Magnetic Patents (Class 210/222)
  • Patent number: 8641899
    Abstract: An improved method and apparatus for removing metal cuttings from an oil well drilling mud stream provides a magnetic body or “ditch magnet” having end plates that extend radially and circumferentially from the magnetic body, the plates being positioned at end portions of the magnetic body. A third plate in the form of a wiper is used to dislodge metal cuttings and other metallic material from the magnetic body after the magnetic body has accumulated such metallic parts. One of the end plates can be removable to facilitate a complete scraping or wiping of the metallic parts from the metallic body by the wiper plate.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 4, 2014
    Assignee: Petroleum Specialty Rental, LLC
    Inventor: James A. Branch
  • Publication number: 20140027383
    Abstract: The present invention relates to an apparatus for the separation of magnetic constituents from a dispersion comprising these magnetic constituents and nonmagnetic constituents, comprising at least one loop-like canal (5) through which a dispersion flows having at least two inlets (1, 2) and at least two outlets (3, 4), further comprising at least one magnet (6) that is moveable alongside the canal (5), wherein the canal (5) is arranged relative to gravity in a way that nonmagnetic constituents are assisted to go into at least the one first outlet (3) (stream I) by sedimentation and by the current of the dispersion and magnetic constituents are forced into at least one second outlet (4) (stream II) by magnetic force against a current of flushing water. Furthermore, the present invention relates to a process for the separation of magnetic constituents from a dispersion comprising these magnetic constituents and nonmagnetic constituents.
    Type: Application
    Filed: January 31, 2012
    Publication date: January 30, 2014
    Applicants: BASF Corporation, BASF SE
    Inventors: Reinhold Rieger, Imme Domke, Alexej Michailovski, Dennis Lösch, Stephan Deuerlein, Igor Shishkov, David F. Blackwood
  • Patent number: 8636907
    Abstract: A two-stage sealed magnetic filter continuously removes magnetic and non-magnetic contaminants from liquid process streams. Elongated non-magnetic holder sleeves encasing magnet bars attract magnetic contaminants while a screen cylinder captures non-magnetic contaminants. The magnet bars are accessible without having to open the interior of the housing to the environment. Thus, during maintenance, removing the magnet bars from the holder sleeves releases the magnetic contaminants that have adhered to the holder sleeves into the screen cylinder which partially encloses the holder sleeves. Contaminants are flushed out of the magnetic filter without exposing workers to potentially hazardous substances. Polymeric sludge occluded with iron compounds can be effectively removed from streams in refineries and chemical plants. The iron compounds are formed from carbon steel which is prevalent in plant machinery and that corrodes in the presence of acidic contaminants.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: January 28, 2014
    Assignees: AMT International, Inc., CPC Corporation, Taiwan
    Inventors: Tzong-Bin Lin, Fu-Ming Lee, Ming-Hsung Liu, Cheng-Tsung Hong, Yung-Sheng Ho, Kuang-Yeu Wu
  • Patent number: 8632684
    Abstract: A device for separating ferromagnetic particles from a suspension has a reactor (2) through which the suspension can flow, with at least one magnet (3, 4) arranged on the outside of the reactor (2), wherein the reactor (2) has an interior space (7) and an exterior space (8) surrounding the former, wherein the interior space (7) and exterior space (8) are separated from one another by an insert (6), and the insert (6) has at least one opening (9, 10) near the at least one magnet (3, 4).
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 21, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Vladimir Danov, Bernd Gromoll
  • Patent number: 8632736
    Abstract: This disclosure is directed to systems for separating a target analyte from a suspension. A suspension is added to a tube. A float is also added to the tube, and the tube, float, and suspension are centrifuged together, causing the constituent components of the suspension to separate into different layers along the axial length of the tube according to their specific gravities. The float has a specific gravity that positions the float at approximately the same level as a layer containing the target analyte, when the tube, float and sample are centrifuged. Prior to isolation, the material may be located between an outer surface of the float and an inner surface of the tube, or within a central bore that extends longitudinally through the float. The target analyte may then be drawn into a compartment within the float, thereby isolating the target analyte from the other suspension constituents.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: January 21, 2014
    Assignee: Rarecyte, Inc.
    Inventors: Paul Spatafore, Jackie Lynn Stilwell, Arturo Ramirez, Evan Castiglia
  • Patent number: 8628668
    Abstract: A system, apparatus and method for magnetically separating a fluid flow passing through a pipeline are provided. A magnetic separator assembly having a plurality of elongate magnetic members is provided. Each magnetic member can have a first end and a second end. A cleaner plate can be provided that can move along the magnetic members. After the magnetic separator assembly is used to collect magnetic particles from a fluid flow in a pipeline, the magnetic separator assembly can be cleaned by sliding the cleaning plate along the magnetic members.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: January 14, 2014
    Inventor: Roger M. Simonson
  • Publication number: 20140008281
    Abstract: Embodiments of the invention relate to device, method, and system for separation and/or detection of biological cells and biomolecules using micro-channels, magnetic interactions, and magnetic tunnel junctions. The micro-channels can be integrated into a microfluidic device that may be part of an integrated circuit. Magnetic interactions used for the separation are created, in part, by magnetic stripes associated with the micro-channels. Detection of biological cells and biomolecules is effectuated by a magnetic tunnel junction sensor that comprises two ferromagnetic layers separated by a thin insulating layer. The magnetic tunnel junction sensor can be integrated into a silicon based device, such a microfluidic device, an integrated circuit, or a microarray to achieve rapid and specific separation and/or detection of biomolecules and cells.
    Type: Application
    Filed: July 31, 2013
    Publication date: January 9, 2014
    Applicant: Intel Corporation
    Inventors: Shriram RAMANATHAN, Chang-Min PARK
  • Patent number: 8623205
    Abstract: A ballasted anaerobic system for treating wastewater including at least one anaerobic treatment reactor. A weighting agent impregnation subsystem is configured to mix weighting agent with the biological flocs to form weighted biological flocs to create a weighted anaerobic sludge blanket in the at least one anaerobic treatment reactor. A weighting agent recovery subsystem is configured to recover the weighting agent from excess sludge and reintroduce the weighting agent to the weighting agent impregnation subsystem.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: January 7, 2014
    Assignee: Siemens Water Technologies LLC
    Inventor: Steven E. Woodard
  • Patent number: 8623216
    Abstract: The invention provides a system and process for separating residual magnetic resin from a liquid stream by passing the stream through or over permanent magnets located within the stream wherein the process also includes a means for releasing any resin retained by the permanent magnets and capturing the released resin.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: January 7, 2014
    Assignee: Orica Australia Pty Ltd
    Inventors: Gregory Mark Vero, Anthony Michael Browne
  • Publication number: 20130334120
    Abstract: A system and method for removing a target species from a fluid source is provided. The system includes a reciprocating fluid cleansing device, including a processing chamber with a port at a first end for fluid passage and a movable plunger at a second end, wherein the plunger in contact with a fluid includes a motorized mixing element for mixing the fluid with species-targeting magnetic particles. Motion of the plunger in a first direction transfers a first volume of the fluid from the fluid source into the processing chamber. Motion of the plunger in a second direction transfers the first volume of the fluid from the processing chamber to a fluid destination. At least one magnetic element provides a magnetic field gradient within the processing chamber. A connector connects the port of the first processing chamber to the fluid source and the fluid destination.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Donald E. Ingber, Joo Hun Kang, Richard C. Terry, Michael Super, Ryan M. Cooper, Karel Domansky, Chong Wing Yung
  • Publication number: 20130327695
    Abstract: Magnet configuration. The configuration includes a magnet holder and at least one elongate magnet extending from the magnet holder so that less than one half of the magnet length extends from the holder, whereby a magnetic fluid adjacent the elongate magnet is attracted toward a top edge of the elongate magnet for subsequent removal.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 12, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Markus Zahn, T. Alan Hatton, Shahriar Rohinton Khushrushahi
  • Publication number: 20130327693
    Abstract: A separating device has a separating channel, through which a suspension can flow, a ferromagnetic yoke arranged on one side of the separating channel and a separating element arranged at the outlet of the separating channel for separating magnetic or magnetizable particles in the suspension. A plurality of coils arranged along the separating channel are controlled by a control device to produce a magnetic deflection field. The control device produces alternating current directions for controlling neighboring coils.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 12, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Robert Goraj
  • Patent number: 8597510
    Abstract: Present invention relates to a device magnetically separating a sample. The preferred material for the device is plastic. The device is a cuboid plate, which consists of one or two bottom sides and at least two lateral sides. The bottom side has wells on it to accommodate magnetic elements, and the magnetic element which is suitable to be accommodated into the wells comprising column shape, half-column shape, or half circular column shape magnetic elements. The magnetic element comprises permanent magnet or electromagnet, and the permanent magnet is selected from the group consisting of alnico, samarium cobalt, neodymium iron boron, or magnetic ceramic materials. The magnetic elements can adsorb the magnetic samples in the micro plate.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: December 3, 2013
    Assignee: Magqu Co. Ltd.
    Inventor: Shieh-Yueh Yang
  • Patent number: 8597520
    Abstract: A wastewater treatment method in which magnetic flocs are formed by adding to wastewater an inorganic flocculant, magnetic particles, and a high molecular polymer as a polymeric flocculant, and the magnetic flocs are collected with magnetic force to thereby obtain treated water having the magnetic flocs removed from the wastewater, wherein the improvement comprises that the magnetic particles are added to the wastewater after adding the inorganic flocculant to the wastewater to flocculate suspended solids in the wastewater, after that or substantially at the same time as the magnetic particles are added, the high molecular polymer is added to the wastewater, and flocculates of the suspended solids and the magnetic particles are combined with each other with the high molecular polymer to thereby obtain the magnetic flocs.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 3, 2013
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Hisashi Isogami, Akira Mochizuki, Hiroshi Sasaki, Tadashi Sano, Satoshi Miyabayashi
  • Publication number: 20130313177
    Abstract: A device separates ferromagnetic particles from a suspension. The device has a tubular reactor through which the suspension can flow and which has a first region and a second region in the passage direction. The device also has a device for generating a magnetic field along an inside reactor wall. In the second region the tubular reactor has a tailings discharge pipe and a concentrate separation channel surrounding said pipe. The cross-sectional area of the tubular reactor in the second region is larger than that in the first region.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 28, 2013
    Inventors: Vladimir Danov, Werner Hartmann, Michael Römheld, Andreas Schröter
  • Publication number: 20130306566
    Abstract: Embodiments of the present disclosure provide for devices, methods for separating particles, and the like.
    Type: Application
    Filed: April 30, 2013
    Publication date: November 21, 2013
    Inventors: Leidong Mao, Taotao Zhu, Mark A. Eiteman
  • Publication number: 20130292339
    Abstract: An oil/water emulsion is mixed with functional solid particles to agglomerate oil droplets and/or water droplets having functional solid particles and the functional solid particles are hydrophobicized for the agglomeration of oil droplets or are hydrophilicized for the agglomeration of water droplets. This enables oil and water to be separated from an oil/water emulsion under gravitational forces.
    Type: Application
    Filed: December 1, 2011
    Publication date: November 7, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Werner Hartmann, Andreas Hauser
  • Publication number: 20130284654
    Abstract: A magnetic separation plate for use in methods employing magnetic particles, said magnetic separation plate comprising a support plate and magnetic pins in a predetermined geometrical arrangement, said magnetic pins having a fastening portion, an intermediate portion and a separation portion and being fastened to said support plate at their fastening portion, wherein said magnetic pins are individually displaceable at their separation portion. The invention further provides a method for the separation of magnetic particles using the separation plate.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventor: Thomas Meyer
  • Publication number: 20130284676
    Abstract: Disclosed is an apparatus for self-extracting a cell using a magnetic field. The apparatus for self-extracting the cell using the magnetic field according to the present invention includes a flow path casing including an upper substrate and a lower substrate having a magnetic property combined with each other, and a fluid path formed to fluidize a cell solution therein; a separation portion disposed on the fluid path and provided with a separation channel selectively passing only an effective cell that is a separation target in the cell included in the cell solution therethrough; and a magnetic field control portion forming the magnetic field in the flow path portion to separate the cell blocking the separation channel from the separation channel.
    Type: Application
    Filed: July 11, 2012
    Publication date: October 31, 2013
    Applicant: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Sung Hwan Chang, Yeong-Eun Yoo, Jung Yup Kim, Seung Min Hyun, Kyung-Hyun Whang
  • Patent number: 8562920
    Abstract: An object is to provide a micro plate treating device and micro plate treating method capable of handling a larger number of kinds of solution or suspensions or a larger volume of solutions or suspensions per work area by use of a normalized micro plate without enlarging the scale of the device.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 22, 2013
    Assignee: Universal Bio Research Co., Ltd.
    Inventor: Hideji Tajima
  • Patent number: 8562829
    Abstract: A magnetic separation apparatus comprising: a separation vessel into which waste water containing a coagulated magnetic floc is supplied; a drum separator that is provided in the separation vessel and adsorbs the magnetic floc with a magnetic force while being rotated; a scraper that is abutted against a surface of the separator and scrapes the magnetic floc adsorbed by the surface of the separator; a scraper guide that is connected to the scraper and discharges the magnetic floc scraped by the scraper; and a scraping brush that scrapes the magnetic floc scraped by the scraper from the scraper and guides the magnetic floc to the scraper guide, wherein a lower portion of the separator is submerged in the waste water in the separation vessel, a rotational direction of the separation vessel in the waste water is set to the same direction as a flow direction of the waste water flowing in the separator, and a rotational direction of the scraping brush is set to a direction opposite to the rotational direction of t
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: October 22, 2013
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Hisashi Isogami, Satoshi Miyabayashi, Minoru Morita
  • Publication number: 20130273552
    Abstract: The present invention provides a small and low running-cost device capable of minimizing the generation of contamination sources as much as possible while performing a series of all the desired manipulations. A device for manipulating a target component in a manipulation tube, comprising: a manipulation tube comprising a tube having an optionally-closeable open end for supplying a sample containing a target component at one end and a closed end at the other end, and a manipulation medium accommodated in the tube and having a gel layer and an aqueous liquid layer multilayered in a longitudinal direction of the tube; magnetic particles that should transport the target component; and magnetic field applying means capable of applying a magnetic field to the manipulation tube to move the magnetic particles in the longitudinal direction of the tube.
    Type: Application
    Filed: July 13, 2011
    Publication date: October 17, 2013
    Inventor: Tetsuo Ohashi
  • Patent number: 8551333
    Abstract: A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: October 8, 2013
    Assignee: The Regents of the University of California
    Inventors: Adam Yuh Lin, Tak Sing Wong
  • Publication number: 20130256205
    Abstract: An apparatus for separating magnetic particles from a liquid which contains said particles, said liquid being contained in an elongated vessel (11) having a length axis (12), said vessel being arranged in a vessel holder (13) with its length axis (12) in a substantially vertical position, said vessel (11) having a bottom and a tapered cross-section that diminishes towards the bottom of the vessel and a side wall (14) which has an outer surface which forms an angle with the length axis (12) of said vessel (11).
    Type: Application
    Filed: May 22, 2013
    Publication date: October 3, 2013
    Applicant: Roche Molecular Systems, Inc.
    Inventors: Tobias Holenstein, Rolf Schneebeli, Renato Belz
  • Publication number: 20130256233
    Abstract: A device for separating ferromagnetic particles from a suspension may include a tubular reactor through which the suspension can flow and which has an inlet and an outlet, and a means for generating a magnetic field along an inner reactor wall, and a displacement body arranged in the interior of the reactor. Means for generating a magnetic field are provided on the displacement body, on an outer wall of the displacement body.
    Type: Application
    Filed: November 18, 2011
    Publication date: October 3, 2013
    Inventors: Vladimir Danov, Werner Hartmann, Wolfgang Krieglstein, Andreas Schröter
  • Publication number: 20130248453
    Abstract: A device concentrating particles in a liquid. The device includes a magnet facing a side wall of a receptacle, free to move vertically to progressively reduce volume facing it, in which magnetic balls carrying the particles of interest accumulate, so as to concentrate these particles.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 26, 2013
    Applicant: COMMISSARIAT A L'ENERGIE
    Inventor: Cédric Allier
  • Patent number: 8540883
    Abstract: A polymer composite is provided for a water treatment. The polymer composite with excellent workability is capable of adsorbing impurities in water, being rapidly separated from the water using magnetic forces. The polymer composite includes secondary aggregates. The secondary aggregates are formed of clumped particles, the particles being magnetic particles covered with a polymer. The polymer composite has porous structures suitable for adsorbing underwater impurities.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taro Fukaya, Shinetsu Fujieda, Shinji Murai, Akiko Suzuki, Hideyuki Tsuji, Tatsuoki Kohno, Nobuyuki Ashikaga
  • Patent number: 8540877
    Abstract: A ballasted sequencing batch reactor system for treating wastewater including one or more sequencing batch reactors. A weighting agent impregnation subsystem is configured to mix biological flocs and weighting agent to form weighted biological flocs. A weighting agent recovery subsystem is configured to recover weighting agent from the weighted biological flocs and reintroduce the recovered weighting agent to the weighting agent impregnation subsystem.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: September 24, 2013
    Assignee: Siemens Water Technologies LLC
    Inventor: Steven E. Woodard
  • Publication number: 20130240427
    Abstract: The invention relates to a component (30) for a filter unit for filtering fluids, in particular hydraulic fluids, comprising at least in areas an insertion or application of magnetisable and/or magnetised particles, whereby, using a simplified design, a magnetic separation of contaminants in a fluid flowing through a filter unit is achieved. The component can be in the form of a film (30) and can be an externally or circumferentially arranged support means for a filter element (10). In the manufacture of the component (30), said component is provided at least in areas with an insertion and/or application of magnetisable and/or magnetised particles.
    Type: Application
    Filed: August 11, 2011
    Publication date: September 19, 2013
    Inventors: Jessica Parino, Michael Sakraschinsky
  • Patent number: 8534465
    Abstract: A process for removing metallic impurities from a product mass flow comprising water-absorbing polymer particles, wherein the product mass flow has a temperature of 35 to 90° C.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 17, 2013
    Assignee: BASF SE
    Inventors: Rüdiger Funk, Jürgen Schröder, Matthias Weismantel
  • Patent number: 8512558
    Abstract: A magnetic separation plate for use in methods employing magnetic particles, said magnetic separation plate comprising a support plate and magnetic pins in a predetermined geometrical arrangement, said magnetic pins having a fastening portion, an intermediate portion and a separation portion and being fastened to said support plate at their fastening portion, wherein said magnetic pins are individually displaceable at their separation portion. The invention further provides a method for the separation of magnetic particles using the separation plate.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 20, 2013
    Assignee: Roche Molecular Systems, Inc.
    Inventor: Thomas Meyer
  • Patent number: 8506800
    Abstract: A system for enhancing an activated sludge process including at least one biological reactor. A weighting agent impregnation subsystem is coupled to the biological reactor for mixing biological flocs and weighting agent to impregnate the weighting agent into the biological flocs to form weighted biological flocs. A weighting agent recovery subsystem is configured to recover the weighting agent from the weighted biological flocs and reintroducing the recovered weighting agent to the weighting agent impregnation subsystem.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: August 13, 2013
    Assignee: Siemens Industry, Inc.
    Inventors: Steven Woodard, Peter G. Marston, Ionel Wechsler
  • Publication number: 20130199984
    Abstract: A magnetic screen assembly (13). The assembly (13) is to be located in a duct (10) to screen a flowable substance passing in a direction (11). The assembly (13) has a screening position (A) so that the substance passes through the screen, and a cleaning position (B) at which the screen assembly (13) is spaced outwardly relative to the housing (12) to facilitate cleaning of the assembly (13).
    Type: Application
    Filed: May 2, 2011
    Publication date: August 8, 2013
    Inventor: William John Baker
  • Patent number: 8501000
    Abstract: The present invention includes a container and a method of separating one or more components of interest bound to magnetic particles using centrifugal forces.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: August 6, 2013
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Heinz-Michael Hein, Emad Sarofim, Lotar Schenk, Hans-Peter Wahl
  • Patent number: 8480890
    Abstract: A method and apparatus of fluid treatment for a plurality of fluids with a first and a second non-magnetically conductive fluid flow conduit sleeved within at least one segment of magnetically conductive conduit providing a plurality of distinct areas of concentrated magnetic energy. The instant invention prevents the formation and accumulation of contaminants within conduits and on equipment utilized in the transportation, delivery and processing of fluid columns. It may also be utilized to accelerate the separation of oil and water and increase the efficiency of oil/water separation equipment.
    Type: Grant
    Filed: October 22, 2011
    Date of Patent: July 9, 2013
    Inventor: Herbert William Holland
  • Patent number: 8475662
    Abstract: The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material using magnetic particles with which the at least one first material agglomerates.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: July 2, 2013
    Assignees: BASF SE, BASF Corporation, Siemens Aktiengesellschaft
    Inventors: Imme Domke, Reinhold Rieger, Alexej Michailovski, Christian Bittner
  • Patent number: 8470172
    Abstract: A system for enhancing an activated sludge process including at least one biological reactor. A weighting agent impregnation subsystem is coupled to the biological reactor for mixing biological flocs and weighting agent to impregnate the weighting agent into the biological flocs to form weighted biological flocs. A weighting agent recovery subsystem is configured to recover the weighting agent from the weighted biological flocs and reintroducing the recovered weighting agent to the weighting agent impregnation subsystem.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: June 25, 2013
    Assignee: Siemens Industry, Inc.
    Inventors: Steven Woodard, Peter G. Marston, Ionel Wechsler
  • Publication number: 20130140240
    Abstract: A fluid separation system including a fluid mixture including a first fluid component dispersed in a second fluid component. A plurality of micro- or nanoparticles is operatively arranged in the fluid mixture to stabilize the fluid mixture by adhering to interfaces of the first fluid component. A magnetic element is operatively arranged for forming a magnetic field through the fluid mixture. The micro- or nanoparticles are magnetically responsive to the magnetic field for urging the first fluid component in a direction defined by the magnetic field. A method of separating fluids is also included.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Oleg A. Mazyar
  • Patent number: 8454825
    Abstract: A rod assembly for the extraction of magnetizable particles from solutions is described. The rod assembly includes at least one guide element. A rod element is insertable into the at least one guide element and moveable in a direction substantially parallel to the at least one guide element. A magnet element is moveable to a distal magnet element position; wherein the distal magnet element position is located on a distal end section of the at least one guide element; wherein the at least one guide element includes an opening at a distal end. A method for the extraction of magnetizable particles from solutions is also described, as well as a magnet element for the extraction of magnetizable particles from solutions.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: June 4, 2013
    Assignee: Stratec Biomedical AG
    Inventor: Ralf Griebel
  • Patent number: 8444853
    Abstract: A device for magnetic treatment of a fluid flow preferably comprises a spirally-shaped conduit having spiral turns with a null step therebetween, and a cross-section for passing the flow therethrough, inner magnets internally circumferentially surrounding the turns coupled to the conduit, outer magnets externally circumferentially surrounding the turn. Each inner magnet is situated opposite to a respective counterpart outer magnet, so that the North (or South) pole of the inner magnet faces the South (or North) pole of the counterpart magnet. The magnets can be made of specific sizes, materials, covered by magnetic yokes. In a multi-layer embodiment, the device comprises a steel tube enclosed into and supporting an inner cylindrical magnet, a spirally-shaped conduit consisting of a number of layers, and rows of outer magnets consisting of magnets circumferentially surrounding predeterminedly chosen layers, and having magnetic fluxes uniformly directed either from or to the center of the cylindrical magnet.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: May 21, 2013
    Inventor: Lev Nikolaevich Popov
  • Patent number: 8444852
    Abstract: A magnetic water activator resistant to corrosion such as rusting while soft on the outside, and exhibiting excellent portability also from the view point of a profile. The magnetic water activator comprises a pair of magnetic circuit constituting members formed of a high magnetic permeability material and forming a partial annular shape in which one end of each member is coupled to each other rotatably with each recess side facing each other, a permanent magnet arranged along the recess side of each magnetic circuit constituting member, and a substantially annular elastic resin shell partially provided with a slit extending in the radial direction, and internally burying and holding the magnetic circuit constituting member and the permanent magnet in an airtight state.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: May 21, 2013
    Assignee: Clavis Japan Co.
    Inventor: Yuko Ito
  • Publication number: 20130118965
    Abstract: An apparatus for mixing and separating magnetic particles in a liquid comprises a holder having a plurality of apertures configured as an array of rows and columns and a plurality of containers capable of receiving liquid containing magnetic particles, each container being sized to be placed in one of the apertures; plural magnets capable of being moved relative to the containers between a first position and a second position to change the position of the magnets and magnetic particles in the container; and a drive mechanism for moving the magnets between positions at a sufficiently high speed that the particles do not settle down due to gravitational forces during motion between the first and second positions.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Applicant: SIGRIS RESEARCH, INC.
    Inventor: Sigris Research, Inc.
  • Publication number: 20130105379
    Abstract: The present invention relates to a magnetic fluid filter device and, more specifically, to a magnetic fluid filter for removing ferro-magnetic particles from a fluid in addition to filtering the fluid. The magnetic fluid filter includes an upper end cap having a centrally located aperture, a lower end cap, a filtering material, and a magnet, for removing ferro-magnetic particles from the fluid, integrally attached to a top surface of the upper end cap wherein the fluid is effectively exposed to a magnetic flux of the magnet before entering the filtering material. The magnet is annular or ring-shaped and substantially coaxially located with respect to the aperture. An additional second magnet is attached to a bottom surface of the lower end cap.
    Type: Application
    Filed: February 16, 2012
    Publication date: May 2, 2013
    Inventor: Solomon Lee
  • Patent number: 8431413
    Abstract: A fluid control and processing system for controlling fluid flow among a plurality of chambers comprises a body including a fluid processing region continuously coupled fluidicly with a fluid displacement region. The fluid displacement region is depressurizable to draw fluid into the fluid displacement region and pressurizable to expel fluid from the fluid displacement region. The body includes at least one external port. The fluid processing region is fluidicly coupled with the at least one external port. The fluid displacement region is fluidicly coupled with at least one external port of the body. The body is adjustable with respect to the plurality of chambers to place the at least one external port selectively in fluidic communication with the plurality of chambers.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 30, 2013
    Assignee: Cepheid
    Inventors: Douglas B. Dority, Ronald Chang
  • Patent number: 8430247
    Abstract: Method for handling microparticles in such a manner, that at least two treatment steps are performed for microparticles in the same vessel without moving the particles to another vessel. There are organs in the device for changing the solution without having to move the microparticles to another vessel.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 30, 2013
    Assignee: BioControl Systems, Inc.
    Inventors: Matti Korpela, Kenneth Rundt
  • Patent number: 8431026
    Abstract: A system for concentrating magnetic particles suspended in a fluid comprising a vessel for containing said fluid having an inner base surface that slopes downwards towards a collection region, the collection region including a retrieval well for collecting magnetic particles; a magnet assembly for positioning under and in proximity with the vessel for attracting magnetic particles to the bottom surface of the vessel, said magnet assembly providing a relatively larger magnetic flux density at a peripheral region thereof; means for laterally traversing the magnet assembly relative to the vessel between a first position whereby the magnet is generally centered under the vessel and a second position whereby the peripheral portion of the magnet is positioned under the well of the vessel; and agitation means for agitating said vessel to facilitate movement of the magnetic particles to the well, where the concentrated particles can be easily removed.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 30, 2013
    Inventor: Anthony N. Sharpe
  • Patent number: 8424510
    Abstract: A fuel economizer includes a housing, at least two magnetic members having sides of the same polarity facing each other, and at least one covering member. The housing forms a primary receiving compartment and has at least one end forming an opening. The two magnetic members are positioned closed to each other with the sides thereof having the same polarity facing each other and are deposited in the primary receiving compartment. The open end of the housing is closed by the covering member to thereby form the economizer. The covering member forms apertures to allow liquid to flow through the primary receiving compartment. The housing may further forms secondary receiving compartments on opposite sides of the primary receiving compartments for receiving therein far infrared particles. When liquid flows through the housing, the liquid is acted upon by both the magnetic members and the far infrared particles.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: April 23, 2013
    Assignee: 101 International Co., Ltd.
    Inventor: Chieh-Jung Lai
  • Publication number: 20130087506
    Abstract: An assembly for separating magnetisable particles from a liquid may include a tubular reactor through which the liquid can flow and which includes a first region with at least one permanent magnet and a second region with at least one electromagnet. The first and the second region are arranged one behind the other along a longitudinal axis of the tubular reactor.
    Type: Application
    Filed: April 11, 2011
    Publication date: April 11, 2013
    Inventors: Vladimir Danov, Andreas Schröter
  • Publication number: 20130087505
    Abstract: A travelling field reactor and a method for separating magnetizable particles from a liquid using said travelling field reactor are disclosed. The travelling field reactor may include a tubular reactor, the outer circumference of which is provided with at least one magnet for producing a travelling field and through the interior of which the liquid flows. A displacement element may be located in the interior of the tubular reactor, said element admitting a liquid into the interior of the tubular reactor, which mixes with the liquid flowing in the reactor.
    Type: Application
    Filed: May 5, 2011
    Publication date: April 11, 2013
    Inventors: Vladimir Danov, Bernd Gromoll, Werner Hartmann, Andreas Schröter
  • Patent number: 8414776
    Abstract: A sucker-rod pumping system includes diametrically charged rare earth magnets having significant monopolar character mounted on the rod string and, optionally, within a magnet barrel below the pump barrel. The magnets are jacketed to preclude contact with crude petroleum. The magnets subject the petroleum to a significant magnetic flux to substantially preclude precipitation of paraffins and asphaltenes with a minimum of retrofit to existing equipment and without substantially altering the operation of the rod string.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: April 9, 2013
    Assignee: RFG Technology Partners LLC
    Inventor: John T. Hale