Vinyl Patents (Class 210/500.42)
  • Publication number: 20130233791
    Abstract: The present invention relates to a separation membrane for water treatment having high water flux and membrane contamination preventing characteristics, and a manufacturing method thereof. The separation membrane for water treatment according to the present invention includes a nanofiber wherein the separation membrane has a surface electric charge. According to the present invention, a separation membrane for water treatment having high water flux and membrane contamination preventing characteristics, and a manufacturing method thereof may be implemented.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 12, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chong Min KOO, Kyung Youl BAEK, Seung Sang HWANG, Soon Man HONG, Ho Bum PARK, Ji Young JUNG, Jang Woo LEE, Young Hoon CHO, Seung Gun YU, Sang Hee PARK
  • Patent number: 8528746
    Abstract: A method of manufacturing a hydrophilic membrane and hydrophilic membranes having improved antifouling property using a supercritical fluid or a subcritical fluid. The method involves combining a coating solution from a hydrophilic group-containing monomer, an initiator, a cross-linking agent and a supercritical fluid or subcritical fluid in a high pressure solution vessel and transferring the coating solution to a membrane in a high pressure coating vessel, coating the surfaces and micropores of the membranes through cross-linking polymerization reactions. Non-reacted coating material is returned to the high pressure solution vessel. The membranes are removed from the coating vessel, cleaned and dried. The hydrophilic membrane manufactured by the present invention is excellent in properties of hydrophobic membranes such as thermal stability, chemical stability and mechanical strength, and surfaces and micropores of the membranes are uniformly coated.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: September 10, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Jaehoon Kim, Young Haeng Lee, Jae-Duck Kim, Jong Min Park, Jongsoo Jurng
  • Publication number: 20130228511
    Abstract: The present invention provides an antibiofouling composition, an antibiofouling membrane and a method for forming the same. The antibiofouling composition comprises a copolymer and at least one solvent. The copolymer comprises at least one hydrophobic segment and at least one antibiofouling segment where the hydrophobic segment comprises a plurality of hydrophobic moieties and the antibiofouling segment comprises a plurality of antibiofouling moieties. The molar ratio of the total of hydrophobic moieties to the total of the antibiofouling moieties is 0.5˜6.0.
    Type: Application
    Filed: April 9, 2012
    Publication date: September 5, 2013
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Yung Chang, Ruoh-chyu Ruaan, Yen-Che Chiag, Wen-Yih Chen
  • Publication number: 20130213880
    Abstract: A separation membrane is provided containing hydrophilic molecules and having, as formed on at least one surface of a feed side and a permeate side thereof, a height difference of from 80 ?m to 2000 ?m, in which a weight of the hydrophilic molecules in a bone-dry separation membrane is from 0.1% to 40% based on a weight of the bone-dry separation membrane from which the weight of the hydrophilic molecules has been subtracted.
    Type: Application
    Filed: October 21, 2011
    Publication date: August 22, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Hiroho Hirozawa, Masakazu Koiwa, Kentaro Takagi, Yutaro Suzuki, Katsufumi Oto, Masahiro Fimura
  • Publication number: 20130184503
    Abstract: The invention relates to a membrane having a pore-free separating laye including a polymer mixture for separating simple alcohols and water fr their mixtures with other organic fluids by means of pervaporation or vapor permeation. In accordance with the invention, the polymer mixtu is composed of at least two polymer components which are taken from t group of polymer components which includes of the following polymer components: Polyvinyl alcohol, other polymers such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA), a copolymer of DMAEMA and N-vinyl pyrrolidone (NVP) or of DMAEMA and N-vinyl caprolactam (NVCL), a terpolymer of DMAE, NVP and NVCL or of vinyl acetate ethylene vinyl chloride or from vinyl chloride ethylene acrylic es or from vinyl acetate vinyl chloride acrylic ester. The invention further relates to the use and to a method for manufacturing a membrane in accordance with the invention.
    Type: Application
    Filed: July 6, 2011
    Publication date: July 18, 2013
    Applicant: SULZER CHEMTECH AG
    Inventors: Michael Frania, Andreas Huebner, Eva Maus
  • Publication number: 20130146521
    Abstract: Stabilized surfactant-based membranes and methods of manufacture thereof. Membranes comprising a stabilized surfactant mesostructure on a porous support may be used for various separations, including reverse osmosis and forward osmosis. The membranes are stabilized after evaporation of solvents; in some embodiments no removal of the surfactant is required. The surfactant solution may or may not comprise a hydrophilic compound such as an acid or base. The surface of the porous support is preferably modified prior to formation of the stabilized surfactant mesostructure. The membrane is sufficiently stable to be utilized in commercial separations devices such as spiral wound modules. Also a stabilized surfactant mesostructure coating for a porous material and filters made therefrom. The coating can simultaneously improve both the permeability and the filtration characteristics of the porous material.
    Type: Application
    Filed: November 23, 2012
    Publication date: June 13, 2013
    Applicant: ZNANO LLC
    Inventor: zNano LLC
  • Patent number: 8445076
    Abstract: In one embodiment, a method of modifying a surface of a membrane includes exposing the surface to an impinging atmospheric pressure plasma source to produce an activated surface, and exposing the activated surface to a solution including a vinyl monomer. In another embodiment, a method of manufacturing a desalination membrane includes treating a surface of the membrane with an impinging atmospheric plasma source for an optimal period of time and rf power, and exposing the surface to an aqueous solution containing a vinyl monomer. In another embodiment, an apparatus includes a membrane having a surface, and polymer chains terminally grafted onto the surface of the membrane.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: May 21, 2013
    Assignee: The Regents of the University of California
    Inventors: Yoram Cohen, Myung-Man Kim, Gregory T. Lewis, Nancy Hsiao-Yu Lin
  • Patent number: 8443986
    Abstract: A reverse osmosis membrane that can maintain high permeability for a longer time, a reverse osmosis membrane apparatus, and a hydrophilic treatment method for a reverse osmosis membrane. A reverse osmosis membrane to which poly(vinyl alcohol) is absorbed, wherein the poly(vinyl alcohol) is an ionic poly(vinyl alcohol). Preferably, adsorption of a cationic PVA to the reverse osmosis membrane is followed by adsorption of an anionic PVA. More preferably, an ionic polymer other than PVA is also absorbed to the reverse osmosis membrane. A reverse osmosis membrane apparatus including the reverse osmosis membrane. A hydrophilic treatment method for a reverse osmosis membrane, involving bringing the reverse osmosis membrane into contact with an ionic poly(vinyl alcohol).
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: May 21, 2013
    Assignee: Kurita Water Industries Ltd.
    Inventors: Yu Tanaka, Masanobu Osawa
  • Publication number: 20130118975
    Abstract: Hydrophilic porous substrates, methods of making hydrophilic porous substrates from hydrophobic polymers are disclosed.
    Type: Application
    Filed: January 7, 2013
    Publication date: May 16, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: 3M INNOVATIVE PROPERTIES COMPANY
  • Publication number: 20130112618
    Abstract: Filtration membrane comprising polymeric nanofibers and/or microfibers attaching dendrimer component presenting reactive sites selective for chemicals to be filtered, and related nanofibers and microfibers, composite materials, compositions, methods and system.
    Type: Application
    Filed: August 8, 2012
    Publication date: May 9, 2013
    Inventors: Mamadou S. DIALLO, William A. GODDARD, III, Seong-Jik PARK, Manki CHO
  • Patent number: 8424688
    Abstract: A multipolymeric mixture is provided that includes a hydrophobic polymer, two different grades of a water-soluble polymer, water as non-solvent and a solvent suitable for all polymers involved. The dissolved hydrophobic polymer has the affinity to enmesh the water-soluble polymers to form a clear and viscous dope. Water-soluble polymers contribute to the pore formation process and hydrophilicity of the finally coagulated membrane according to the makeup of their molecular weight distribution. Water as a non-solvent takes the dope very near towards unstable zone, which helps in speeding up the membrane formation process in a diffusion induced phase inversion technique. The dope is then spun through a concentric orifice spinneret and solidified by passing it through a coagulation bath to form hollow fiber asymmetric membranes of ultra filtration grade with superior water permeability and separation characters even at higher feed turbidity.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: April 23, 2013
    Assignee: Aquatech International Corporation
    Inventors: Ravi Chidambaran, Devesh Sharma, Pavan Raina, Sugata Das
  • Publication number: 20130062285
    Abstract: The invention relates to oil-tolerant water-filtration membranes comprising a microporous hydrogel coated on a porous polymeric support membrane, useful in separating hydrocarbons and hydrocarbon emulsions from a water sample. The oil-tolerant water-filtration membranes comprising a hydrophilic microporous crosslinked polymeric hydrogel coated on at least one side of a porous polymeric support membrane. The water-filtration membrane having a first face corresponding to the discrimination layer and a second face corresponding to the porous support, applying pressure to a water solution, having at least one solute, at the first face of the water-filtration membrane, and collecting purified water at the second face of water-filtration membrane. Polymeric membranes have many advantages over ceramics, including inexpensive manufacture and the ability to be manufactured into very compact (high surface area) elements.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 14, 2013
    Applicant: The Regents of the University of California
    Inventors: Eric M.V. Hoek, Fubing Peng, Jinwen Wang
  • Publication number: 20130026088
    Abstract: Described herein is a method for altering the characteristics of a membrane comprising a dielectric material. The method comprises heating the membrane and applying an electric field in a direction out of the plane of the membrane to at least a portion of the dielectric material. At least a portion of the dielectric material becomes aligned with the applied electric field. In some embodiments, the membrane is piezoelectric and application of an electric signal to the membrane causes out of plane movement of the membrane. Also disclosed are membranes and systems and apparatuses comprising such membranes.
    Type: Application
    Filed: November 25, 2010
    Publication date: January 31, 2013
    Inventors: Hans Gerard Leonard Coster, Tahereh Darestani Farahani, Terry Calvin Chilcott
  • Publication number: 20130026091
    Abstract: Described herein are thin film composite (TFC) membranes, for use in forward osmosis (FO) and pressure reduced osmosis (PRO) processes. The membrane is comprised of two layers: a composite layer combining a backing layer and a porous, polymer-based support into a single layer, and a rejection layer disposed on top of the composite layer. The membrane of the invention exhibits high water flux values for FO processes, is durable, may be readily manufactured using typical membrane manufacturing processes, such as spiral winding and plate and frame processes, and has sufficient mechanical stability to handle the final membrane product.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: HYDRATION SYSTEMS, LLC
    Inventors: Isaac V. Farr, Upen J. Bharwada, Tilak Gullinkala
  • Publication number: 20130020251
    Abstract: Disclosed is a separation membrane comprising—an elongated substrate having fluid permeability and a separation layer formed at the surface of said substrate—wherein the aforementioned separation layer comprises a predetermined thickness section having a predetermined thickness and thin sections each positioned on the outside of both edges in the widthwise direction of said predetermined thickness portion and having a thinner thickness than the aforementioned predetermined thickness, and there is a separation-layer-lacking section, at which only the aforementioned substrate is present and the aforementioned separation layer is absent, between the outside edges in the widthwise direction of each of said thin sections and the outer edges in the widthwise direction of the aforementioned substrate. The separation membrane can be produced by using coating bar having a protrusion on both the left and right ends of the surface that contacts a macromolecule solution for forming the separation layer.
    Type: Application
    Filed: March 17, 2011
    Publication date: January 24, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Tatsuya Ichikawa, Sadajiro Hatano
  • Publication number: 20130004454
    Abstract: Oligo- or polyurethane compounds of the formula (I) wherein k and n independently are numbers from 1 to 100, m is from the range 1-100, (X) is a block of formula (II) and (Y) is a block of the formula (III), (A) is a residue of an aliphatic or aromatic diisocyanate linker, (B) is a residue of a linear oligo- or polysiloxane containing alkanol end groups, and optionally further containing one or more aliphatic ether moieties, and (C) is an aromatic oligo- or polysulfone block, may advantageously be used as anti-adhesion additives in polymer compositions e.g. for membranes; related oligo- or polyurethanes wherein m is 0 are especially suitable for the preparation of antimicrobial water separation membranes.
    Type: Application
    Filed: March 1, 2011
    Publication date: January 3, 2013
    Applicant: POLYMERS CRC LTD.
    Inventors: Thomas Weiss, Jaleh Mansouri
  • Patent number: 8313651
    Abstract: The present invention discloses a membrane stack comprising a first and second membrane layers, and a spacer layer disposed between said first and second membrane layers, said membrane stack configured such that fluid passes through said membrane stack in a direction substantially perpendicular to the plane of said membrane layers and said spacer layer. The application also discloses a module comprising a membrane as described above, said module having a fluid flow path that is substantially perpendicular to the plane of the major surface of the membrane and spacer layers ins aid membrane stack.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: November 20, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Elena N. Komkova, Donna Lisa Crossley, Alicja M. Mika
  • Patent number: 8292091
    Abstract: The present invention provides for a method of producing an integral multilayered porous membrane by simultaneously co-casting a plurality of polymer solutions onto a support to form a multilayered liquid sheet and immersing the sheet into a liquid coagulation bath to effect phase separation and form a porous membrane. The support can be a temporary support or form an integrated support for the membrane. The plurality of layers may be of the same polymer or different, same concentration or viscosity or different and may be subjected to the same processing conditions or different ones to form unique structures.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: October 23, 2012
    Assignee: EMD Millipore Corporation
    Inventor: Willem Kools
  • Patent number: 8281938
    Abstract: The invention discloses a nano-fiber material, wherein the nano-fiber material is formed by spinning an ionic polymer into a nano-fiber nonwoven, and the ionic polymer is represented by the formula: wherein: R1 includes phenyl sulfonate or alkyl sulfonate; R2 includes R3 includes and m/n is between 1/50 and 50/1, q?0.
    Type: Grant
    Filed: February 28, 2010
    Date of Patent: October 9, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-Yi Chen, Shu-Hui Cheng, Feng-Hung Tseng
  • Publication number: 20120228214
    Abstract: A porous membrane may have a high concentration of spherical fillers with a polymer binder. The polymer binder may have an affinity for the filler materials and may hold the filler materials together in a porous structure with high tortuosity and consistent pore size. The membrane may be manufactured with a reinforcing web, such as non-woven web. The membrane may be greater than 50% porous with a less than 1 micron pore size. Within the pore walls that may be less than 0.02 microns in width, a densely packed filler material may have an average diameter of less than 0.005 microns.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 13, 2012
    Applicant: POROUS POWER TECHNOLOGIES
    Inventors: Kirby W. Beard, Ann M. Edwards
  • Patent number: 8262778
    Abstract: The invention relates to polymeric ultrafiltration or microfiltration membranes of, for instance, poly(ethylene chlorotrifluoroethylene) (HALAR®), PVDF or PP, incorporating PVME or vinyl methyl ether monomers. The PVME may be present as a coating on the membrane or dispersed throughout the membrane or both. The membranes are preferably hydrophilic with a highly asymmetric structure with a reduced pore size and/or absence of macrovoids as a result of the addition of PVME. The PVME maybe cross-linked. The invention also relates to methods of hydrophilising membranes and/or preparing hydrophilic membranes via thermal or diffusion induced phase separation processed.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: September 11, 2012
    Assignee: Siemens Industry, Inc.
    Inventors: Daniel Mullette, Joachim Muller, Neeta Patel
  • Patent number: 8256626
    Abstract: A composite membrane is provided for the separation of water with at least one separation layer of cross-linked polyvinyl alcohol, with the separation layer being subjected in a separate process step to a post-crosslinking operation with an acid or an acid-releasing compound and at least one dialdehyde.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 4, 2012
    Assignee: Souzer Chemtech GmbH
    Inventors: Andreas Hübner, Elena Gonzalez Diaz, Michael Frania
  • Publication number: 20120190091
    Abstract: Disclosed herein are processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Application
    Filed: July 26, 2011
    Publication date: July 26, 2012
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Yu Huang, Jennifer Ly, Tiem Aldajani, Richard W. Baker
  • Patent number: 8225941
    Abstract: The present invention provides a hollow fiber membrane for treating liquids. When used for a hollow fiber membrane module for refining a fermented liquid such as beer or wine, the hollow fiber membrane exhibits a high filtration performance per unit area thereof, with reduced clogging of the membrane. The membrane performance is sufficiently recovered by washing. The present invention is a hollow fiber membrane for treating liquids, wherein a ratio of Flux 120 to Flux 30 is 0.45 or higher when filtration is performed by supplying a solution having a turbidity of 20 NTU into a hollow fiber membrane having an internal diameter of 500 to 1500 ?m and a membrane thickness of 100 to 500 ?m with a transmembrane pressure of 1.5 bar, the Flux 30 being flux 30 minutes after the start of the filtration, the Flux 120 being flux 120 minutes after the start of the filtration.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: July 24, 2012
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Hirofumi Ogawa, Noriaki Kato, Hideyuki Yokota, Junsuke Morita
  • Publication number: 20120160764
    Abstract: A porous membrane of vinylidene fluoride resin, comprising a substantially single layer membrane of vinylidene fluoride resin having two major surfaces sandwiching a certain thickness, including a dense layer that has a small pore size and governs a filtration performance on one major surface side thereof, having an asymmetrical gradient network structure wherein pore sizes continuously increase from the one major surface side to the other opposite major surface side, and satisfying conditions: (a) the dense layer includes a 5 ?m-thick portion contiguous to the one major surface showing a porosity A1 of at least 60%, (b) the one major surface shows a pore size P1 of at most 0.
    Type: Application
    Filed: September 6, 2010
    Publication date: June 28, 2012
    Inventors: Yasuhiro Tada, Takeo Takahashi
  • Patent number: 8197745
    Abstract: A permselective asymmetric hollow fiber membrane for the separation of toxic mediators from blood, a process for the preparation of such a membrane, and the use of such a membrane in hemodialysis, hemodiafiltration, and hemofiltration for treatment of toxic mediator-related diseases.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: June 12, 2012
    Assignee: Gambro Lundia AB
    Inventors: Reinhold Buck, Hermann Goehl
  • Patent number: 8182694
    Abstract: The present application discloses a membrane stack comprising a first and second membrane layers, and a spacer layer disposed between said first and second membrane layers, said membrane stack configured such that fluid passes through said membrane stack in a direction substantially perpendicular to the plane of said membrane layers and said spacer layer. The application also discloses a module comprising a membrane as described above, said module having a fluid flow path that is substantially perpendicular to the plane of the major surface of the membrane and spacer layers in said membrane stack.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: May 22, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Elena N. Komkova, Alicja M. Mika, Donna Lisa Crossley
  • Patent number: 8181795
    Abstract: A polymer membrane for water treatment contained a chlorinated vinyl chloride resin with a chlorine content of 58 to 73.2%. According to the present invention, it is possible to provide polymer membranes for water treatment that, along with being able to achieve sufficient filtration capacity and water permeability, have extremely high strength.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: May 22, 2012
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Toshihiro Tamai, Saki Tanimura, Naotaka Oyabu, Ryuichi Matsuo, Takashi Osugi, Yuki Goto, Tadashi Okamoto
  • Publication number: 20120103895
    Abstract: A porous membrane of vinylidene fluoride resin, including a 10 ?m-thick portion contiguous to one surface thereof which comprises network resin fibers having an average diameter of at most 100 nm and shows a porosity A1 of at least 60% as measured by a focused ion beam-scanning electron microscope, and showing a surface pore size of at most 0.3 ?m on said one surface thereof. The porous membrane has a treated water side surface layer showing a small surface pore size suitable for water filtration treatment and formed of extremely thin network resin fibers giving an extremely high porosity, thus showing an excellent minute particle-blocking performance and also extremely good anti-soiling resistance and regeneratability.
    Type: Application
    Filed: July 8, 2010
    Publication date: May 3, 2012
    Inventors: Yasuhiro Tada, Takeo Takahashi
  • Patent number: 8167144
    Abstract: Provided is a water separation membrane capable of effectively separating water from a water solution of ethanol, saccharide or the like. The water separation membrane is composed of polypyrrole doped with a sulfonate ion. The sulfonate ion may be an aromatic or aliphatic sulfonate ion.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: May 1, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Akihisa Tanaka, Kazuhiro Kagawa, Pu Qian
  • Publication number: 20120097605
    Abstract: A polymer membrane for water treatment contained a chlorinated vinyl chloride resin with a chlorine content of 58 to 73.2%. According to the present invention, it is possible to provide polymer membranes for water treatment that, along with being able to achieve sufficient filtration capacity and water permeability, have extremely high strength.
    Type: Application
    Filed: July 5, 2010
    Publication date: April 26, 2012
    Inventors: Toshihiro Tamai, Saki Tanimura, Naotaka Oyabu, Ryuichi Matsuo, Takashi Osugi, Yuki Goto, Tadashi Okamoto
  • Patent number: 8141716
    Abstract: A polymer alloy has been developed comprising a polysulfone and a vinyl lactam polymer. The resulting alloy has excellent thermal characteristics and even in the presence of substantial quantities in vinyl lactam polymers, has solvent resistance to both organic and aqueous solvent materials. The materials, when dissolved in solvents, can be spun from a variety of solvents into a variety of useful fiber materials. The resulting fine fiber, microfiber and nanofiber materials have excellent thermal and chemical resistance for a variety of fiber applications. The polymer alloys of the invention can be spun into nanofiber mats that can act as a filtration media and can also be combined into conventional substrate materials for fabrication into filter structures.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: March 27, 2012
    Assignee: Donaldson Company, Inc.
    Inventors: Ismael Ferrer, Richard S. Cardinal, Veli Kalayci
  • Patent number: 8136675
    Abstract: The present invention relates to a permselective asymmetric hollow fibre membrane for the separation of toxic mediators from blood, comprised of at least one hydrophobic polymer and at least one hydrophilic polymer. Further, the present invention relates to a process for the preparation of such a membrane, and the use of said membrane in hemodialysis, hemodiafiltration, and hemofiltration for treatment of toxic mediator-related diseases.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: March 20, 2012
    Assignee: Gambro Lundia AB
    Inventors: Reinhold Buck, Hermann Goehl
  • Patent number: 8123048
    Abstract: A method for forming a hydrophilic porous membrane includes applying a crosslinked coating to a hydrophobic porous membrane via an in-situ polymerization process. Polar functional groups are introduced into the coating, thereby forming the hydrophilic porous membrane.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: February 28, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Tao Xie
  • Publication number: 20120031843
    Abstract: The invention relates to the use of silane-modified polyvinyl alcohols for producing membranes, characterized in that the silane-modified polyvinyl alcohols can be obtained by a) radically initiated copolymerization of one or more vinyl esters from unbranched or branched carboxylic acids having 1 to 15 C-atoms and one or more ethylenically unsaturated silane compounds selected from the group comprising compounds of the general formulae CR2?CR—B—Si(OR?)3-n(R?)n (1), or CR2?CRC (?0)-D-B—Si(OR?)3-n(R?)n (2), wherein B is an aryl, heteroaryl or (CR2)m residue, wherein one or more non-neighboring CR2 groups can be replaced by heteroatoms as applicable, D is a heteroatom, R is a hydrogen atom, an alkyl or aryl residue or a heteroatom that is substituted as applicable by a hydrogen atom or an alkyl, aryl residue, OR? is an alkoxy, alkylcarboxy or arylcarboxy residue, R? is an alkyl or aryl residue and n 0, 1 or 2 and in 0 to 15, and b) subsequent saponification of the silane-modified vinyl ester copolymerisate obtai
    Type: Application
    Filed: March 23, 2010
    Publication date: February 9, 2012
    Applicant: Wacker Chemie AG
    Inventors: Manfred Hølzl, Martin Bortenschlager, Susanne Hecher, Felicitas Schauer
  • Publication number: 20120031834
    Abstract: There is provided an ion-exchange membrane comprising an ion-exchange layer made of a cationic polymer and/or an anionic polymer and a supporting layer, wherein the ion-exchange layer is formed on the supporting layer by printing. Such an ion-exchange membrane exhibits excellent anti-organic fouling and low membrane resistance, thereby high efficient and long-time stable electrodialysis can be achieved. Formation of the ion-exchange layer as a charge-mosaic layer consisting of the cationic polymer domains and the anionic polymer domains provides a charge-mosaic membrane exhibiting excellent electrolyte permselectivity and mechanical strength.
    Type: Application
    Filed: April 13, 2010
    Publication date: February 9, 2012
    Applicants: Kuraray Co., LTD., Yamaguchi University
    Inventors: Mitsuru Higa, Atsushi Jikihara, Kenichi Kobayashi, Naoki Fujiwara
  • Patent number: 8104624
    Abstract: A multipolymeric mixture is provided that includes a hydrophobic polymer, two different grades of a water-soluble polymer, water as non-solvent and a solvent suitable for all polymers involved. The dissolved hydrophobic polymer has the affinity to enmesh the water-soluble polymers to form a clear and viscous dope. Water-soluble polymers contribute to the pore formation process and hydrophilicity of the finally coagulated membrane according to the makeup of their molecular weight distribution. Water as a non-solvent takes the dope very near towards unstable zone, which helps in speeding up the membrane formation process in a diffusion induced phase inversion technique. The dope is then spun through a concentric orifice spinneret and solidified by passing it through a coagulation bath to form hollow fiber asymmetric membranes of ultra filtration grade with superior water permeability and separation characters even at higher feed turbidity.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: January 31, 2012
    Assignee: Aquatech International Corporation
    Inventors: Ravi Chidambaran, Devesh Sharma, Pavan Raina, Sugata Das
  • Patent number: 8084546
    Abstract: A method for varying the transport properties of a film cast from a polymer having at least two polymer end blocks A and at least one polymer interior block B wherein each A block is a polymer block resistant to sulfonation and each B block is a polymer block susceptible to sulfonation, and wherein said A and B blocks do not contain any significant levels of olefinic unsaturation. The method includes casting the polymer using a solvent mixture having two or more solvents selected from the group consisting of polar solvents and non-polar solvents.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 27, 2011
    Assignee: Kraton Polymers U.S. LLC
    Inventors: Carl Lesley Willis, Dale Lee Handlin, Jr., Scott Russell Trenor, Brian Douglas Mather
  • Publication number: 20110290716
    Abstract: A porous membrane of vinylidene fluoride resin, having two major surfaces sandwiching a certain thickness, including a dense layer which governs filtration performance on the one major surface side and a sparse layer which contributes to reinforcement on the other opposite major surface side, and having an asymmetrical gradient network texture including pore sizes which increase continuously from the one major surface to the other opposite major surface, wherein the dense layer includes a 7 ?m-thick portion contiguous to the one major surface showing a porosity A1 of at least 50%, and the one major surface shows a pore size of at most 0.30 ?m. The vinylidene-fluoride-resin porous membrane is generally useful as a porous membrane for separation and particularly exhibits good water-permeation-rate retentivity even in continuous filtration of cloudy water.
    Type: Application
    Filed: February 2, 2010
    Publication date: December 1, 2011
    Inventors: Yasuhiro Tada, Takeo Takahashi
  • Publication number: 20110290717
    Abstract: The invention relates to polymeric ultrafiltration or microfiltration membranes of, for instance, poly(ethylene chlorotrifluoroethylene) (HALAR®), PVDF or PP, incorporating PVME or vinyl methyl ether monomers. The PVME may be present as a coating on the membrane or dispersed throughout the membrane or both. The membranes are preferably hydrophilic with a highly asymmetric structure with a reduced pore size and/or absence of macrovoids as a result of the addition of PVME. The PVME maybe cross-linked. The invention also relates to methods of hydrophilising membranes and/or preparing hydrophilic membranes via thermal or diffusion induced phase separation processed.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 1, 2011
    Applicant: SIEMENS INDUSTRY, INC.
    Inventors: Daniel Mullette, Joachim Muller, Neeta Patel
  • Patent number: 8057574
    Abstract: The invention relates to polymeric ultrafiltration or microfiltration membranes of, for instance, Halar, PVDF or PP, incorporating PVME or vinyl methyl ether monomers. The PVME may be present as a coating on the membrane or dispersed throughout the membrane or both. The membranes are preferably hydrophilic with a highly asymmetric structure with a reduced pore size and/or absence of macrovoids as a result of the addition of PVME. The PVME maybe cross-linked. The invention also relates to methods of hydrophilising membranes and/or preparing hydrophilic membranes via thermal or diffusion induced phase separation processed.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: November 15, 2011
    Assignee: Siemens Industry, Inc.
    Inventors: Daniel Mullette, Joachim Muller, Neeta Patel
  • Patent number: 8052776
    Abstract: The present invention provides a method for making a hybrid composition membrane comprising the steps of preparing a sol comprising at least one poly(amino-alcohol) and at least one alkoxy silane, casting the sol on a surface and drying the casted sol to form the hybrid composition membrane. The hybrid composition membrane may be used for capturing and separating CO2 and/or H2S from a gas sample.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: November 8, 2011
    Assignee: Corning Incorporated
    Inventor: Dayue D. Jiang
  • Patent number: 8051992
    Abstract: A water transfer device can include first and second flow paths separated by a water transfer membrane and a hydrophilic diffusion medium. The hydrophilic diffusion medium is disposed between the water transfer membrane and the first flow path. Water content of a first fluid stream flowing through the first flow path is transferred through the diffusion medium and water transfer membrane and into a second fluid stream flowing through the second flow path. The hydrophilic diffusion medium is operable to absorb liquid water in the first fluid stream and hold the absorbed liquid water in contact with the water transfer membrane. The hydrophilic diffusion medium is also operable to diffuse water vapor in the first fluid stream and transport the water vapor to the water transfer membrane. The water transfer membrane transfers the water in contact therewith to the second fluid stream flowing through second flow path.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: November 8, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Glenn W Skala, Yan Zhang, Annette M Brenner
  • Publication number: 20110253621
    Abstract: A method of manufacturing a hydrophilic membrane and hydrophilic membranes having improved antifouling property using a supercritical fluid or a subcritical fluid. The method involves combining a coating solution from a hydrophilic group-containing monomer, an initiator, a cross-linking agent and a supercritical fluid or subcritical fluid in a high pressure solution vessel and transferring the coating solution to a membrane in a high pressure coating vessel, coating the surfaces and micropores of the membranes through cross-linking polymerization reactions. Non-reacted coating material is returned to the high pressure solution vessel. The membranes are removed from the coating vessel, cleaned and dried. The hydrophilic membrane manufactured by the present invention is excellent in properties of hydrophobic membranes such as thermal stability, chemical stability and mechanical strength, and surfaces and micropores of the membranes are uniformly coated.
    Type: Application
    Filed: July 28, 2010
    Publication date: October 20, 2011
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jaehoon Kim, Young Haeng Lee, Jae-Duck Kim, Jong Min Park, Jongsoo Jurng
  • Publication number: 20110226689
    Abstract: A separation membrane including a separation-functional layer is provided, wherein the separation-functional layer contains a polyvinylidene fluoride-type resin having a melt viscosity of 3,300 Pa·s or more, and also the separation-functional layer has a three-dimensional network structure. A separation membrane is provided having high virus removal performance, high pure water permeability, and high physical durability and high chemical strength, which can also be used in the field of water treatment.
    Type: Application
    Filed: September 18, 2009
    Publication date: September 22, 2011
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Kenji Komori, Toshiyuki Ishizaki, Kenta Iwai, Xunyao Fu, Shinichi Minegishi, Nao Minaki
  • Publication number: 20110210064
    Abstract: The invention discloses a filtration material for desalination, including a support layer, and a desalination layer formed on the support layer, wherein the desalination layer is a fiber composite membrane and includes at least one water-swellable polymer. The water-swellable polymer is made of hydrophilic monomers and hydrophobic monomers, and the hydrophilic monomers include ionic monomers and non-ionic monomers, and the ionic monomers include cationic monomers and anionic monomers.
    Type: Application
    Filed: December 21, 2010
    Publication date: September 1, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Hui Cheng, Jong-Pyng Chen, En Kuang Wang, Yi-Chun Lo, Shan-Shan Lin
  • Patent number: 8002119
    Abstract: A method for controlling the thickening of aqueous systems comprising silicates, which comprises adding to the aqueous system at least one copolymer of a mean molecular weight Mw of at least 3000 g/mol to at most 60 000 g/mol and the copolymer being made up essentially randomly from monoethylenically unsaturated monocarboxylic acids, monoethylenically unsaturated dicarboxylic acids and other ethylenically unsaturated comonomers, the polymerization for producing the copolymer being performed in the presence of from 0.01 to 100 mol % of at least one base, based on the total amount of all COOH groups of the monocarboxylic and dicarboxylic acids, the quantitative figures in % by weight being respectively based on the total amount of all monomers used.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: August 23, 2011
    Assignee: BASF SE
    Inventors: Karl-Heinz Buechner, Stephan Nied, Alexander Goethlich, Frank Klippel, Gunnar Schornick
  • Publication number: 20110198288
    Abstract: The present application is generally directed towards polyacrylonitrile— (PAN—) based, amphophilic graft copolymers, for example, for the production of membranes for liquid filtration. In one aspect, the present invention provides systems and methods for preparing high flux, fouling resistant nanofiltration membranes whose pore size can be readily tuned. In some cases, microphase separation of a graft copolymer comprising a backbone comprising polyacrylonitrile (PAN) and hydrophilic side-chains is used. In some cases, nanochannels of tunable width are formed, which may give the membrane permselective properties and/or anti-fouling character. In some cases, a copoylmer may be used as an additive in the immersion precipitation casting of ultrafiltration or microfiltration membranes. In certain instances, the additive can segregate to the membrane exterior and/or pore surfaces, e.g.
    Type: Application
    Filed: April 10, 2007
    Publication date: August 18, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Ayse Asatekin Alexiou
  • Patent number: 7997426
    Abstract: A multi-layer membrane structure including a crosslinked polymeric membrane, such as a crosslinked polyvinyl sulfate membrane or a crosslinked copolymer polyvinyl sulfate and polyvinyl alcohol membrane, is provided. The membrane structure is suitable for use in an acid environment, and is suitable for recovering acid from a feed mixture comprising acid, hydrocarbons and water.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: August 16, 2011
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Dennis G. Peiffer, Michael Mayers, Lloyd S. White, William A. Feehley
  • Publication number: 20110174720
    Abstract: Described is the application of layer-by-layer (LbL) electrostatic assembly techniques to electrospun nanofibers in order to fabricate novel, breathable electrospun fiber-based chemical and biological detoxifying protective fabrics and filters. The combination of layer-by-layer electrostatic assembly and electrospinning technique allows one to take advantage of high specific surface area, light weight and breathability of electrospun fiber mats while simultaneously providing the versatility to incorporate different functional polyelectrolytes to achieve multifunctional coatings for both chemical and biological protection together. The functionalized fiber mats can be incorporated into breathable chemical and biological protective fabrics, filters and masks. In addition, LbL electrostatic coating of porous non-woven materials provides the versatility to generate multifunctional polymer-based membrane materials for other applications.
    Type: Application
    Filed: July 21, 2010
    Publication date: July 21, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Liang Chen, Lev E. Bromberg, T. Alan Hatton, Gregory C. Rutledge