorbents for removal of aromatics from hydrocarbons.
    Type: Application
    Filed: March 21, 2003
    Publication date: March 4, 2004
    Inventors: Ralph T. Yang, Frances H. Yang, Akira Takahashi, Arturo J. Hernandez-Maldonado
  • Publication number: 20040031730
    Abstract: A composition comprising a promoter and a metal oxide selected from the group consisting of a cerium oxide, a scandium oxide, a lanthanum oxide, and combinations of any two or more thereof, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: August 13, 2002
    Publication date: February 19, 2004
    Inventors: Jason J. Gislason, Robert W. Morton, Roland Schmidt, M. Bruce Welch
  • Publication number: 20040007506
    Abstract: The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.
    Type: Application
    Filed: February 11, 2003
    Publication date: January 15, 2004
    Inventors: Chunshan Song, Xiaoliang Ma, Michael J. Sprague, Velu Subramani