Polychorinated Biphenyl (pcb) Patents (Class 208/262.5)
  • Patent number: 11794196
    Abstract: Systems and methods for removing contaminants from surfaces of a solid material using a flow of compressible fluid to draw incompressible fluid through pathways between fragments of the solid material. At least one method includes introducing solid material into a processing chamber, concurrently directing compressible fluid and incompressible fluid into the processing chamber via the inlet fluid distribution manifold, and operating a vacuum pump to maintain a pressure at a discharge outlet of the processing chamber sufficient to promote the compressible and incompressible fluids each achieving a velocity of at least 10 meters per second within the processing chamber.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: October 24, 2023
    Assignee: Kyata Capital Inc.
    Inventors: Filippo Giansante, Antonio Serafino Mancina
  • Patent number: 11299599
    Abstract: Methods for the recovery of natural fiber-containing material from waste textile and methods for recovery of monomers and/or oligomers from waste plastics comprise contacting about 10 to about 25 wt % of the waste with about 75 to about 95 wt % of an aqueous reagent, the aqueous reagent comprising at least about 80 wt % water and about 20 wt % or less tetraethylene glycol, based on the water and the tetraethylene glycol, and a base, at a temperature of about 90° C. to about 140° C. for about 20 to about 60 minutes to depolymerize polymers in the wastes. The base is included in the aqueous reagent in an amount effective to depolymerize the polymers.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: April 12, 2022
    Assignee: BCD GLOBAL LTD.
    Inventors: Charles J. Rogers, Thomas V. Opperman, Bradford J. Rogers
  • Patent number: 9090834
    Abstract: A method for upgrading heavy hydrocarbons into more usable hydrocarbon products is provided. The method provides for the steps of adding heavy hydrocarbons to a solvent system to form a reaction medium, and ozonating the reaction medium with an ozone containing gas to provide ozonation products. The solvent system can include a first solvent that solubilizes at least a portion of the heavy hydrocarbons and a reactive solvent which reacts with ozonation intermediates. Reactive solvent is maintained at concentrations sufficient to decompose ozonation intermediates.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 28, 2015
    Assignee: University of Utah Research Foundation
    Inventors: P. K. Andy Hong, Zhixiong Cha
  • Patent number: 7645606
    Abstract: The present invention provides a method and gaseous composition for the in situ bioremediation of soil and groundwater contaminated with organic compounds, including halogenated hydrocarbons. The gaseous composition, which readily permeates a subsurface region, comprises hydrogen (H2) and one or more volatile phosphates, such as triethylphosphate (TEP) and tributylphosphate (TBP). The volatile phosphates serve as nutrients that stimulate the growth and activity of indigenous microbes that are capable of degrading the contaminants. The addition of hydrogen facilitates the direct reductive dehalogenation of highly halogenated contaminants. The gaseous composition may optionally contain one or more of a volatile alkane and nitrous oxide as additional supports for microbial growth, and carbon dioxide to lower the pH of remediation sites that are highly alkaline.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: January 12, 2010
    Assignee: PHA Environmental Restoration
    Inventors: Lamar E. Priester, III, Brian Harmison, John Huff
  • Patent number: 6998050
    Abstract: The present invention provides a method of treating fats and oils containing low concentrations of aromatic halogen compounds and other contaminants by contacting the fats or oils with an adsorbing agent. The adsorbing agent contains a porous body and a non-protonic polar solvent held in the interiors of fine pores in the porous body to adsorb the contaminants. In one embodiment, the porous body also carries noble metal fine particles. In another embodiment, the adsorbing body comprises a solid acid for adsorbing the contaminants and there is a step of contacting the adsorbing body with an organic solvent to extract the adsorbed contaminants into the organic solvent.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: February 14, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Nakajoh, Takehiko Muramatsu, Yukishige Maezawa, Masao Kon, Tomohiro Todoroki, Katsushi Nishizawa, Atsushi Ohara
  • Publication number: 20040178125
    Abstract: In a method of removing an aromatic halide from oil containing the aromatic halide, the aromatic halide compound being extracted from the oil containing the aromatic halide compound safely and highly efficiently, by extraction using an extracting solvent containing 1,3-dialkyl-2-imidazolidinone which is sulfur free and has extremely high extraction separation ability, or by using an extraction solvent containing an aqueous solution of 1,3-dialkyl-2-imidazolidinone. A system of removing aromatic halide compound from oil containing the aromatic halide compound includes a first supply source of a first extracting solvent containing 1,3-dialkyl-2-imidazolidinone; a second supply source of the oil containing the aromatic halide compound; and a first extractor which extracts the aromatic halide compound from the oil containing the aromatic halide compound supplied from the second supply source, by the first extracting-solvent supplied from the first supply source.
    Type: Application
    Filed: December 23, 2003
    Publication date: September 16, 2004
    Inventors: Katsuhiko Nakajoh, Takehiko Muramatsu, Masao Kon, Hiroaki Kinoshita, Tomohiro Todoroki
  • Patent number: 6649044
    Abstract: The present invention relates to a process for the reductive dehalogenation of halogenated hydrocarbons. It comprises reacting halogenated hydrocarbons with a reducing metal and a hydrogen donating compound in the presence of an amine. Preferably, the halogenated hydrocarbons are reacted with lithium, potassium, calcium, sodium, magnesium, aluminum, zinc or iron. Depending on the metal, the complete reductive dehalogenation takes place at temperatures ranging from room temperature to 400° C.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: November 18, 2003
    Assignee: DCR International Environmental Services B.V.
    Inventors: Friedrich Bölsing, Achim Habekost
  • Patent number: 6638488
    Abstract: Method and apparatus for isolating, decomposing, and fixing the organic hazardous substances in a stable manner using chemical techniques and isolating and decomposing the organic hazardous substances from various waste mixtures. The temperature treatment is preferably kept within room temperature range of between 0-30° C. The detoxification of the organic hazardous substances avoids secondary pollution of the environment when the treated materials are released in the soil, atmosphere, or in groundwater.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: October 28, 2003
    Inventors: Yukoh Akae, Kazuo Kote
  • Patent number: 6576122
    Abstract: 1. Process for the reductive dehalogenation of liquid or solid halogenated hydrocarbons. 2.1 Toxic liquid or solid halogenated hydrocarbons such as DDT, HCH, in particular halogenated aromatics such as TCB, PCB, PCP and PCDD/PCDF as such or as contaminants in waste oil or contaminated soil or soil like materials can, in most cases, not at all be dehalogenated or, at best, on a very lavish scale. According to the present invention said halogenated hydrocarbons can be dehalogenated without any problems. 2.2 This can be achieved according to the present invention through transforming the halogenated hydrocarbons as such and the contaminated material respectively into a finely dispersed solid formulation and heating said formulation for a short time with finely dispersed reducing metals. 2.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: June 10, 2003
    Assignee: DCR International Environmental Services B.V.
    Inventor: Friedrich Bölsing
  • Patent number: 6476284
    Abstract: An efficient dehalogenation can be carried out by a method which comprises treating an organic compound containing a compound of halogen, such as fluorine or chlorine, as an impurity and having non-conjugated carbon-carbon double bonds, for example, butene polymer produced with a boron trifluoride catalyst, with an inorganic solid treating agent containing aluminum atoms. When the dehalogenation is conducted in the presence of a basic substance such as ammonia or an amine, it can be continued over long while inhibiting the isomerization of the non-conjugated carbon-carbon double bonds.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: November 5, 2002
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Koichi Ohashi, Tsutomu Takashima, Teruhisa Kuroki, Koji Fujimura, Yuichi Tokumoto
  • Patent number: 6380454
    Abstract: Chlorobenzenes present in PCBs as viscosity reducing diluents can be largely removed from the PCBs by fractional distillation without carry over of PCBs into the chlorobenzene rich distillate. The PCB rich bottoms can be economically destroyed using a sodium dispersion under conditions of temperature, concentration and stirring which result in autocatalytic reaction. Sodium dispersion can be measured for dispensing into the reaction by accumulation under a pressurized gas space in a measuring vessel of predetermined volume until a predetermined pressure is attained. The pressurized gas is then employed to expel the dispersion from the measuring vessel into the reactor.
    Type: Grant
    Filed: March 15, 1991
    Date of Patent: April 30, 2002
    Inventors: Luciano A. Gonzalez, Dennis F. Mullins, W. John Janis, James S. Ferrie
  • Patent number: 6312587
    Abstract: A method of treating a polychlorinated aromatic compound or a hydrocarbon oil containing a polychlorinated aromatic compound involves the step of heating while stirring the polychlorinated aromatic compound or the hydrocarbon oil containing the polychlorinated aromatic compound in the presence an alkali metal tert-butoxide as a reactant to remove chlorine from the polychlorinated aromatic compound and provide a post-reaction system with no chlorine.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: November 6, 2001
    Assignees: Kansai Tech Corporation, The Kansai Electric Power Co., Inc.
    Inventors: Masayuki Ohno, Hisasi Kaneda
  • Patent number: 6197199
    Abstract: The present invention relates to a method of using a protein-polysaccharide complex composition as an adsorbent and filtering aid for in the processing of fluids or solids to absorb or decompose a variety of separable components including halogenated organic compounds such as PCBs and dioxins.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: March 6, 2001
    Inventor: Blaise McArdle