And Group Viii Metal Patents (Class 208/422)
  • Patent number: 10035958
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation. Hydrocarbon-containing materials are also used as feedstocks.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: July 31, 2018
    Assignee: XYLECO, INC.
    Inventor: Marshall Medoff
  • Patent number: 9790440
    Abstract: Methods and systems for hydrocracking a heavy oil feedstock include using a colloidal or molecular catalyst (e.g., molybdenum sulfide) and provide for concentration of the colloidal or molecular catalyst within the lower quality materials requiring additional hydrocracking in one or more downstream reactors. In addition to increased catalyst concentration, the inventive systems and methods provide increased reactor throughput, increased reaction rate, and of course higher conversion of asphaltenes and lower quality materials. Increased conversion levels of asphaltenes and lower quality materials also reduces equipment fouling, enables the reactor to process a wider range of lower quality feedstocks, and can lead to more efficient use of a supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 17, 2017
    Assignee: HEADWATERS TECHNOLOGY INNOVATION GROUP, INC.
    Inventor: Yu-Hwa Chang
  • Patent number: 8618017
    Abstract: A catalyst for hydrotreating and/or hydroconverting heavy metal-containing hydrocarbon feeds, comprises a support in the form of mainly irregular and non-spherical alumina-based agglomerates the specific shape. The catalyst is prepared by a specific order of steps: crushing, calcining, acidic autoclaving, drying, further calcining and impregnation with catalytic metals.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 31, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Stephane Kressmann, Magalie Roy-Auberger, Jean Luc Le Loarer, Denis Guillaume, Jean Francois Chapat
  • Patent number: 8226821
    Abstract: A multi-stage catalytic process for the direct liquefaction of coal is utilized with a hydrotreater to first liquefy and subsequently treat the product in one integrated process. A fresh hydrogenation catalyst is used to reduce heteroatoms (S, N) from coal liquids in the downstream hydrotreater. This catalyst is then cascaded and re-used in the direct coal liquefaction process, first in the low temperature Stage 1, and then re-used in the high temperature Stage 2. Coal liquid products have very low contaminants and can be readily used to produce gasoline and diesel fuel. Catalyst requirements are substantially lowered utilizing this novel process.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: July 24, 2012
    Inventors: James B MacArthur, John E Duddy
  • Patent number: 8206577
    Abstract: This invention encompasses systems and methods for pretreating a carbonaceous material, comprising heating to a suitable temperature and for a suitable reaction time, a mixture comprising the carbonaceous material, one or more catalysts or catalyst precursors and a hydrocarbonaceous liquid.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: June 26, 2012
    Inventors: Alexander E. Kuperman, Jinyi Han
  • Patent number: 8063258
    Abstract: A process for producing fuel from biomass is disclosed herein. The process includes torrefying biomass material at a temperature between 80° C. and 300° C. to form particulated biomass having a mean average particle size from about 1 ?m to about 1000 ?m. The particulated biomass is mixed with a liquid to form a suspension, wherein the liquid comprises bio-oil, wherein the suspension includes between 1 weight percent to 40 weight percent particulated biomass. The suspension is fed into a hydropyrolysis reactor; and at least a portion of the particulated biomass of the suspension is converted into fuel.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 22, 2011
    Assignee: Kior Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Publication number: 20110120918
    Abstract: This invention encompasses systems and methods for converting solid carbonaceous material to a liquid product, comprising maintaining a solid carbonaceous material in the presence of at least one active source of nickel and at least one active source of a second metal at a reaction temperature of greater than 350° C. and at a pressure in the range of 300 to 5000 psig for a time sufficient to form a liquid product.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventors: Alexander E. Kuperman, Jinyi Han
  • Publication number: 20110120916
    Abstract: This invention encompasses systems and methods for converting solid carbonaceous material to a liquid product, comprising maintaining a solid carbonaceous material in the presence of at least one active source of cobalt and at least one active source of a second metal at a reaction temperature of greater than 350° C. and at a pressure in the range of 300 to 5000 psig for a time sufficient to form a liquid product.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventors: Alexander E. Kuperman, Jinyi Han
  • Publication number: 20110042272
    Abstract: A multi-stage catalytic process for the direct liquefaction of coal is utilized with a hydrotreater to first liquefy and subsequently treat the product in one integrated process. A fresh hydrogenation catalyst is used to reduce heteroatoms (S, N) from coal liquids in the downstream hydrotreater. This catalyst is then cascaded and re-used in the direct coal liquefaction process, first in the low temperature Stage 1, and then re-used in the high temperature Stage 2. Coal liquid products have very low contaminants and can be readily used to produce gasoline and diesel fuel. Catalyst requirements are substantially lowered utilizing this novel process.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 24, 2011
    Inventors: James B. MacArthur, John E. Duddy
  • Patent number: 6936159
    Abstract: A process for recovering hydrocarbons from coal or oil shale is disclosed. The process involves the steps of forming a pulp of finely divided coal or oil shale in a first reaction bed, adding concentrated sulphuric acid to the first reaction bed, controlling the temperature of the first reaction bed to produce a hydrocarbon mixture, and deacidifying the hydrocarbon mixture.
    Type: Grant
    Filed: November 23, 2000
    Date of Patent: August 30, 2005
    Assignee: Add Astra Environment Technologies Pty Ltd
    Inventor: Percy Evan Kean
  • Patent number: 6139723
    Abstract: A highly dispersed iron-based ionic liquid or liquid-gel catalyst which may be anion-modified and metals-promoted has high catalytic activity, and is useful for hydrocracking/hydrogenation reactions for carbonaceous feed materials. The catalyst is produced by aqueous precipitation from saturated iron salt solutions such as ferric sulfate and ferric alum, and may be modified during preparation with anionic sulfate (SO.sub.4.sup.2-) and promoted with small percentages of at least one active metal such as cobalt, molybdenum, palladium, platinum, nickel, or tungsten or mixtures thereof. The resulting catalyst may be used in a preferred ionic liquid form or in a liquid-gel form, and either fluidic form can be easily mixed and reacted with carbonaceous feed materials such as coal, heavy petroleum fractions, mixed plastic waste, or mixtures thereof.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: October 31, 2000
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bruce P. Pelrine, Alfred G. Comolli, Lap-Keung Lee
  • Patent number: 5871638
    Abstract: A dispersed fine-sized anion-modified and phosphorus-promoted iron-oxide slurry catalyst having high surface area exceeding 100 m.sup.2 /gm and high catalytic activity, and which is useful for hydrogenation and hydroconversion reactions for carbonaceous feed materials is disclosed. The catalyst is synthesized by rapid aqueous precipitation from saturated salt solutions such as ferric sulfate and ferric alum, and is promoted with phosphorus. The iron-based catalysts are modified during their preparation with anionic sulfate (SO.sub.4.sup.2-). The resulting catalyst has primary particle size smaller than about 50 Angstrom units, and may be used in a preferred wet cake or gel form which can be easily mixed with a carbonaceous feed material such as coal, heavy petroleum fractions, mixed waste plastics, or mixtures thereof. Alternatively, the catalyst can be dried and/or calcined so as to be in a fine dry particulate form suitable for adding to the feed material.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: February 16, 1999
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Vivek R. Pradhan, Alfred G. Comolli, Lap-Keung Lee
  • Patent number: 5492618
    Abstract: An improved process for recovering hard acids and soft bases used to decompose coal in which finely divided coal particles are contacted with a hard acid in the presence of a soft base at temperatures of from 0.degree. to 100.degree. C., said hard acid being characterized by a heat of reaction with dimethylsulfide of from 10 kcal/mol to 30 kcal/mol and said soft base being characterized by a heat of reaction with boron trifluoride of from 10 kcal/mol to 17 kcal/mol, followed by extracting the decomposed coal to remove said hard acid and soft base wherein the improvement comprises performing said extraction at a temperature of about 0.degree. to about 50.degree. C. using dimethylcarbonate as the extraction solvent.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: February 20, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: George M. Kramer, Edwin R. Ernst, Andres M. Fraga
  • Patent number: 5489377
    Abstract: An improved process for recovering hard acids and soft bases used to decompose coal in which finely divided coal particles are contacted with a hard acid in the presence of a soft base at temperatures of from 0.degree. to 100.degree. C., said hard acid being characterized by a heat of reaction with dimethylsulfide of from 10 kcal/mol to 30 kcal/mol and said soft base being characterized by a heat of reaction with boron trifluoride of from 10 kcal/mol to 17 kcal/mol, followed by extracting the decomposed coal to remove said hard acid and soft base wherein the improvement comprises performing said extraction at a temperature of about 0.degree. to about 50.degree. C. using dimethylcarbonate as the extraction solvent, and wherein following said dimethylcarbonate extraction, said coal is extracted with water at a temperature of from about 60.degree. to 275.degree. C., and wherein following said water extraction, said coal is soxhlet extracted in sulfolane at a temperature of about 25.degree. to about 350.degree.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: February 6, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: George M. Kramer, Andres M. Fraga
  • Patent number: 5489376
    Abstract: An improved process for recovering hard acids and soft bases used to decompose coal in which finely divided coal particles are contacted with a hard acid in the presence of a soft base at temperatures of from 0.degree. to 100.degree. C., said hard acid being characterized by a heat of reaction with dimethylsulfide of from 10 kcal/mol to 30 kcal/mol and said soft base being characterized by a heat of reaction with boron trifluoride of from 10 kcal/mol to 17 kcal/mol, followed by extracting the decomposed coal to remove said hard acid and soft base wherein the improvement comprises performing said extraction at a temperature of about 0.degree. to about 50.degree. C. using dimethylsulfide as the extraction solvent, and wherein following said dimethylcarbonate extraction, said decomposed coal is extracted with water at a temperature of from about 60.degree. to 275.degree. C.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: February 6, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: George M. Kramer, Edwin R. Ernst, Andres M. Fraga
  • Patent number: 5389230
    Abstract: This invention relates to a catalytic process for converting a carbonaceous material to a liquid product. More specifically, this invention relates to a process for hydroconverting coal in a hydroconverting zone to liquid hydrocarbon products in the presence of a catalyst prepared in situ, with the catalyst being added to a mixture of coal and solvent as an oil soluble metal compound. An increased quantity of liquid product is achieved by incorporating a hydrocracking zone into the process.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: February 14, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventor: Lavanga R. Veluswamy
  • Patent number: 5338441
    Abstract: The present invention relates to a catalytic process for converting a solid carbonaceous material, such as coal, to a liquid product in the presence of hydrogen. More particularly, this invention relates to a coal liquefaction process wherein a mixture of coal, bottoms, solvent and a sulfiding agent is subjected to liquefaction conditions in the presence of a catalyst precursor. This catalyst or catalyst precursor is comprised of a thermally decomposable compound of Groups IIB, IVB, VB, VIB, VIIB, and VIII of the Periodic Table of the Elements such as molybdenum.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: August 16, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: Steve C. LeViness, Steve J. Hsia, Michael Y. Wen, Stephen M. Davis, Claude C. Culross, Peter S. Maa
  • Patent number: 5298157
    Abstract: A process for depolymerizing coal at low temperatures by contacting finely divided coal with a hard acid and soft base.
    Type: Grant
    Filed: August 4, 1992
    Date of Patent: March 29, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: George M. Kramer, Edwin R. Ernst, Chang S. Hsu
  • Patent number: 5294349
    Abstract: A process for hydroprocessing coal to hydrocarbon oils wherein coal is depolymerized at low temperatures by contacting finely divided coal with a hard acid and soft base. The depolymerized coal is then hydroprocessed to hydrocarbon oils by forming a mixture with a coal conversion catalyst or precursor thereof, and hydroprocessing the mixture at temperatures of from 250.degree. to 550.degree. C. and hydrogen partial pressures of from 2100 to 35000 kPa.
    Type: Grant
    Filed: August 4, 1992
    Date of Patent: March 15, 1994
    Assignee: Exxon Research and Enginnering Company
    Inventors: George M. Kramer, Edwin R. Ernst, Chang S. Hsu, Gopal H. Singhal, Peter S. Maa
  • Patent number: 5200063
    Abstract: This invention is directed to a staged process for producing liquids from coal or similar carbonaceous feeds combining a pretreatment stage and a liquefaction stage. In the process, the feed is dispersed in an organic solvent and reacted with carbon monoxide at an elevated temperature and pressure. The so pretreated coal is sent to a liquefaction reactor, wherein the coal is reacted in the presence of hydrogen and catalyst to produce valuable liquid fuels or feedstocks.
    Type: Grant
    Filed: October 9, 1991
    Date of Patent: April 6, 1993
    Assignee: Exxon Research and Engineering Company
    Inventors: Dan R. Neskora, Stephen N. Vaughn, W. Neal Mitchell, Calude C. Culross, Steve D. Reynolds, Edward Effron
  • Patent number: 5130013
    Abstract: A process for producing a liquefied coal oil by a two step hydrogenation reaction of coal, which comprises subjecting coal to a first hydrogenation and subjecting at least a part of the reaction product of the first hydrogenation to a second hydrogenation, wherein the second hydrogenation is conducted in the presence of an alkali metal compound and/or an alkaline earth metal compound and a catalyst carrying a metal of Group VI-A and a metal of Group VIII of the Periodic Table.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: July 14, 1992
    Assignees: Mitsubishi Kasei Corporation, Kabushiki Kaisha Kobe Seiko Sho, Idemitsu Kosan Company Limited, Cosmo Oil Co., Ltd.
    Inventors: Yoichi Kageyama, Iwao Yamamoto, Takahisa Yamaura, Jun Imai
  • Patent number: 5110451
    Abstract: A two stage coal extracting process has a first liquid hydrogen donor solvent oil extraction stage and a second stage comprising catalytic hydrocracking of the extract. Desired levels of hydrocracking and hydrogenation of the extract, with an acceptable level of napthene formation, are achieved by using on the catalyst a mixture of a promoted W or Mo catalyst with an unpromoted W or Mo catalyst.
    Type: Grant
    Filed: January 16, 1991
    Date of Patent: May 5, 1992
    Assignee: Coal Industry (Patents) Limited
    Inventor: Michael A. Jones
  • Patent number: 5096569
    Abstract: Disclosed is a method for catalytically hydropyrolyzing carbonaceous material to produce liquid products boiling under about 550.degree. C. with reduced amounts of methane being formed. The process comprises (a) treating the carbonaceous material with as hydrogenation catalyst; (b) contacting the so-treated carbonaceous material with an effective amount of hydrogen, at an effective residence time, at a temperature below the critical temperature of rapid methane formation; (c) recovering the resulting liquids, gases, and char; and (d) recycling the char.
    Type: Grant
    Filed: January 15, 1991
    Date of Patent: March 17, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Peter S. Maa, Russell R. Chianelli
  • Patent number: 5064527
    Abstract: An improved hydroconversion process for carbonaceous materials wherein a dihydrocarbyl substituted dithiocarbamate of a metal selected from any one of Groups IV-B, V-A, VI-A, VII-B, and VIII-A of the Periodic Table of Elements or a mixture thereof is used as a catalyst precursor. The improved process is effective for both normally solid and normally liquid carbonaceous materials and for carbonaceous materials which are either solid or liquid at the conversion conditions. The hydroconversion will be accomplished at a temperature within the range from about 500.degree. to about 900.degree. F., at a total pressure within the range from about 500 to 7000 psig and at a hydrogen partial pressure within the range from about 400 to about 5000 psig.
    Type: Grant
    Filed: May 8, 1984
    Date of Patent: November 12, 1991
    Assignee: Exxon Research & Engineering Company
    Inventors: Gopal H. Singhal, Bobby L. Wilson, Edward H. Edelson, Michael A. Mikita
  • Patent number: 5055181
    Abstract: Disclosed is a process for obtaining liquids and gases from carbonaceous material, such as coal. The carbonaceous material is first treated with a gasification catalyst, and optionally a hydrogenation catalyst, and hydropyrolyzed for an effective residence time, below the critical temperature at which methane begins to rapidly form, to make liquid products. The resulting char is gasified in the presence of steam at a temperature from about 500.degree. C. to about 900.degree. C.
    Type: Grant
    Filed: December 14, 1988
    Date of Patent: October 8, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Peter S. Maa, Martin L. Gorbaty
  • Patent number: 4917791
    Abstract: A two-stage catalytic hydroconversion process using a large-pore catalyst in the first stage reactor and a small-pore catalyst in the second stage reactor in the two-stage process for hydroconversion of coal or petroleum asphaltene feed materials to produce distillate liquid fuels. The large-pore catalyst is characterized by having pore diameters larger than 1000.ANG. occupying a major portion of the catalyst total pore volume of 0.2 to 1.0 cc/gm, and the small-pore catalyst is characterized by having pore diameters smaller than 1000.ANG. occupying a major portion of the catalyst total pore volume.
    Type: Grant
    Filed: March 10, 1988
    Date of Patent: April 17, 1990
    Inventor: Chia-chen Chu Kang
  • Patent number: 4855037
    Abstract: Described is a catalyst used for hydrogen treatment of coal tar characterized in that about 10 to 30 weight percent of Mo oxides as first catalyst component and about 1 to 6 weight percent of Ni and/or Co as second catalyst component, both relates to the total catalyst weight, are supported on a porous inorganic substrate consisting essentially of alumina or silica alumina, and in that the mean pore size is about 8 to 18 nm, the pore size distribution is such that______________________________________ pore size nm volume ratio cc/g ______________________________________ 3.5-5 Less than 0.1 5-8 Less than 0.3 8-18 0.2-0.2 18-30 Less than 0.2 over 30 Less than 0.1 ______________________________________and the total pore surface is higher than about 100 m.sup.2 /g.
    Type: Grant
    Filed: January 28, 1988
    Date of Patent: August 8, 1989
    Assignee: Nippon Kokan Kabushiki Kaisha
    Inventors: Tadashi Murakami, Mikio Nakaniwa, Yoshio Nakayama, Mitsuaki Masuo
  • Patent number: 4853111
    Abstract: A process for two-stage catalytic co-processing of coal and heavy petroleum hydrocarbon liquid fractions to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a petroleum residuum and optionally with a process-derived hydrocarbon liquid solvent and fed into a first stage catalytic reaction zone operated at relatively mild conditions which promote controlled rate liquefaction of the coal while simultaneously hydrogenating the petroleum and hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and 10-100 lb/hr/ft.sup.3 space velocity for the total coal and oil feed. From the first stage reaction zone, the partially hydrogenated effluent material is passed directly to the close-coupled second stage catalytic reaction zone maintained at more severe conditions of 750.degree.-900.degree. F.
    Type: Grant
    Filed: July 25, 1986
    Date of Patent: August 1, 1989
    Assignee: HRI, Inc.
    Inventors: James B. MacArthur, Joseph B. McLean, Alfred G. Comolli
  • Patent number: 4842719
    Abstract: A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F.
    Type: Grant
    Filed: June 18, 1986
    Date of Patent: June 27, 1989
    Assignee: HRI, Inc.
    Inventors: James B. MacArthur, Joseph B. McLean, Alfred G. Comolli
  • Patent number: 4818374
    Abstract: A process for converting coal to an oil fraction, which comprises subjecting coal to a first hydrogenation reaction, deashing the reaction product of the first hydrogenation reaction and subjecting the deashed liquefied oil to a second hydrogenation reaction, wherein coal, a solvent and hydrogenation-treated heavy oil components are supplied for the first hydrogenation reaction; from the first hydrogenation reaction product, at least a part of the oil fraction is obtained; from the first hydrogenation reaction product, a substantial amount of preasphaltene components is removed simultaneously with or independently of the deashing operation, and the deashed liquefied oil containing heavy oil components and not greater than 20% by weight of preasphaltene components thereby obtained, is supplied for the second hydrogenation reaction; from the second hydrogenation reaction product, an oil fraction and heavy oil components are separated and the heavy oil components are recycled to the first hydrogenation reaction
    Type: Grant
    Filed: November 8, 1985
    Date of Patent: April 4, 1989
    Assignees: Mitsubishi Chemical Industries Ltd., Kabushiki Kaisha Kobe Seiko Sho, Idemitsu Kosan Company Limited, Asia Oil Company Limited, Nippon Brown Coal Liquefaction Co., Ltd.
    Inventors: Nobuyoshi Hirokoh, Yoichi Kageyama, Yukio Nakako, Tetsuo Matsumura
  • Patent number: 4750991
    Abstract: A method for hydrogenating a solvent-refined coal, comprising:(a) hydrogenating coal in the presence of a hydrocarbon solvent and an iron catalyst;(b) obtaining a solvent-refined coal material therefrom, which has a boiling point of at least 400.degree. under atmospheric pressure conditions;(c) removing preasphaltenes from said solvent-refined coal material to obtain a substantially preasphaltene free solvent-refined coal; and(d) hydrogenating the solvent-refined coal in a fixed bed under hydrogen pressure.
    Type: Grant
    Filed: July 3, 1985
    Date of Patent: June 14, 1988
    Assignees: Mitsubishi Chemical Industries, Ltd., Kabushiki Kaisha Kobe Seiko Sho, Idemitsu Kosan Company Limited, Asia Oil Company Limited, Nippon Brown Coal Liquefaction Co., Ltd.
    Inventors: Yoichi Kageyama, Hironori Kageyama, Jun Imai, Yukio Nakako
  • Patent number: 4737266
    Abstract: A method for hydrogenating a solvent-refined coal by heating it under hydrogen pressure in a fixed bed, characterized in that a solvent-refined coal fraction containing no substantial amount of preasphaltene is used as the solvent-refined coal.
    Type: Grant
    Filed: December 22, 1983
    Date of Patent: April 12, 1988
    Assignees: Mitsubishi Chemical Industries Ltd., Kabushiki Kaisha Kobe Seiko Sho, Idemitsu Kosan Company Limited, Asia Oil Company Limited, Nippon Brown Coal Liquefaction Co., Ltd.
    Inventors: Yoichi Kageyama, Hironori Kageyama, Jun Imai, Yukio Nakako
  • Patent number: 4728418
    Abstract: A novel process for the low-temperature depolymerization and liquefaction of coal wherein the coal is subjected to sequential processing steps for the cleavage of different types of intercluster lnikages during each processing step. A metal chloride catalyst is intercalated in finely crushed coal and the coal is partially depolymerized under mild hydrotreating conditions during the first processing step. In the second processing step the product from the first step is subjected to base-catalyzed depolymerization with an alcoholic solution of an alkali hydroxide, yielding an almost fully depolymerized coal, which is then hydroprocessed with a sulfided cobalt molybdenum catalyst in a third processing step to obtain a hydrocarbon oil as the final product.
    Type: Grant
    Filed: October 23, 1985
    Date of Patent: March 1, 1988
    Assignee: University of Utah
    Inventors: Joseph S. Shabtai, Ikuo Saito
  • Patent number: 4708788
    Abstract: A liquefaction process for coal lignite or heavy oil is disclosed utilizing a hydrogen-donor solvent. The preferred hydrogen-donor solvent is recovered as a vapor from the liquefaction mixture. The preferred method for converting the vapor into active hydrogen-donor solvent form involves passage of the vapor over a catalyst bed positioned in the vapor space of the catalyst vessel. Novel apparatus for so positioning the catalyst bed is also disclosed.
    Type: Grant
    Filed: July 16, 1984
    Date of Patent: November 24, 1987
    Assignee: Phillips Petroleum Company
    Inventor: Jim Y. Low
  • Patent number: 4627913
    Abstract: A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.
    Type: Grant
    Filed: January 9, 1985
    Date of Patent: December 9, 1986
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Edwin N. Givens, Frank K. Schweighardt
  • Patent number: 4595666
    Abstract: Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing carbon undesired metals contaminants deposits, are rejuvenated for reuse. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure, after which the rejuvenated catalyst containing carbon deposits can be effectively reused in the catalytic hydrogenation process.
    Type: Grant
    Filed: April 30, 1984
    Date of Patent: June 17, 1986
    Assignee: HRI, Inc.
    Inventor: Partha S. Ganguli
  • Patent number: 4595672
    Abstract: Self-promoted molybdenum and tungsten sulfide hydrotreating catalysts are prepared by heating one or more water soluble catalyst precursors in a non-oxidizing atmosphere in the presence of sulfur at a temperature of at least about 200.degree. C. The precursors will be one or more compounds of the formula ML(Mo.sub.y W.sub.1-y O.sub.4) wherein M is one or more promoter metals selected from the group consisting essentially of Mn, Fe, Co, Ni, Cu, Zn and mixtures thereof, wherein O.ltoreq.y.ltoreq.1 and wherein L is a nitrogen containing, neutral multidentate, chelating ligand. In a preferred embodiment the ligand L will comprise one or more chelating alkyl di or triamines and the non-oxidizing atmosphere will comprise H.sub.2 S.
    Type: Grant
    Filed: December 11, 1984
    Date of Patent: June 17, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Teh C. Ho, Larry E. McCandlish