Hydrocracking In All Stages Patents (Class 208/59)
  • Patent number: 11931709
    Abstract: The present invention relates to a mixing apparatus. A production unit produces a working fluid that is in a supercritical state or a subcritical state. A storage unit stores a material. A dissolving unit dissolves the material in the working fluid. A mixer mixes the material together in the presence of the working fluid. A material feed valve opens or closes a flow passage through which the material is to pass to be fed from the storage unit into the dissolving unit. A working fluid inflow valve opens or closes a flow passage through which the working fluid is to pass to flow into the dissolving unit from the production unit. A mixer inflow valve opens or closes a flow passage through which the working fluid and the material are to pass to flow into the mixer from the dissolving unit.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: March 19, 2024
    Assignee: KOBE STEEL, LTD.
    Inventors: Kosuke Higashi, Kazuhisa Fukutani
  • Patent number: 11692142
    Abstract: The invention concerns a process for the treatment of a hydrocarbon feed, said process comprising the following steps: a) a hydrotreatment step, in which the hydrocarbon feed and hydrogen are brought into contact over a hydrotreatment catalyst, b) an optional step of separating the effluent obtained from the hydrotreatment step a), c) a step of hydrocracking at least a portion of the effluent obtained from step a) or at least a portion of the heavy fraction obtained from step b), d) a step of separating the effluent obtained from step c), e) a step of precipitating sediments, f) a step of physical separation of the sediments from the heavy liquid fraction obtained from step e), g) a step of recovering a liquid hydrocarbon fraction having a sediment content, measured using the ISO 10307-2 method, of 0.1% by weight or less.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: July 4, 2023
    Assignee: IFP Energies nouvelles
    Inventors: Wilfried Weiss, Isabelle Merdrignac, Jeremie Barbier, Ann Cloupet
  • Patent number: 11560520
    Abstract: A multi-stage process for reducing the environmental contaminants in an ISO8217 compliant Feedstock Heavy Marine Fuel Oil involving a core desulfurizing process and a Detrimental Solids removal unit as either a pre-treating step or post-treating step to the core process. The Product Heavy Marine Fuel Oil complies with ISO 8217 for residual marine fuel oils and has a sulfur level has a maximum sulfur content (ISO 14596 or ISO 8754) between the range of 0.05 mass % to 1.0 mass and a Detrimental Solids content less than 60 mg/kg. A process plant for conducting the process is also disclosed.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: January 24, 2023
    Assignee: Magēmā Technology LLC
    Inventors: Michael Joseph Moore, Bertrand Ray Klussmann, Carter James White
  • Patent number: 11459510
    Abstract: The invention relates to a process for producing an upgraded renewable oil from renewable carbonaceous material(-s) comprising providing a low sulphur oxygen containing renewable crude oil having a sulphur content of less than 0.5 wt % and an oxygen content from about 2.0 wt to about 20 wt %, pressurising the low sulphur oxygen containing renewable crude oil to an operational pressure in the range 20 to 200 bar, adding and mixing hydrogen to the pressurized low sulphur oxygen containing crude oil, heating the oil to an operational temperature in the range 180-410° C. in one or more steps, contacting said oil with at least one heterogeneous catalyst contained in a first reaction zone, contacting the effluent from said first reaction zone with at least one heterogeneous catalyst contained in a second reaction zone, where in at least one of the heterogeneous catalysts in the first reaction zone and/or the second reaction zone is on a non-sulphided form.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: October 4, 2022
    Assignees: STEEPER ENERGY APS, STEEPER ENERGY CANADA LTD.
    Inventors: Steen B. Iversen, Göran Olofsson, Sergios Karatzos, Claus Uhrenholt Jensen, Julie Katerine Rodríguez Guerrero
  • Patent number: 11447706
    Abstract: A process for reducing the environmental contaminants in a ISO8217 compliant Feedstock Heavy Marine Fuel Oil, the process involving: mixing a quantity of the Feedstock Heavy Marine Fuel Oil with a quantity of Activating Gas mixture to give a feedstock mixture; contacting the feedstock mixture with one or more catalysts to form a Process Mixture from the feedstock mixture; separating the Product Heavy Marine Fuel Oil liquid components of the Process Mixture from the gaseous components and by-product hydrocarbon components of the Process Mixture and, discharging the Product Heavy Marine Fuel Oil. The Product Heavy Marine Fuel Oil is compliant with ISO 8217 for residual marine fuel oils and the Environmental Contaminants, which are selected from the group consisting of: a sulfur; vanadium, nickel, iron, aluminum and silicon and combinations thereof, have concentration less than 0.5 wt %.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: September 20, 2022
    Assignee: Magēmā Technology LLC
    Inventors: Bertrand Ray Klussmann, Michael Joseph Moore
  • Patent number: 11383202
    Abstract: Systems and methods are provided for conversion of oxygenate feeds to distillate boiling range products using multiple moving bed reactor stages. The systems and methods allow for multiple stages to be used while avoiding the need for distillation or other boiling point based separation as the mixture of feed and effluent is passed between stages. Instead, a stripping gas is used to disengage the feed and effluent from the catalyst solids. In combination with an improved moving bed reactor design, this can allow substantially all of the feed and effluent from a first moving bed reactor stage to be passed into a second moving bed reactor stage, even when the feed and effluent include both vapor and liquid phase portions.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: July 12, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Arsam Behkish, Anjaneya S. Kovvali
  • Patent number: 11345863
    Abstract: A process for reducing the environmental contaminants in a ISO 8217 compliant Feedstock Heavy Marine Fuel Oil (Feedstock), the process involving: mixing a quantity of the Feedstock with a quantity of Activating Gas mixture to give a feedstock mixture; contacting the feedstock mixture with one or more catalysts to form a Process Mixture from the feedstock mixture; separating the Product Heavy Marine Fuel Oil liquid (Product) components of the Process Mixture from the gaseous components and by-product hydrocarbons of the Process Mixture and, discharging the Product. The Product is compliant with ISO standards for residual marine fuel oils and has a maximum sulfur content between the range of 0.05% wt. to 0.50% wt. The Product can be used as or as a blending stock for compliant, low sulfur or ultralow sulfur heavy marine fuel oil. A device for conducting the process is also disclosed.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: May 31, 2022
    Assignee: Magema Technology, LLC
    Inventors: Bertrand R. Klussmann, Michael J. Moore
  • Patent number: 11217783
    Abstract: A composite negative electrode active material includes: a first carbon-based material; and a second carbon-based material on a surface of the first carbon-based material, wherein the first carbon-based material and the second carbon-based material have respective particle diameters that are different from each other.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 4, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seyoung Oh, Hyunchul Kim, Hyun Soh
  • Patent number: 11136279
    Abstract: This application relates to transfer hydrogenation between light alkanes and olefins, and, more particularly, embodiments related to an integrated olefin production system and process which can produce higher carbon number olefins from corresponding alkanes. Examples methods may include reacting at least a portion of the ethylene and the at least one alkane via transfer hydrogenation to produce at least a mixed product stream comprising generated ethane from at least a portion of the ethylene, unreacted ethylene, and an olefin corresponding to the at least one alkane.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 5, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Aaron Sattler, Michele Paccagnini, Kun Wang, Henry K. Klutse, Brian M. Weiss
  • Patent number: 11084992
    Abstract: In accordance with one embodiment of the present disclosure, a heavy oil may be upgraded by a process that may include removing at least a portion of metals from the heavy oil in a hydrodemetalization reaction zone to form a hydrodemetalization reaction effluent, removing at least a portion of metals and at least a portion of nitrogen from the hydrodemetalization reaction effluent in a transition reaction zone to form a transition reaction effluent, removing at least a portion of nitrogen from the transition reaction effluent in a hydrodenitrogenation reaction zone to form a hydrodenitrogenation reaction effluent, and reducing aromatics content in the hydrodenitrogenation reaction effluent in a hydrocracking reaction zone by contacting the hydrodenitrogenation reaction effluent to form an upgraded fuel.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: August 10, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Lianhui Ding, Essam Al-Sayed, Ibrahim Abba
  • Patent number: 11021664
    Abstract: The invention relates to a catalytic hydrocracker with two different catalyst beds within the reactor where each is loaded with a catalyst that has different hydrocracking properties. A first catalyst bed preferably cracks heavy oil more aggressively than the catalyst in the second bed. The catalytic hydrocracker includes further two recycle lines such that one directs unconverted oil through both hydrocracker beds and a bypass inlet is positioned between the first and second catalyst beds to admit unconverted oil to pass only through the second less aggressive hydrocracker catalyst bed. When gasoline prices favor the production of gasoline, less unconverted oil is recycled through the bypass therefore making more gasoline, but when prices favor the production of j et and diesel, more recycle is directed through the bypass recycle thus making less gasoline and more diesel and jet fuel.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: June 1, 2021
    Assignee: Phillips 66 Company
    Inventor: Xiangxin Yang
  • Patent number: 10988697
    Abstract: The present invention discloses a process by which the heavy hydrocarbons are subjected to hydroprocessing for producing distillates which can be further treated or converted downstream, to fuels and chemicals.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: April 27, 2021
    Assignee: Hindustan Petroleum Corporation Limited
    Inventors: Kanuparthy Naga Raja, Pudi Satyanarayana Murty, Bhavesh Sharma, Peddy Venkata Chalapathi Rao, Nettem Venkateswarlu Choudary, Sriganesh Gandham
  • Patent number: 10960375
    Abstract: A method of revamping vertical converters having a bolt-on flanged pressure shell extension for housing an internal heat exchanger is performed by replacing an existing pressure shell extension with a larger pressure shell extension for housing a plurality of internal heat exchangers.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: March 30, 2021
    Assignee: KELLOGG BROWN & ROOT LLC.
    Inventors: Stephen Allen Noe, Sachin Kalatrakkal, Shiliang Zhan, Deyuan Wu
  • Patent number: 10876035
    Abstract: Asphaltene produced during the production of hydrocarbons in an underground reservoir may be reduced and decomposed by introducing into the underground reservoir a fluid having a catalyst of from about 3 to about 7% Ni with a magnesium oxide support or a catalyst of from about 15 to about 25% tungsten oxide with a zirconium oxide support or a mixture thereof. The viscosity of heavy oil within the underground reservoir is reduced in the presence of the catalyst.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 29, 2020
    Assignees: Baker Hughes, a GE company, LLC, William Marsh Rice University
    Inventors: Sivaram Pradhan, Scott Wellington, Houman Shammai, Michael Wong
  • Patent number: 10865348
    Abstract: A process for hydrodealkylating a hydrocarbon stream comprising (a) contacting the hydrocarbon stream with a hydroprocessing catalyst in a hydroprocessing reactor in the presence of hydrogen to yield a hydrocarbon product, wherein the hydrocarbon stream contains C9+ aromatic hydrocarbons; and (b) recovering a treated hydrocarbon stream from the hydrocarbon product, wherein the treated hydrocarbon stream comprises C9+ aromatic hydrocarbons, wherein an amount of C9+ aromatic hydrocarbons in the treated hydrocarbon stream is less than an amount of C9+ aromatic hydrocarbons in the hydrocarbon stream due to hydrodealkylating of at least a portion of C9+ aromatic hydrocarbons from the hydrocarbon stream during the step (a) of contacting.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: December 15, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Ravichander Narayanaswamy, Krishna Kumar Ramamurthy
  • Patent number: 10829703
    Abstract: Process and apparatus for producing a naphtha stream is provided. The process comprises providing a kerosene stream to a hydrocracking reactor. The kerosene stream is hydrocracked in the presence of a hydrogen stream and a hydrocracking catalyst in the hydrocracking reactor at hydrocracking conditions comprising a hydrocracking pressure, a hydrocracking temperature, and a liquid hourly space velocity at a net conversion of at least about 90%, to provide a hydrocracked effluent stream comprising liquefied petroleum gas, heavy naphtha fraction and light naphtha fraction. One or more of the hydrocracking conditions are adjusted to maintain a ratio of the light naphtha fraction to the heavy naphtha fraction of at least about 2 by weight, suitably at least about 2.2 and preferably at least about 2.5 in the hydrocracked effluent stream while maintaining the net conversion of at least about 90%.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: November 10, 2020
    Inventors: John A. Petri, Bryan K. Glover, Andrea G. Bozzano, Mary Jo Wier
  • Patent number: 10815437
    Abstract: Processes and systems for converting high sulfur fuel oils to petrochemicals including hydrocracking the high sulfur fuel oil in a fuel oil hydrocracker to form a cracked fuel oil effluent, which may be separated into a light fraction and a heavy fraction. The heavy fraction may be gasified to produce a syngas, and the syngas or hydrogen recovered from the syngas may be fed to the fuel oil hydrocracker. The light fraction may be hydrocracked in a distillate hydrocracker to form a cracked effluent, which may be separated into a hydrogen fraction, a light hydrocarbon fraction, a light naphtha fraction, and a heavy naphtha fraction. The heavy naphtha fraction may be reformed to produce hydrogen and at least one of benzene, toluene, and xylenes. The light hydrocarbon fraction and/or the light naphtha fraction may be steam cracked to produce at least one of ethylene, propylene, benzene, toluene, and xylenes.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: October 27, 2020
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventor: Ujjal K. Mukherjee
  • Patent number: 10752848
    Abstract: A process for hydrocracking hydrocarbon-containing VD feedstocks allowing the improved production of middle distillates: a) hydrocracking of feedstocks in hydrogen and at least one hydrocracking catalyst, b) gas/liquid separation of effluent originating from a) producing a liquid effluent and a gaseous effluent with hydrogen, c) comprising the gaseous effluent before recycling into hydrocracking a), d) fractionation of liquid effluent into at least one effluent of converted hydrocarbon-containing products having boiling points less than 340° C. and an unconverted liquid fraction having a boiling point greater than 340° C., e) hydrocracking unconverted liquid fraction from d), in hydrogen and a hydrocracking catalyst, f) hydrotreating effluent from e) in a mixture with a hydrocarbon-containing gas-oil liquid feedstock having at least 95% by weight of compounds boiling at a boiling point between 150 and 400° C., hydrotreating f) operating in hydrogen and with at least one hydrotreating catalyst.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 25, 2020
    Assignee: IFP Energies nouvelles
    Inventors: Jan Verstraete, Elodie Tellier, Thomas Plennevaux, Emmanuelle Guillon, Anne Claire Pierron
  • Patent number: 10745630
    Abstract: A method of reducing catalyst agglomeration in a slurry hydrocracking zone containing at least two reactors is described. A hydrocarbon feed and a slurry hydrocracking catalyst are contacted in a first reactor to form a first effluent containing slurry hydrocracking reaction products, unreacted hydrocarbon feed, and the slurry hydrocracking catalyst, wherein the slurry hydrocracking catalyst agglomerates. The first effluent and an unsupported hydrogenation catalyst are contacted in a second reactor to form a second effluent containing the slurry hydrocracking reaction products, unreacted hydrocarbon feed, the slurry hydrocracking catalyst, and asphaltene reaction products.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 18, 2020
    Assignee: UOP LLC
    Inventors: Grant H. Yokomizo, Daniel J. Pintar, Gavin P. Towler
  • Patent number: 10689582
    Abstract: Methods are provided for refining natural oil feedstocks. The methods comprise reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters. In certain embodiments, the methods further comprise separating the olefins from the esters in the metathesized product. In certain embodiments, the methods further comprise hydrogenating the olefins under conditions sufficient to form a fuel composition. In certain embodiments, the methods further comprise transesterifying the esters in the presence of an alcohol to form a transesterified product.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: June 23, 2020
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Steven A. Cohen, Melvin L. Luetkens, Jr., Chander Balakrishnan, Robert Snyder
  • Patent number: 10370602
    Abstract: An apparatus for producing diesel fuel and jet fuel using Fischer-Tropsch synthetic oil, the apparatus including a hydrofining reactor, a hot separator, a first rectifying column, a hydrocracking reactor, a hydroisomerization reactor, a second rectifying column, a first mixing chamber and a second mixing chamber. The hydrofining reactor includes a raw material inlet and a hydrofining product outlet. The hot separator includes a separated oil outlet and a hydrofining product inlet which is connected to the hydrofining product outlet. The first rectifying column includes a tail oil fraction outlet, a diesel fraction outlet and a separated oil inlet which is connected to the separated oil outlet. The first mixing chamber includes a circulating hydrogen inlet, a first mixture outlet and a tail oil fraction inlet which is connected to the tail oil fraction outlet.
    Type: Grant
    Filed: September 4, 2017
    Date of Patent: August 6, 2019
    Assignee: WUHAN KAIDI ENGINEERING TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Tao Zhao, Bo Lai, Weiguang Yang, Dawei Wang, Xuewen Hao, Yanjie Zhou, Li Xu
  • Patent number: 9963646
    Abstract: A process for the hydrotreatment of a hydrocarbon feedstock in which: a) at least one hydrotreatment step is implemented in which at least a part of said feedstock and a gaseous flow comprising hydrogen is brought into contact with a hydrotreatment catalyst to obtain a hydrotreated effluent comprising hydrogen, and sulphurous and nitrogenous compounds; b) the hydrotreated effluent is separated to obtain a first gaseous effluent and a first liquid effluent; c) the first liquid effluent is expanded and the first liquid effluent is separated to obtain a second gaseous effluent and a second liquid effluent; d) the second gaseous effluent is cooled and separated to obtain a third gaseous effluent and a third liquid effluent; and e) a part of the third gaseous effluent is recycled.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 8, 2018
    Assignee: IFP Energies Nouvelles
    Inventors: Vincent Lecocq, Anne Claire Pierron, Thomas Plennevaux
  • Patent number: 9493718
    Abstract: Hydrocarbon feeds can be hydrotreated in a continuous gas-phase environment and then dewaxed in a liquid-continuous reactor. The liquid-continuous reactor can advantageously be operated in a manner that avoids the need for a hydrogen recycle loop. A contaminant gas can be added to the hydrogen input for the liquid-continuous reactor to modify the hydrogen consumption in the reactor.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 15, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Richard C. Dougherty, Michael A. Hayes, Benjamin S. Umansky, William E. Lewis
  • Patent number: 9434893
    Abstract: The invention describes a process for start-up of a hydrotreatment or hydroconversion unit carried out in the presence of hydrogen, in at least 2 catalytic beds, process in which At least one bed contains at least one presulfurized and preactivated catalyst and at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, A so-called starting feedstock, which is a hydrocarbon fraction that contains at least 0.5% by weight of sulfur, lacking olefinic compounds and not containing an added sulfur-containing compound, passes through a first catalytic bed that contains said presulfurized and preactivated catalyst and then passes through at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, And the first presulfurized and preactivated catalyst bed reaches a temperature of at least 220° C.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: September 6, 2016
    Assignee: EURECAT S.A.
    Inventor: Pierre Dufresne
  • Patent number: 9394493
    Abstract: An apparatus for hydrocracking an oil feedstock to produce a light oil stream without build-up of heavy polynuclear aromatic (HPNA) hydrocarbons in the recycle stream is provided. The apparatus includes a reactor for hydroprocessing the hydrocarbon feedstock to produce effluents, which are subsequently fractionated. Additional hydroprocessing reactors are provided for hydroprocessing individual fractionated product streams.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 19, 2016
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 9339801
    Abstract: The present invention relates to a catalyst for the conversion of methanol to aromatics and the preparation of the same. The catalyst comprising 85 to 99 parts by weight of a ZSM-5 zeolite, 0.1 to 15 parts by weight of element M1, which is at least one selected from the group consisted of Ag, Zn and Ga, and 0 to 5 parts by weight of element M2, which is at least one selected from the group consisted of Mo, Cu, La, P, Ce and Co, wherein the total specific surface area of the catalyst ranges from 350 to 500 m2/g, and the micropore specific surface area ranges from 200 to 350 m2/g. The catalyst has high total specific surface area, micropore specific surface area and micropore volume. Good catalytic activity can be shown from the results of the reaction of aromatics preparation from methanol using the catalyst provided by the present invention.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: May 17, 2016
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Xiqiang Chen, Zheming Wang, Jingxian Xiao, Feng Xu
  • Patent number: 9327274
    Abstract: The invention relates to a self-supported mixed metal sulfide (MMS) catalyst for hydrotreating hydrocarbon feedstock and to a method for preparing the catalyst. The self-supported MMS catalyst contains Ni:W in a mole ratio of 1:3 to 4:1, on a transition metal basis. The self supported MMS catalyst is characterized as having an HYD reaction rate constant of at least 15% higher than that of a catalyst comprising nickel sulfide alone or a catalyst comprising tungsten sulfide alone, when compared on same metal molar basis in hydrotreating of benzene as a feedstock at identical process conditions.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 3, 2016
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jinyi Han, Alexander E. Kuperman
  • Patent number: 9321974
    Abstract: This invention describes a process for mild hydrocracking of heavy hydrocarbon fractions of the vacuum distillate type or the deasphalted oil type with optimized thermal integration for the purpose of reducing the cost of the exchangers that are used as well as greenhouse gas emissions.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: April 26, 2016
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Romina Digne, Heloise Dreux, Frederic Feugnet, Nicolas Lambert
  • Patent number: 9315743
    Abstract: This invention describes a process for mild hydrocracking of heavy hydrocarbon fractions of the vacuum distillate type or the deasphalted oil type with optimized thermal integration for the purpose of reducing greenhouse gas emissions.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: April 19, 2016
    Assignee: IFP Energies nouvelles
    Inventors: Heloise Dreux, Frederic Feugnet, Romina Digne, Mai Phuong Do
  • Patent number: 9283551
    Abstract: The presently-disclosed subject matter includes methods for producing liquid hydrocarbons from syngas. In some embodiments the syngas is obtained from biomass and/or comprises a relatively high amount of nitrogen and/or carbon dioxide. In some embodiments the present methods can convert syngas into liquid hydrocarbons through a one-stage process. Also provided are catalysts for producing liquid hydrocarbons from syngas, wherein the catalysts include a base material, a transition metal, and a promoter. In some embodiments the base material includes a zeolite-iron material or a cobalt-molybdenum carbide material. In still further embodiments the promoter can include an alkali metal.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 15, 2016
    Assignee: Mississippi State University Research and Technology Corporation
    Inventors: Fei Yu, Qiangu Yan, William Batchelor
  • Patent number: 9266730
    Abstract: A bitumen and heavy oil upgrading process and system is disclosed for the synthesis of hydrocarbons, an example of which is synthetic crude oil (SCO). The process integrates Fischer-Tropsch technology with gasification and hydrogen rich gas stream generation. The hydrogen rich gas generation is conveniently effected using singly or in combination a hydrogen source, a hydrogen rich vapor from hydroprocessing and the Fischer-Tropsch process, a steam methane reformer (SMR) and autothermal reformer (ATR) or a combination of SMR/ATR. The feedstock for upgrading is distilled and the bottoms fraction is gasified and converted in a Fischer-Tropsch reactor. A resultant hydrogen lean syngas is then exposed to the hydrogen rich gas stream to optimize the formation of, for example, the synthetic crude oil. Partial upgrading and the commensurate benefits is detailed as well. A system for effecting the processes is also characterized in the specification.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 23, 2016
    Assignee: Expander Energy Inc.
    Inventor: Steve Kresnyak
  • Patent number: 9255229
    Abstract: The invention concerns a process for hydroconversion of a hydrocarbonaceous feedstock comprising: a preparation step of at least one catalyst in one or more preparation reactor upstream from a reaction section, wherein (i) at least one preparation reactor feeds one or more reactor of the reaction section, or (ii) preparation reactors are dedicated for catalysts fed to at least a hydroconversion reactor or at least a hydrotreatment reactor of the reaction section; a separation step of solids contained in the liquid effluents issued from the reaction section, a treatment step of residues issued from separation section, comprising a partial oxidation step wherein said residues are partially oxidized to produce carbon monoxide, hydrogen an a metal containing residue. Such process permits improving of products quality, operation of the separation section, recovering of catalytic metals contained in the feed and supplying hydrogen to the reaction section.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 9, 2016
    Assignee: TOTAL RAFFINAGE MARKETING
    Inventors: Didier Borremans, Maxime Lacroix, Katell Le Lannic-Dromard, Marie Ropars, Gloria Vendrell
  • Patent number: 9216407
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 22, 2015
    Assignee: Advanced Refining Technologies LLC
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Patent number: 9127218
    Abstract: One exemplary embodiment can be a process for hydroprocessing. The process can include providing a hydroprocessing zone having at least two beds, and quenching downstream of a first bed of the at least two beds with a first vacuum gas oil that may be lighter than another vacuum gas oil fed to the first bed.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: September 8, 2015
    Assignee: UOP LLC
    Inventors: Soumendra Mohan Banerjee, Mani Krishna, Avnish Kumar
  • Patent number: 9101853
    Abstract: A system and method of cracking hydrocarbon feedstocks is provided that allows for significant flexibility in terms of the desired product yield. An integrated process includes introducing the feedstock and hydrogen into a first hydrocracking reaction zone containing a first hydrocracking catalyst to produce a first zone effluent. The first zone effluent is passed to a fractionating zone to produce at least a low boiling fraction and a high boiling fraction, and optionally one or more intermediate fractions. The bottoms fraction is conveyed to a fluidized catalytic cracking reaction and separation zone, from which olefins and gasoline are recovered. At least a portion of remaining cycle oil is passed from the fluidized catalytic cracking reaction and separation zone to a second hydrocracking reaction zone containing a second hydrocracking catalyst to produce a second stage effluent.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 11, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Musaed Muhammad Al-Thubaiti, Ali Mahmood Al-Somali
  • Patent number: 9080113
    Abstract: Integrated processes for upgrading crude shale-derived oils, such as those produced by oil shale retorting or by in situ extraction or combinations thereof. Processes disclosed provide for a split-flow processing scheme to upgrade whole shale oil. The split flow concepts described herein, i.e., naphtha and kerosene hydrotreating in one or more stages and gas oil hydrotreating in one or more stages, requires additional equipment as compared to the alternative approach of whole oil hydrotreating. While contrary to conventional wisdom as requiring more capital equipment to achieve the same final product specifications, the operating efficiency vis a vis on-stream time efficiency and product quality resulting from the split flow concept far exceed in value the somewhat incrementally higher capital expenditure costs.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: July 14, 2015
    Assignee: Lummus Technology Inc.
    Inventors: Marvin I. Greene, Ujjal K. Mukherjee, Arun Arora
  • Publication number: 20150136659
    Abstract: A coal tar process is described. A coal tar stream is provided, and the coal tar stream is separated to provide a plurality of hydrocarbon streams. At least one of the hydrocarbon streams is hydroprocessed in a fluidized bed hydroprocessing zone with a catalyst to provide a gaseous volatile product and a solid heavy hydrocarbon product absorbed onto the catalyst. The gaseous volatile product is separated from the catalyst. The catalyst is regenerating by separating the absorbed heavy hydrocarbon product from the catalyst. The regenerated catalyst is recycled into the hydroprocessing zone.
    Type: Application
    Filed: August 26, 2014
    Publication date: May 21, 2015
    Inventors: Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Matthew Lippmann
  • Publication number: 20150136645
    Abstract: The present invention is directed to a refining process for producing hydroprocessed distillates and a heavy vacuum gas oil (HVGO). The process produces middle distillates that have reduced nitrogen and sulfur content, while simultaneously producing a 900° F.+ (482° C.+) HVGO stream useful as a fluidized catalytic cracking (FCC) unit feedstock.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Applicant: Chevron U.S.A. Inc.
    Inventors: Subhasis Bhattacharya, Ujjal Kumar Mukherjee, Marvin I. Greene
  • Patent number: 9028674
    Abstract: A process for upgrading residuum hydrocarbons including: feeding pitch, hydrogen, and a partially spent catalyst recovered from a hydrocracking reactor to an ebullated bed pitch hydrocracking reactor; contacting the pitch, hydrogen, and the catalyst in the ebullated bed pitch hydrocracking reactor at reaction conditions of temperature and pressure sufficient to convert at least a portion of the pitch to distillate hydrocarbons; and separating the distillate hydrocarbons from the catalyst. In some embodiments, the process may include selecting the ebullated bed pitch hydrocracking reactor reaction conditions to be at or below the level where sediment formation would otherwise become excessive and prevent continuity of operations.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 12, 2015
    Assignee: Lummus Technology Inc.
    Inventors: Ujjal K. Mukherjee, Mario C. Baldassari, Marvin I. Greene
  • Patent number: 9028673
    Abstract: Systems and methods are provided for producing at least one low sulfur distillate fuel product with improved low temperature properties. A potential distillate fuel feed is initially hydrotreated to reduce sulfur and nitrogen levels in the feed to desired amounts. The hydrotreated effluent is then fractionated to form several fractions, including a light diesel/distillate fraction and a heavy diesel fraction. The heavy diesel fraction is then dewaxed to improve the cold flow properties of the heavy diesel fraction. The dewaxed heavy diesel fraction can be combined with the light diesel fraction, or the dewaxed heavy diesel fraction can be fractionated as well. Optionally, the heavy diesel fraction is dewaxed under conditions effective for producing a dewaxed fraction with a cloud point that is less than or equal to the cloud point of the light diesel/distillate fraction.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 12, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, Berne K. Stober
  • Patent number: 8999142
    Abstract: Fuels hydrocracking can be used to generate a variety of product slates. Varying the temperature can allow an amount of naphtha product and an amount of unconverted product to be varied. The method can be enabled by a hydrocracking catalyst that includes a combination of metals with activity for hydrodesulfurization.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 7, 2015
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: David L. Vannauker, Richard A. Demmin
  • Patent number: 8999141
    Abstract: In general, methods of hydroprocessing a hydrocarbonaceous feed stock are provided that do not use a costly recycle gas compressor, but are still able to use the more efficient reaction systems provided in a substantially three-phase hydroprocessing zone. The method combines a substantially liquid-phase hydroprocessing zone with the substantially three-phase hydroprocessing zone in a manner so that the hydrogen requirements for both reaction zones can be provided from an external source thereto without the use of a hydrogen recycle or recycle gas compressor to the substantially three-phase reaction zone.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, John Anthony Petri
  • Patent number: 8992764
    Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 31, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Krista Marie Prentice, Michel Daage, Ajit Bhaskar Dandekar, Christopher Gordon Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
  • Publication number: 20150068952
    Abstract: The present invention is directed to a refining process for producing heavy lubricating base oils (LBO) from a blended hydrocarbonaceous feedstock containing a heavy coker gas oil, a visbroken gas oil, heavy cycle oil, oils from residue hydrocracking, aromatic extract or any other feedstock normally not conducive to lube oil basestock production, using a two-stage hydrocracking process.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 12, 2015
    Applicant: CHEVRON U.S.A. INC.
    Inventor: Subhasis Bhattacharya
  • Publication number: 20150060331
    Abstract: Methods for processing a hydrocarbonaceous feedstock flows are provided. In one embodiment, the method includes providing two or more hydroprocessing stages disposed in sequence, each hydroprocessing stage having a hydroprocessing reaction zone with a hydrogen requirement and each stage in fluid communication with the preceding stage. The hydrocarbonaceous feedstock flow may be separated into portions of fresh feed for each hydroprocessing stage, and the first portion of fresh feed to the first hydroprocessing stage is heated. The heated first portion of fresh feed may be supplied with hydrogen from the hydrogen source in an amount satisfying substantially all of the hydrogen requirements of the hydroprocessing stages to a first hydroprocessing zone. The unheated second portion of fresh feed is injected counter current to the process flow as quench at one or more locations in one or more of the reaction zones.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Inventors: Paul A. Sechrist, Robert L. Bunting, Nicholas W. Bridge, RIchard K. Hoehn
  • Patent number: 8961778
    Abstract: The invention relates to a method of hydroconverting in ebullated bed mode a petroleum feed containing a significant amount of light fractions and, among other things, asphaltenes, sulfur-containing and metallic impurities. More precisely, the object of the invention is a hydroconversion method using at least one ebullated-bed reactor for which injection of the feed is carried out at the top of said reactor, in the gas overhead, and involving separation within said feed inside the reactor into a vaporized fraction and a liquid fraction. The invention also relates to the reactor allowing said method to be implemented.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: February 24, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Thierry Gauthier, Jan Verstraete, Simon Maget
  • Patent number: 8945372
    Abstract: The present invention provides a process for hydroprocessing comprising treating a hydrocarbon feed in a first two-phase hydroprocessing zone having a liquid recycle, producing product effluent, which is contacted with a catalyst and hydrogen in a downstream three-phase hydroprocessing zone, wherein at least a portion of the hydrogen supplied to the three-phase zone is a hydrogen-rich recycle gas stream. Optionally, the product effluent from the first two-phase hydroprocessing zone is fed to a second two-phase hydroprocessing zone containing a single-liquid-pass reactor. The two-phase hydroprocessing zones comprise two or more catalyst beds disposed in liquid-full reactors. The three-phase hydroprocessing zone comprises one or more single-liquid-pass catalyst beds disposed in a trickle bed reactor.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: February 3, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Hasan Dindi, Luis Eduardo Murillo, Thanh Gia Ta
  • Patent number: 8940253
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. The second hydrocarbon stream may be a diesel stream from the hydrotreating unit. The diesel stream may be a diesel and heavier stream from a bottom of a hydrotreating fractionation column.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Patent number: 8936714
    Abstract: A process is disclosed for hydrocracking a primary hydrocarbon feed and a diesel co-feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The diesel stream fed through the hydrocracking unit is pretreated to reduce sulfur and ammonia and can be upgraded with noble metal catalyst.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Paul R. Zimmerman
  • Publication number: 20150014217
    Abstract: Improved yields of fuels and/or lubricants from a resid or other heavy oil feed can be achieved using slurry hydroconversion to convert at least about 90 wt % of the feed. The converted portion of the feed can then be passed into one or more hydroprocessing stages. An initial processing stage can be a hydrotreatment stage for additional removal of contaminants and for passivation of high activity functional groups that may be created during slurry hydroconversion. The hydrotreatment effluent can then be fractionated to separate naphtha boiling range fractions from distillate fuel boiling range fractions and lubricant boiling range fractions. At least the lubricant boiling range fraction can then be hydrocracked to improve the viscosity properties. The hydrocracking effluent can also be dewaxed to improve the cold flow properties. The hydrocracked and/or dewaxed product can then be optionally hydrofinished.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 15, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Randolph J. Smiley, Ajit Bhaskar Dandekar, Ramanathan Sundararaman, Rustom Merwan Billimoria, Thomas Francis Degnan, JR.