Deasphalting Patents (Class 208/309)
  • Publication number: 20140221713
    Abstract: A process for upgrading residuum hydrocarbons and decreasing tendency of the resulting products toward asphaltenic sediment formation in downstream processes is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a hydroconversion catalyst in a hydrocracking reaction zone to convert at least a portion of the residuum hydrocarbon fraction to lighter hydrocarbons; recovering an effluent from the hydrocracking reaction zone; contacting hydrogen and at least a portion of the effluent with a resid hydrotreating catalyst; and separating the effluent to recover two or more hydrocarbon fractions.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140221709
    Abstract: A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Patent number: 8790508
    Abstract: A system and process are provided for integrated deasphalting and desulfurization of hydrocarbon feedstock in which the hydrocarbon feedstock, an oxidant, and an oxidation catalyst are mixed prior to passage into a primary settler of a solvent deasphalting unit. Oxidation products, including oxidized organosulfur compounds, are discharged with the asphalt phase.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: July 29, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Abdennour Bourane
  • Patent number: 8778173
    Abstract: The present invention relates to a process for desulfurizing heavy oil feedstreams with alkali metal compounds and improving the compatibility of the to stream components in either the feed stream, an intermediate product stream, and/or the reaction product stream in the desulfurization process. The present invention utilizes a high stability aromatic-containing stream that is preferably added to the heavy oil prior to reaction with the alkali metal compounds. The resulting stream resists precipitation of reaction solids in the desulfurization reactors. Even more preferably, the desulfurization system employs at least two desulfurization reactors in series flow wherein the high stability aromatic-containing stream is contacted with the reaction product from the first reactor prior to the second reactor, wherein the first reactor can be operated at a higher severity than without the use of the high stability aromatic-containing component stream.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael F. Raterman, Daniel P. Leta, Walter D. Vann, Roby Bearden, Jr.
  • Publication number: 20140174983
    Abstract: A supported catalyst useful in processes for chemically refining hydrocarbon feedstocks, the catalyst comprising a metal from Group 6, a metal from Group 8, and optionally phosphorous, wherein the carrier or support, comprises porous alumina comprising: (a) equal to or greater than about 78% to about 95% of TPV in pores having a diameter of less than about 200 Angstroms (A); (b) greater than about 2% to less than about 19% of the TPV in pores having a diameter of about 200 to less than about 1000 A; (c) equal to or greater than 3% to less than 12% of the TPV in pores having a diameter equal to or greater than about 1000 A.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 26, 2014
    Applicant: ADVANCED REFINING TECHNOLOGIES LLC
    Inventors: Darryl P. Klein, Nan Chen, Matthew P. Woods, Bruno Nesci
  • Publication number: 20140166542
    Abstract: A method and system for conducting chromatographic analysis of a total vacuum resid to provide quantification of eight classes of compounds (i.e., asphaltenes, saturates, 1-4+ ring aromatics, sulfides, and polars) contained within the total vacuum resid without prior de-asphalting are disclosed. The system is also capable of conducting chromatographic analysis of a vacuum gas oils and de-asphalted oils to provide quantification of seven classes of compounds (i.e., saturates, 1-4+ ring aromatics, sulfides, and polars). The system is also capable of conducting chromatographic analysis of a resid to identity the presence of and provide quantification of asphaltenes.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Birbal CHAWLA
  • Patent number: 8747653
    Abstract: A process is disclosed for hydroprocessing two hydrocarbon streams at two different pressures. A hydrogen stream is compressed and split. A first split compressed stream is further compressed to feed a first hydroprocessing unit that requires higher pressure for operation. A second split compressed stream is fed to a second hydroprocessing unit that requires lower pressure. Recycle hydrogen from the second hydroprocessing unit is recycled back to the compression section.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventor: Andrew P. Wieber
  • Patent number: 8734639
    Abstract: Petroleum resid, bitumen and/or heavy oil is upgraded by the separation of asphaltenes and/or resins from such resids, bitumen and/or heavy oils by contacting them with an ionic liquid with which the asphaltenes and/or resins interact.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: May 27, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Manuel A. Francisco, Rustom M. Billimoria
  • Patent number: 8728300
    Abstract: Systems and methods for deasphalting a hydrocarbon are provided. A hydrocarbon can be heated to a first temperature and pressurized to a first pressure. The pressurized hydrocarbon can be depressurized to separate at least a portion of the hydrocarbon to provide a vaporized hydrocarbon mixture and a residual hydrocarbon that can include asphaltenes. The residual hydrocarbon can be mixed with a solvent to provide a first mixture. The first mixture can be heated to a second temperature. The asphaltenes can be separated from the first mixture to provide a first product and a second product. The first product can include a deasphalted oil and at least a portion of the solvent. The second product can include the asphaltenes and the remaining portion of the solvent.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 20, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Rashid Iqbal, Odette Eng
  • Publication number: 20140130581
    Abstract: Disclosed herein is a method for determining the effectiveness of one or more asphaltene dispersant additives for inhibiting or preventing asphaltene precipitation in a hydrocarbon-containing material subjected to elevated temperature and pressure conditions.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: Chevron U.S.A.
    Inventors: Cesar Ovalles, Estrella Rodgel
  • Patent number: 8709237
    Abstract: A process for treating bitumen froth with paraffinic solvent is provided which uses three stages of separation. Froth and a first solvent are directed to a first stage at a solvent/bitumen ratio for precipitating few or substantially no asphaltenes. A first stage underflow is directed to a second stage and a first stage overflow is directed to a third stage. A second stage underflow is directed to waste tailings and the second stage overflow joins the first stage overflow. A third stage underflow is recovered as an asphaltene by-product and a third stage overflow is recovered as a diluted bitumen product. At least a second solvent is added to one or both of the second or third stages for controlling a fraction of asphaltenes in the third stage underflow. Asphaltene loss to waste tailings is minimized and asphaltenes are now recovered as asphaltene by-product.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: April 29, 2014
    Assignee: Total E&P Canada Ltd
    Inventors: Geoff Stevens, Ray Reipas
  • Patent number: 8679325
    Abstract: Embodiments of a method and a system for recovering energy, materials or both from asphaltene-containing tailings are disclosed. The asphaltene-containing tailings can be generated, for example, from a process for recovering hydrocarbons from oil sand. Embodiments of the method can include a flotation separation and a hydrophobic agglomeration separation. Flotation can be used to separate the asphaltene-containing tailings into an asphaltene-rich froth and an asphaltene-depleted aqueous phase. The asphaltene-rich froth, or an asphaltene-rich slurry formed from the asphaltene-rich froth, then can be separated into a heavy mineral concentrate and a light tailings. Hydrophobic agglomeration can be used to recover an asphaltene concentrate from the light tailings. Another flotation separation can be included to remove sulfur-containing minerals from the heavy mineral concentrate. Oxygen-containing minerals also can be recovered from the heavy mineral concentrate.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: March 25, 2014
    Assignee: Shell Oil Company
    Inventors: Willem P. C. Duyvesteyn, Julian Kift, Raymond L. Morley
  • Patent number: 8673131
    Abstract: The present invention relates to a method of preparing synthetic crude oil from a heavy crude reservoir, comprising: (a) extracting the heavy crude oil using a steam technology; (b) separating the crude extracted and the water; (c) separating the crude into at least one light cut and one heavy cut; (d) converting said heavy cut to a lighter product and a residue; (e) optionally, partially or totally hydroprocessing the converted product and/or the light cut(s) obtained upon separation (c); (f) burning and/or gasifying the conversion residue in the presence of metal oxides in at least one chemical looping cycle producing CO2-concentrated fumes in order to allow CO2 capture, the optionally hydroprocessed converted product and light separation cut(s) making up the synthetic crude oil, said combustion allowing to generate steam and/or electricity, and said gasification allowing to generate hydrogen, the steam and/or the electricity thus generated being used for extraction (a), and/or the electricity and/or the hy
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: March 18, 2014
    Assignees: IFP Energies Nouvelles, Total SA
    Inventors: Thierry Gauthier, Ali Hoteit, Ann Forret
  • Patent number: 8658030
    Abstract: Provided herein are processes for deasphalting and extracting a hydrocarbon oil. The processes comprise providing an oil comprising asphaltenes and/or other impurities, combining the oil with a polar solvent an extracting agent to provide a mixture, and applying a stimulus to the mixture so that at least a portion of any asphaltenes and/or impurities in the oil precipitate out of the oil.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: John Aibangbee Osaheni, Thomas Joseph Fyvie
  • Publication number: 20140021101
    Abstract: In accordance with particular descriptions provided herein, certain embodiments of the inventive technology may be described as a hydrocarbon viscosity reduction method that comprises the steps of: treating a hydrocarbon having asphaltenes therein to generate a treated hydrocarbon, wherein said hydrocarbon has a first viscosity; contacting said treated hydrocarbon with a sorbent (whether as a result of pouring or other means); and adsorbing at least a portion of said asphaltenes onto said sorbent, thereby removing said at least a portion of said asphaltenes from said hydrocarbon so as to generate a viscosity reduced hydrocarbon having a second viscosity that is lower than said first viscosity.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 23, 2014
    Applicant: The University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventors: John F. Schabron, Joseph F. Rovani, JR.
  • Publication number: 20140001089
    Abstract: Process for hydrotreating a heavy hydrocarbon fraction using a system of switchable fixed bed guard zones each containing at least two catalyst beds and in which whenever the catalyst bed that is brought initially into contact with the feed is deactivated and/or clogged during the steps in which the feed passes successively through all the guard zones, the point of introduction of the feed is shifted downstream. The present invention also relates to an installation for implementing this process.
    Type: Application
    Filed: December 20, 2011
    Publication date: January 2, 2014
    Applicant: IFP Energies nouvelles
    Inventors: Frederic Bazer-Bachi, Christophe Boyer, Isabelle Guibard, Nicolas Marchal, Cecile Plain
  • Patent number: 8608942
    Abstract: Systems and methods for processing hydrocarbons are provided. A hydrocarbon can be distilled to provide a distillate, a gas oil, and a residue. The residue can include, but is not limited to asphaltenes and non-asphaltenes. The residue can be mixed with a solvent to provide a mixture. The asphaltenes can be selectively separated from the mixture to provide a deasphalted oil. At least a portion of the deasphalted oil and at least a portion of the gas oil can be hydroprocessed to provide a hydroprocessed hydrocarbon. At least a portion of the distillate and at least a portion of the hydroprocessed hydrocarbon can be cracked in a first reaction zone to provide a first cracked product comprising C2 hydrocarbons, C3 hydrocarbons, C4 hydrocarbons, and naphtha.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: December 17, 2013
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Phillip K. Niccum
  • Patent number: 8608939
    Abstract: Process for removing asphaltenic particles from a hydrocarbon feed containing asphaltenic particles by treating the feed in a filter unit comprising a perforated tube surrounded by hollow longitudinal projections comprising a filter having openings of at most 50 micrometer diameter in which the internal space of each of the hollow projections is in fluid communication with the inside of the perforated tube and which filter is regularly subjected to cleaning by treating each of the projections with cleaning fluid wherein the flow of cleaning fluid is opposite to the direction of normal flow.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 17, 2013
    Assignee: Shell Oil Company
    Inventors: Johannes Leendert William Cornelis Den Boestert, Duurt Renkema, Marco Jordi In Het Veld
  • Patent number: 8568583
    Abstract: The described invention discloses an innovative hydroconversion-processing configuration for converting bitumen or heavy oils to produce a transportable synthetic crude oil (SCO). The innovative processing scheme disclosed herein maximizes the synthetic crude oil yield at a minimal investment compared to currently known methods.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: October 29, 2013
    Inventor: James J. Colyar
  • Publication number: 20130277275
    Abstract: According to the invention, there is provided a method for treating heavy crude oil (HCO) which includes the steps of combining the HCO with an alkane containing solvent to form an HCO/solvent mixture, sonicating this mixture at audio frequency to precipitate asphaltenes from the HCO/solvent mixture, and separating the precipitated asphaltenes from the HCO/solvent mixture.
    Type: Application
    Filed: March 11, 2009
    Publication date: October 24, 2013
    Applicant: PETROSONIC ENERGY INC.
    Inventors: James Hill, Claudio Arato
  • Publication number: 20130264245
    Abstract: A method and a product made by treating a sulfur-containing hydrocarbon heavy feed, e.g., heavy crude asphaltene reduction is disclosed herein. The method comprises the steps of: mixing the sulfur-containing hydrocarbon heavy feed with a hydrogen donor solvent and an acidified silica to form a mixture and oxidizing the sulfur in the mixture at a temperature between 50° C. and 210° C., wherein the oxidation lowers the amount sulfur in the sulfur-containing hydrocarbon heavy feed by at least 90%.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Karina Castillo, Jason Parsons, Russell R. Chianelli
  • Publication number: 20130264247
    Abstract: A process and system for reducing the viscosity of heavy and extra heavy crude oils, and more particularly to a process for reducing the viscosity of heavy and extra heavy crude oils by means of total or partial oil deasphalting using a precipitating agent in order to obtain an upgraded crude oil of lower viscosity that can be pumped without the use of diluents. The upgrading also includes a reduction in metals and sulfur associated with asphaltene removal. The process consists of relatively simple equipment such as static mixers and stirred tanks and operation temperature is low and pressure is moderate.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 10, 2013
    Inventors: Antonio Cardenas, Jean Carlos Bravo, Carolina Blanco, Maria Briceno, Carlos Espinoza, Socrates Acevedo, Eduardo Lima
  • Publication number: 20130240410
    Abstract: Embodiments of the invention are directed to the improvement of the design of coker systems and processes in order to improve the yields and separation of heavy coker gas oils derived therefrom.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: Foster Wheeler USA Corporation
    Inventor: Daniel B. Gillis
  • Patent number: 8506794
    Abstract: Contact of a crude feed with two or more catalysts produces a total product that include a crude product. The crude feed has a total acid number of at least 0.1. The crude product is a liquid mixture at 25 ° C. and 0.101 MPa. The crude product has a total acid number of at most 90% of the total acid number of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: August 13, 2013
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Publication number: 20130180888
    Abstract: A process for producing pipeline-ready or refinery-ready feedstock from heavy hydrocarbons using a high-performance solvent extraction process with high local solvent-to-process fluid ratios yet maintaining low overall solvent-to-process fluid ratios, by first performing mild thermal cracking on the heavy hydrocarbons and then separating asphaltene-rich fractions from a resulting thermally affected fluid so that the high solvent-to-oil ratio portion of the process acts only on those asphaltene-rich fractions, and producing a dry, solid asphaltene as an end-product.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: MEG ENERGY CORPORATION
    Inventors: TOM CORSCADDEN, GERALD BRUCE, GREG DIDUCH, DAMIEN HOCKING, DARIUS REMESAT
  • Patent number: 8475652
    Abstract: A method for purification of uncatalyzed natural fuels in liquid state from metal ions by removing at least one compound selected from the group consisting of natural occurring contaminating porphyrins, metalloporphyrins, chlorins and naturally occurring degradations products of these compounds, such as petroporphyrins, containing said metal ions from the fuels. At least one hemeprotein in apo-form selected from the group consisting of globins, peroxidases, pyrrolases and cytochromes having high affinity for porphyrins is added to the fuels. The hemeprotein is mixed with the fuels in such a way that the porphyrins is bounded to the hemeprotein. The hemeprotein with bound contaminating porphyrins is removed so as to obtain purified fuels. The invention relates also to the use of at least one hemeprotein selected from the group consisting of globins, peroxidases, pyrrolases and cytochromes having high affinity for porphyrins for the purification of uncatalyzed natural fuels in liquid state from metal ions.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: July 2, 2013
    Inventors: Jan A. K. Paul, Michael L. Smith
  • Publication number: 20130143778
    Abstract: A novel composition is provided that incorporates the residual solids from solvent deasphalting to make a high value asphalt product. A process for making the asphalt composition is also provided. A first portion of heavy oil or another feedstock can be deasphalted using propane deasphalting or another suitable deasphalting process. This generates a solvated fraction and an insoluble deasphalting residue. The deasphalting residue is then added to a second portion of heavy oil, such as a second portion of the same type of heavy oil that was used as feedstock in the solvent deasphalting. The mixture of deasphalting residue and heavy oil results in a novel dispersion that is suitable for use as an asphalt. Optionally, an additive such as an alkyl substituted aromatic sulfonic acid can be added to the composition to further improve the asphalt properties.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh Varadaraj, Lyle E. Moran, John Brownie, Mary J. Gale
  • Patent number: 8435402
    Abstract: A method of cracking hydrocarbon material in a nozzle reactor. The method includes a step of providing a nozzle reactor, a step of injecting a stream of cracking material into the reactor body of the nozzle reactor, and a step of injecting hydrocarbon material into the reactor body of the nozzle reactor, wherein the cracking material is methanol, ethanol, ethane, propane, biodiesel, carbon monoxide, nitrogen, or combinations thereof. The cracking material can also include steam. The hydrocarbon material can be injected into the reactor body at a direction transverse to the direction the cracking material is injected into the reactor body.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 7, 2013
    Assignee: Marathon Canadian Oil Sands Holding Limited
    Inventors: Willem P. C. Duyvesteyn, Jose Armando Salazar
  • Publication number: 20130098735
    Abstract: Improvements to open-art Solvent Deasphalting (SDA) processes have been developed to reduce capital and operating costs for processing hydrocarbon streams are provided whereby open art SDA scheme is modified to include appropriately placed mixing-enabled precipitators (MEP's) to reduce solvent use requirements in an asphaltene separation step and to increase overall reliability for SDA processes, particularly suitable for Canadian Bitumen. When integrated with a mild thermal cracker, the improved SDA configuration further improves crude yield to be pipeline-ready without additional diluent and for use to debottleneck existing facilities such as residue hydrocrackers and coking units.
    Type: Application
    Filed: August 3, 2012
    Publication date: April 25, 2013
    Applicant: MEG ENERGY CORP.
    Inventors: TOM CORSCADDEN, GERALD BRUCE, GREG DIDUCH, DAMIEN HOCKING, DARIUS REMESAT
  • Publication number: 20130081325
    Abstract: The present invention relates to a method of improving a heavy hydrocarbon, such as bitumen, to a lighter more fluid product and, more specifically, to a final hydrocarbon product that is refinery-ready and meets pipeline transport criteria without the addition of diluent. A solid asphaltene by-product is created for easy handling and further processing. The invention is targeted to enhance Canadian bitumen, but has general application in improving any heavy hydrocarbon.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: MEG ENERGY CORPORATION
    Inventors: TOM CORSCADDEN, GERALD BRUCE, GREG DIDUCH, DAMIEN HOCKING, DARIUS REMESAT
  • Patent number: 8407916
    Abstract: An apparatus for solvent recovery from a solvent/gas mixture from the exhaust air of systems processing printing, painting or other solvents, wherein the solvent/gas mixture from at least one oil-containing solvent/gas mixture is cooled down to a temperature below the lower condensation temperature of the oil of the solvent mixture using a heat exchanger, wherein a further, second heat exchanger is connected upstream of the heat exchanger, said second heat exchanger cooling the solvent/gas mixture specifically to the condensation temperature of an oil present in the mixture and both heat exchangers produce a recovery unit.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: April 2, 2013
    Assignee: Prinotech GmbH
    Inventors: Rainer Haerle, Stephan Krauss
  • Publication number: 20130067991
    Abstract: The inventive technology may involve, in particular embodiments, novel use of a non-porous, high surface energy stationary phase to adsorb, in reversible fashion, the most polar component of a resins fraction of an input hydrocarbon when a mobile phase is passed over the stationary phase. Such reversible adsorption prevents irreversibly adsorption of such components on active stationary phase(s) downflow of the non-porous, high surface energy stationary phase, thereby conserving stationary phase costs and increasing resolution of resins elutions, and accuracy of hydrocarbon component results. Aspects of the inventive technology may also involve a novel combination of a solubility based asphaltene component fractionating and analysis method and an adsorption chromatography method for separating and/or analyzing saturate, aromatics and resins components of an input hydrocarbon.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventors: John F. Schabron, Ryan B. Boysen, Eric W. Kalberer, Joseph F. Rovani, JR.
  • Publication number: 20130026074
    Abstract: A process for stabilization of heavy hydrocarbons to reduce sludge formation in storage tanks and/or transportation lines and to enhance the hydrocarbon yield includes mixing a paraffinic or heavy naphtha solvent having carbon numbers in the range 10 to 20 with the feedstock to solvent-flocculate a relatively small, predetermined portion of asphaltenes present in the feedstock, separating and flashing the sediment to recover a light hydrocarbon fraction, flashing the heavy hydrocarbon/solvent phase and recycling the solvent to stabilize the heavy hydrocarbons without significantly affecting the yield of valuable products.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 31, 2013
    Inventors: Omer Refa KOSEOGLU, Adnan Al-Hajji
  • Publication number: 20130026075
    Abstract: An integrated process is provided to produce asphalt and desulfurized oil. Sulfur molecules contained in heavy petroleum fractions, including organosulfur molecules, and in certain embodiments organonitrogen molecules are oxidized. The polar oxidized sulfur compounds shift from the oil phase to the asphalt phase.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Inventors: Omer Refa KOSEOGLU, Abdennour Bourane
  • Patent number: 8357291
    Abstract: The invention relates to an improved bitumen recovery process. The process includes adding water to a bitumen-froth/solvent system containing asphaltenes and mineral solids. The addition of water in droplets increases the settling rate of asphaltenes and mineral solids to more effectively treat the bitumen for pipeline transport, further enhancement, refining, or any other application of reduced-solids bitumen.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 22, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ken N. Sury, Joseph L. Feimer, Clay R. Sutton
  • Patent number: 8349267
    Abstract: Targeted application of anti-fouling mechanisms in a heat exchange system produces higher rates of energy recovery. The anti-fouling mechanisms with high mitigation rates can be deployed at only the hottest portions of a pre-heat train that experience the highest rates of fouling and heat loss. In application, bundles of corrosion resistant smoothed tubes are deployed in the late pre-heat train to significantly reduce the formation of harder deposits. Vibration can be used as an adjunct approach in conjunction with the corrosion resistant, smooth tubes, or deployed alone on existing bundles. The use of high performing, more durable exchangers in select locations justifies the increased cost of these components.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 8, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ian A Cody, Amar S. Wanni, Robert C. Welch, James E. Feather, Mark A. Greaney, Limin Song, Jasmina Poturovic
  • Patent number: 8257579
    Abstract: The invention relates to a method for the dehydration of, and in-line removal of asphaltenes from, heavy and extra-heavy crudes. The method is performed at the well head at pressures of between 414 and 689 KPa and temperatures of between 60 and 100° C. and includes two phases, namely a dehydration phase and a deasphalting phase. The first phase includes the addition of solvent, removal of free water, heating, addition of emulsion breakers and settling for removal of emulsified water. The asphaltenes are extracted in the second phase. Said phase comprises the use of low-force in-line static mixers and contactors having a specific design and a sedimentation device with specific internal arrangements for separation. The recovered solvent is recirculated into the method, the improved crude is separated and the asphaltenes are used as fuel for cogeneration which supplies the energy requirements for production and the improvement method.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: September 4, 2012
    Assignee: Ecopetrol S.A.
    Inventors: Rigoberto Barrero, Luz Edelmira Afanador, Gonzalo Leal, Jorge Luis Grosso, Martha Parra, Claudia Esneiden Cuadrado, Humberto Vidales, Erika Guzman, Lilia Rodriguez
  • Patent number: 8197562
    Abstract: The feeding of coal slurries into a gasifier for the production of synthesis gas is improved by modifying the rheological properties of the coal particles so that conventional liquid transfer equipment can be used in the feed transfer process to the gasifier. The coal particle surface modification is accomplished by adsorbing asphaltenes derived from petroleum onto the surfaces of coal particles prior to and/or during contact with the slurry liquid. The coal particles with their surfaces thus modified exhibit lower particle-particle interaction in the liquid slurries to form a shear independent Newtonian fluid or a weakly shear thickening pseudoplastic fluid. The rheological properties of the slurries permit them to be transported reliably into a pressurized, entrained feed gasifier vessel using convention slurry pumps with a low potential expenditure of energy.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: June 12, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Varadaraj, Michael Siskin
  • Publication number: 20120132566
    Abstract: A process and adsorption vessel are provided for adsorbing asphaltenes from a hydrocarbon stream. Additionally, a process and adsorption vessel are provided for steam cracking a hydrocarbon stream containing asphaltenes by adsorbing asphaltenes from the hydrocarbon stream prior to steam cracking. Asphaltene adsorption is achieved through a carbon adsorbent having at least 25% of total pore volume provided by pores with pore diameter in the range of 0.1 to 2.0 micrometers and an oil adsorption number of at least 200.
    Type: Application
    Filed: June 17, 2009
    Publication date: May 31, 2012
    Inventors: Marcel J. Janssen, John D.Y. Ou, Glenn A. Heeter, Cornelis W.M. Van Oorschot
  • Patent number: 8177965
    Abstract: This invention relates to an ultrafiltration process for separating a heavy hydrocarbon stream to produce an enriched saturates content stream(s) utilizing an ultrafiltration separations process. The enriched saturates content streams can then be further processed in refinery and petrochemical processes that will benefit from the higher content of saturated hydrocarbons produced from this separations process. The invention may be utilized to separate heavy hydrocarbon feedstreams, such as whole crudes, topped crudes, synthetic crude blends, shale oils, oils derived from bitumen, oils derived from tar sands, atmospheric resids, vacuum resids, or other heavy hydrocarbon streams into enriched saturates content product streams. The invention provides an economical method for separating heavy hydrocarbon stream components by molecular species instead of molecular boiling points.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 15, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Eric B. Sirota, Edward W. Corcoran, Anjaneya S. Kovvali, Stephen H. Brown, Stephen M. Cundy
  • Patent number: 8152994
    Abstract: Systems and methods for processing one or more hydrocarbons are provided. One or more hydrocarbon feedstocks can be selectively separated to provide one or more light deasphalted oils. At least a portion of the light deasphalted oil can be hydrocracked to provide one or more hydrocarbon products.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 10, 2012
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Raymond Floyd, Odette Eng
  • Patent number: 8147679
    Abstract: A continuous process for upgrading a heavy hydrocarbon includes the steps of: obtaining a heavy hydrocarbon; heating the heavy hydrocarbon; contacting the heavy hydrocarbon with a solvent at upgrading conditions so as to produce a first product comprising a mixture of upgraded hydrocarbon and solvent and a second product comprising asphaltene waste and water; continuously feeding the first product and the second product to a first separator; heating the first product; and continuously feeding the first product to a second separator to separate the upgraded hydrocarbon from the solvent. A system is also provided.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 3, 2012
    Assignee: Intevep, S.A.
    Inventors: Manuel Chirinos, Galanda Morfes, Mariángel Alvarez, Félix Silva
  • Patent number: 8123932
    Abstract: A process for the conversion of heavy feedstocks using hydrotreatment, distillation or flash, and deasphalting that includes mixing a heavy feedstock with a hydrogenation catalyst and subjecting the thus-formed mixture to a hydrotreatment reactor for reaction with one or more of hydrogen and hydrogen sulfide to form a first product stream; subjecting the first product stream to a distillation or flash to form a plurality of distillate fractions; and recycling heavies from the distillation residue and/or tar by deasphalting in the presence of a solvent; where the hydrotreatment reaction product is pre-separated under high pressure to form light and heavy fractions and sending the heavy fraction to the distillation and/or flash.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: February 28, 2012
    Assignees: Eni S.p.A., Snamprogetti S.p.A., Enitechnologie S.p.A.
    Inventors: Romolo Montanari, Mario Marchionna, Nicoletta Panariti, Alberto Delbianco, Sergio Rosi
  • Patent number: 8083930
    Abstract: A process is described for producing deasphalted steam cracker tar comprising feeding steam cracker tar to a vacuum pipestill (VPS) including a flash zone separated from a zone comprising trays by at least one annular entrainment ring and obtaining as an overheads a deasphalted tar product and as a bottoms an asphaltenic heavy tar product. Also according to the invention, there is a system for the upgrading of tar comprising said VPS with at least one annular entrainment ring.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: December 27, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James N. McCoy, Paul F. Keusenkothen, Alok Srivastava, James E Graham
  • Patent number: 8017000
    Abstract: Process for the conversion of heavy feedstocks selected from heavy crude oils, distillation residues, heavy oils coming from catalytic treatment, thermal tars, oil sand bitumens, various kinds of coals and other high-boiling feedstocks of a hydrocarbon origin known as black oils, by the combined use of the following three process units: hydroconversion with catalysts in slurry phase (HT), distillation or flash (D), and deasphalting (SDA).
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: September 13, 2011
    Assignees: ENI S.p.A., SNAMPROGETTI S.p.A., ENITECNOLOGIE S.p.A.
    Inventors: Romolo Montanari, Mario Marchionna, Nicoletta Panariti, Alberto Delbianco, Sergio Rosi
  • Patent number: 8002968
    Abstract: A process for treating a heavy hydrocarbon feedstock is disclosed. The process involves separating the feedstock into a residue component and a light component, the residue component having a lower API gravity than the light component and treating at least a portion of the light component to produce a synthetic transport diluent suitable for combining with at least a portion of the residue component to produce a product which meets applicable criteria for pipeline transport.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: August 23, 2011
    Assignee: Statoil Canada Ltd.
    Inventors: Leonard F. Flint, Patrick B. Carlson, Gareth R. Crandall
  • Publication number: 20110198264
    Abstract: The present invention is related to a process oil using as a raw material a deasphalted oil obtained by deasphalting a vacuum residual oil of a crude oil and a manufacturing method of the process oil, the process oil having properties of: (a) a polycyclic aromatics (PCA) content of less than 3 mass %; (b) a viscosity (100° C.) of 40 to 70 mm2/s; (c) an aniline point of 85 to 100° C.; (d) a flash point of 250° C. or higher; (e) an aromatic hydrocarbon content of 40 to 55 mass %; and (f) a polar substance content of 10 to 15 mass %. The present invention is also related to a process oil and a manufacturing method of the process oil, the process oil obtained by mixing: an extract obtained by deasphalting and solvent-extracting a vacuum residual oil of a crude oil; and a lubricant base oil having a polycyclic aromatics (PCA) content of less than 3 mass %, and having properties of: (a) a polycyclic aromatics (PCA) content of less than 3 mass %; (i) a viscosity (100° C.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Meishi TANAKA, Masashi NAKAMURA, Kazuhiro TESHIMA, Akihito ABE, Masami TAKASAKI
  • Patent number: 7998342
    Abstract: Various systems and methods are described that can be used as part of a process to separate bitumen from oil sands. The process may include adding a hydrocarbon solvent to a bitumen containing extract. The tailings from this process may contain a significant amount of solvent. The solvent may be recovered from the tailings with a tailings solvent recovery unit that utilizes negative pressure to significantly reduce the cost of the process in comparison to a conventional steam stripping unit. In one embodiment, the tailings may also separated prior to entering the tailings solvent recovery unit with a gravity separation apparatus or a cyclonic separation apparatus, such as a hydrocyclone.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 16, 2011
    Assignee: Marathon Oil Canada Corporation
    Inventors: Willem P. C. Duyvesteyn, Julian Kift
  • Patent number: 7981277
    Abstract: A method for dewatering and deasphalting a hydrocarbon feed is provided. A hydrocarbon feed containing one or more hydrocarbons, asphaltenes and water can be mixed or otherwise combined with one or more solvents. The addition of the solvent sufficiently decreases the density of the hydrocarbon feed to enable gravity settling of the water phase, providing an oil phase containing one or more hydrocarbons, asphaltenes and solvents. The asphaltenes can be separated from the oil phase to provide an asphaltene mixture containing asphaltenes and a portion of the solvents and a deasphalted oil containing one or more hydrocarbons and the balance of the solvents. The solvents can be separated from the asphaltenes and deasphalted oil, and recycled to the initial mixing step wherein the solvent is mixed or otherwise combined with one or more solvents.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: July 19, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventors: Anand Subramanian, Raymond Floyd
  • Patent number: 7964090
    Abstract: Systems and methods for processing hydrocarbons are provided. A hydrocarbon containing one or more asphaltenes and one or more non-asphaltenes can be mixed with a solvent. The ratio of the solvent to the hydrocarbon can be about 2:1 to about 10:1. The asphaltenes can be selectively separated from the non-asphaltenes. A portion of the asphaltenes can be vaporized in the presence of gasified hydrocarbons and combustion gas. A portion of the asphaltenes can be cracked at a temperature sufficient to provide a cracked gas. Liquid asphaltenes, solid asphaltenes, or both can be deposited onto one or more solids to provide one or more hydrocarbon containing solids. The cracked gas can be selectively separated from the hydrocarbon containing solids. A portion of the hydrocarbon containing solids can be combusted to provide the combustion gas. The hydrocarbon containing solids can be gasified to provide the gasified hydrocarbons and to regenerate the solids.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: June 21, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Rashid Iqbal