Plural Separating Patents (Class 210/806)
  • Publication number: 20140102986
    Abstract: A method and treatment unit for removing particulate mercury from aqueous streams such as wastewater streams from hydrocarbon processing is disclosed. Mercury solids are removed by means of a surface filter configured in the shape of a bag. The separated solid mercury can be thickened and dewatered by removing the spent filter bag from service and allowing the water to drain and/or evaporate. The dewatered solids can then be disposed of together with the spent bag to an approved solid waste disposal facility. Coagulants, flocculants, and mercury precipitants can be injected upstream of the filter bag if required to increase removal efficiency by precipitating dissolved ionic mercury and increasing the particle size of the mercury solids. Following bag filtration, activated carbon or an alternative technology (e.g.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: David A. MASCIOLA, Owen R. MICHAELIS
  • Patent number: 8679352
    Abstract: Disclosed herein is a method and system of recovering multiple products from industrial-scale production of a biomass of an aquatic species.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: March 25, 2014
    Assignee: PA LLC
    Inventors: Laurent Olivier, Greg Havemann, Paul Antalik, Brandi Alderson
  • Patent number: 8679347
    Abstract: Disclosed is a versatile multi-use high water recovery process that integrates the use of water purification membranes including reverse osmosis and nanofiltration with ion exchange water softening resins in a number of configurations that optimize operation and achieve maximum membrane permeate recoveries while eliminating the use of fresh water, sodium chloride and other chemicals needed to regenerate the IX resin. The invention provides process mobility and flexibility that enable selection of optimum process configurations and features to address variability in the Influent Water quality.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 25, 2014
    Inventor: Riad A. Al-Samadi
  • Patent number: 8678200
    Abstract: A system for dewatering a stream of slurry has a first and a second separator. The first separator removes objects above a first size, to produce a stream of primary treated slurry. The second separator removes objects above a second size from the primary treated stream, the second size being smaller than the first size. Optionally, a third separator removes objects above a yet smaller third size from the stream of secondary treated slurry. The first separator has a plurality of sieve mat supports alternately connected to a main support frame section and a movable support frame section so that the flexible sieve mat can be agitated by the movable support frame section, a collector being provided for collecting the primary treated slurry passing through the flexible sieve mat. In an optional step, water contained in the separated solids is removed.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 25, 2014
    Assignee: Genesis Fluid Solutions, Ltd
    Inventors: Michael Kent Hodges, Larry D. Campbell
  • Patent number: 8658043
    Abstract: A water treatment system provides treated water to a point of use by removing at least a portion of any hardness-causing species contained in water from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system typically receives water from the water source or a point of entry and purifies the water containing at least some undesirable species before delivering the treated water to a point of use. The water treatment system has a pressurized reservoir system in line with an electrochemical device such as an electrodeionization device. The water treatment system can have a controller for adjusting or regulating at least one operating parameter of the treatment system or a component of the water treatment system. The electrochemical device can be operated at a low current and low flow rate to minimize water splitting or polarization, which minimizes scale formation.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 25, 2014
    Assignee: Siemens Water Technologies LLC
    Inventors: Frederick Wilkins, Evgeniya Freydina, Aytac Sezgi, Reshma Madhusudan, Anil D. Jha
  • Patent number: 8652333
    Abstract: A process for removing a solvent from a source solution, said process comprising a) contacting the source solution with one side of a selectively permeable membrane, b) contacting a draw solution having a higher osmotic pressure (higher solute concentration) than the source solution with the opposite side of the membrane, such that solvent from the source solution passes across the membrane to dilute the draw solution by direct osmosis, c) removing solvent from the diluted draw solution to regenerate the draw solution, and d) recycling the regenerated draw solution to step a), characterized in that a portion of the draw solution is discarded or treated before and/or after the draw solution is regenerated in step c) so as to reduce the concentration of any solute species present in the draw solution from the source solution.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 18, 2014
    Assignee: Surrey Aquatechnology Limited
    Inventor: Peter Nicoll
  • Publication number: 20140024064
    Abstract: The present invention relates to processes and systems for the production of fermentative alcohols such as ethanol and butanol. The present invention also provides methods for separating feed stream components for improved biomass processing and productivity.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 23, 2014
    Applicant: BUTAMAX(TM) ADVANCED BIOFUELS LLC
    Inventors: Keith H. Burlew, James Timothy Cronin, Benjamin Fuchs, John W. Hallam, David J. Lowe, Brian Michael Roesch, Mathias E. Stolarski, Joseph J. Zaher
  • Publication number: 20140014597
    Abstract: A dual flow filter element includes inner and outer closed loop filter media and inlet and outlet end caps, and having a given shape-in-shape configuration. A support frame extends axially from one of the end caps toward the other end cap and terminates at a termination position between one-fourth and three-fourths of the axial distance between the inlet and outlet ends. Combinations using pleated filter media include a first group of pleat tip ends which are exposed, and a second group of pleat tip ends which are fully potted. One embodiment includes axially offset inner and outer closed loop filter media.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 16, 2014
    Applicant: Cummins Filtration IP, Inc.
    Inventors: Jessie A. Knight, Kenneth M. Tofsland, Mark A. Terres, Scott W. Schwartz, Thomas J. Braun, Andrea L. Kendall
  • Publication number: 20140014584
    Abstract: Embodiments of the present disclosure provide a system and method for wastewater purification. The system may include a sludge filtration unit, a screen filtration unit, a multi-media filtration unit, and a soluble hydrocarbon filtration unit. The sludge filtration unit may remove impurities from wastewater. Impurities include hydrocarbons, suspended solids, and/or dissolved solids. The screen filtration unit may remove impurities from the wastewater. The multi-media filtration unit may remove impurities from the wastewater. The soluble hydrocarbon filtration unit may remove impurities from the wastewater.
    Type: Application
    Filed: April 22, 2010
    Publication date: January 16, 2014
    Inventors: Steven Wayne Cone, Robert Wayne Hayes
  • Patent number: 8629291
    Abstract: Process and steps for the production of biodiesel and/or glycerin from feedstock are provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: January 14, 2014
    Assignee: Menlo Energy Management, LLC
    Inventors: Gaurav Shah, Sunil Suri
  • Patent number: 8623214
    Abstract: Various embodiments described herein provide methods and apparatus for producing purified water from sea water or some other salty or brackish water source by using brackish concentrate mixed with salty water. The various embodiments also provide methods and apparatus for the treatment of toxicity of brackish concentrate, which brackish concentrate exhibits on aquatic life inhabiting the area of discharge of the brackish concentrate, as well as a method for environmentally safe disposal of brackish concentrate.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: January 7, 2014
    Assignee: Poseidon Resources IP LLC
    Inventor: Nikolay Voutchkov
  • Publication number: 20130343953
    Abstract: Provided are devices, device systems, and methods to intercept and kill fluid borne cancer cells to slow or prevent metastases.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Eric V. Kline
  • Patent number: 8608970
    Abstract: A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hydrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 17, 2013
    Assignees: Red Shield Acquisition, LLC, University of Maine System Board of Trustees
    Inventors: Darrell M. Waite, Richard Arnold, James St. Pierre, Hemant P. Pendse, William H. Ceckler
  • Patent number: 8597515
    Abstract: A method of enhancing flux of tailings settling pond water from an oil sands process through a membrane separation system and purifying the water comprising is disclosed. The process comprises the following steps: (a) treating the water with an effective amount of one or more water-soluble cationic polymers, amphoteric polymers, zwitterionic polymers, or a combination thereof; (b) passing the treated water through a membrane separation system; and (c) optionally, passing the permeate from step (b) through an additional membrane separation system.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: December 3, 2013
    Assignee: Nalco Company
    Inventors: Deepak A. Musale, Anthony G. Sommese, Walter H. Goodman
  • Patent number: 8597517
    Abstract: A process for recovering ionic liquids comprising the steps of: providing a first ionic liquid mixture, the first ionic liquid having a halogen metallate anion, the mixture containing an organic solvent; adjusting the pH of the mixture to pH 7-10 by the addition of a base to form a first precipitate; separating the first precipitate from the mixture; removing the organic solvent from the first mixture to form a second precipitate and separating the second precipitate from the first mixture; acidifying the resulting mixture to pH 2-7 by the addition of an acid; and drying the mixture to obtain a second ionic liquid having a halogen anion.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: December 3, 2013
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Diego Javier Guzmán Lucero, Natalya Victorovna Likhanova, Rafael Martínez Palou, Eugenio Alejandro Flores Oropeza, Jorge Froylán Palomeque Santiago
  • Patent number: 8591704
    Abstract: A fractionation process for producing at least two concentration fractions of a fluid including a solute, suspended or dissolved content using at least two fluidly connected evaporator units is provided. The process includes the steps of: feeding a feed fluid including a solute, suspended or dissolved content into at least a first evaporator unit; evaporating a first amount of fluid from the feed fluid in at least the first evaporator unit to produce a first concentrated fluid; feeding at least a portion of the first concentrated fluid into at least a second evaporator unit; and evaporating a second amount of fluid from the first concentrated fluid in at least the second evaporator unit to produce a second concentrated fluid.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: November 26, 2013
    Assignee: Creative Water Technology Ltd.
    Inventor: Stephen Shelley
  • Patent number: 8591739
    Abstract: The present invention discloses a method and apparatus for separating particles and dissolved matter from a fluid stream. Specifically, the present invention includes a first pressure source which transports untreated fluid into a separator annulus with a filter element disposed therein. The untreated fluid is placed under appropriate pressure sufficient to produce turbulent flow, increased particle kinetics and/or cavitation physics allowing the desired fluid to penetrate and pass into and through the filter media. The filtered fluid is then transported to a collection tank. The contaminant particulate matter retained on the exterior of the filter media may be removed by the instantaneous reverse pressurization of the separator annulus by a second pressure source thereby removing the contaminant particles away from contact with the filter media, and which may then be transported to a waste collection tank or a concentrator for further treatment.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 26, 2013
    Assignee: Tervita, LLC
    Inventors: Raymond Ford Johnson, Markley Dean Johnson, Rodney Grage
  • Patent number: 8585903
    Abstract: The invention provides an efficient method to purify an aqueous solution, typically mine drainage water, especially of anions and cations present in the aqueous solution as dissolved solids, the anions and cations are removed by treatment with a positively charged extractant having at least eight carbon atoms, whereby an unstable emulsion is formed; the unstable emulsion is allowed to break into an extract phase loaded with the anions and cations, and a water phase depleted in anions and cations; a floc inherently forms in the loaded extractant phase and then the loaded extractant phase and floc are separated from the purified water and treated to remove the anions and cations as concentrated useful products; the treated aqueous phase now reduced in anion and/or cation content is also separated from the emulsion as a purified aqueous solution. The extractant phase is preferably recycled. A continuous water purification process is provided.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 19, 2013
    Assignee: Winner Water Services, Inc.
    Inventors: Bruce F. Monzyk, F. Michael Von Fahnestock, James Kevin Rose, H. Nick Conkle, Ming Wang, Satya P. Chauhan, Ruey K. Bruce, Tenisha Highsmith
  • Patent number: 8585909
    Abstract: This invention relates generally to a method and apparatus to allow high pressure pumping a fluid mixture of solid and/or abrasive particles with a liquid, and separating the fluid mixture into a solid and/or abrasive particle component and a cleaned liquid component. An embodiment includes surrounding the pump plunger/piston, and timely cycling the cleaned liquid to flush the pump check valves to displace erosive solid and/or abrasive material. Consequently, this invention allows for proper check valve sealing, extends the life of check valves, extends the life of the pump, and improves efficiency.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: November 19, 2013
    Inventors: Wesley Mark McAfee, Mark Franklin Alley
  • Patent number: 8580119
    Abstract: Process and steps for the production of biodiesel and/or glycerin from feedstock are provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 12, 2013
    Assignee: Menlo Energy Management, LLC
    Inventors: Gaurav Shah, Sunil Suri
  • Publication number: 20130277320
    Abstract: A process for separating a first mother liquor stream is provided. The process comprises: separating a first mother liquor stream in a second solid liquid separation zone to produce a secondary wet cake stream and a second mother liquor stream; wherein the first mother liquor stream comprises water non-dispersible microfiber, water, and water dispersible sulfopolyester; wherein the second mother liquor stream comprises water and water dispersible sulfopolyester; and wherein the secondary wet cake stream comprises water non-dispersible polymer microfiber.
    Type: Application
    Filed: November 28, 2012
    Publication date: October 24, 2013
    Inventors: Kenny Randolph Parker, Daniel William Klosiewicz, Ramesh Chand Munjal, David J. Rogers, JR., Dustin A. Tremaine
  • Patent number: 8563759
    Abstract: A process for extracting lipids from microalgae; the process involves pretreating a quantity of non-homogenized microalgae with an aliphatic alcohol for a predetermined period of time. The pretreatment liberates a substantial portion of lipids from the microalgae without requiring energy intensive cell membrane disruptive technologies. The liberated lipids are then treated with a transesterification reagent to form fatty acid methyl esters. The fatty acid methyl esters are separated from the resulting mixture and may be further purified to remove remaining solvents or other impurities. The fatty acid methyl esters produced by the process are suitable as a green energy biodiesel product.
    Type: Grant
    Filed: October 2, 2010
    Date of Patent: October 22, 2013
    Assignee: Cal Poly Corporation
    Inventors: Matthew W Hutton, Corinne R Lehr
  • Patent number: 8551336
    Abstract: A method for separating proteins from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting proteins from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal proteins from a wet algal biomass. These proteins are high value products which can be used as renewable sources of food and food additives. Neutral lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 8, 2013
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8545703
    Abstract: Process and steps for the production of biodiesel and/or glycerin from feedstock are provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: October 1, 2013
    Assignee: Menlo Energy Management, LLC
    Inventors: Gaurav Shah, Sunil Suri
  • Patent number: 8545702
    Abstract: Process and steps for the production of biodiesel and/or glycerin from feedstock are provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: October 1, 2013
    Assignee: Menlo Energy Management, LLC
    Inventors: Gaurav Shah, Sunil Suri
  • Publication number: 20130248465
    Abstract: A separator for drilling waste including a tank comprising an inlet and an outlet; a screening device disposed within the tank; a conduit coupled to the outlet; and a rotary valve coupled to the conduit. A separator including a tank having an inlet and an outlet; a trough in fluid communication with the tank; and a screening device having a plurality of members disposed within the tank, wherein the screening device is configured to direct an effluent phase through the members into the trough and a solids phase to the outlet. A method of separating drilling waste including flowing a return fluid to an inlet of a tank; and directing the return fluid against a screening device disposed within the tank, wherein an effluent phase of the return fluid passes through the screening device and wherein a solids phase of the return fluid falls to an outlet of the tank.
    Type: Application
    Filed: September 15, 2011
    Publication date: September 26, 2013
    Applicant: M-I L.L.C.
    Inventor: Joe Sherwood
  • Patent number: 8540881
    Abstract: Process and steps for the production of biodiesel and/or glycerin from feedstock are provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: September 24, 2013
    Assignee: Menlo Energy Management, LLC
    Inventors: Gaurav Shah, Sunil Suri
  • Patent number: 8540880
    Abstract: Process and steps for the production of biodiesel and/or glycerin from feedstock are provided.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: September 24, 2013
    Assignee: Menlo Energy Management, LLC
    Inventors: Gaurav Shah, Sunil Suri
  • Patent number: 8540882
    Abstract: One embodiment of a method to system for enhancing TOC removal while maintaining membrane filter performance is the implementation of a dual pH control system. This embodiment will enhance the ability to maximize TOC removal while maintaining optimum membrane filter performance. By adjusting pH, dosing a chemical coagulant and incorporating liquid-solids separation, a considerably higher degree of TOC removal is possible. By adjusting pH again after liquid-solids separation this embodiment can drastically increase the efficiency of the membrane microfiltration/ultrafiltration system. Thus pH control for soluble organic removal is critical. This pH level however may not be the ideal set point for minimizing membrane fouling which is the basis for this embodiment. An example: the pH set point for optimum soluble organic removal is designated to be 5.5. However, the optimum pH set point for optimum membrane performance is 7.0.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: September 24, 2013
    Assignee: Siemens Industry, Inc.
    Inventor: Gregg A. McLeod
  • Patent number: 8535541
    Abstract: Disclosed is a method for separating immunomagnetic bead labeled particulates. A carrier board is formed with at least one flow channel structure, which includes an inner reservoir, an outer reservoir, and at least one micro flow channel in communication with the inner reservoir and the outer reservoir. The method includes labeling target particulates with immunomagnetic bead, introducing a sample fluid into the inner reservoir, and applying a magnetic force and a driving force, wherein the driving force drives the particulates not labeled with immunomagnetic bead to flow through the micro flow channel to the outer reservoir, while the magnetic force attracts the particulates labeled with the immunomagnetic bead to retain in the inner reservoir. The driving force may be centrifugal force, pressure, or surface tension.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: September 17, 2013
    Assignee: National Taiwan University
    Inventors: Andrew Man Chung Wo, Yu-Cheng Pan, Ken-Chao Chen, Chen-Lin Chen
  • Patent number: 8529765
    Abstract: A method, apparatus and system for the hydrolyzation of ensiled biomass is disclosed. Ensiled biomass is processed in multiple phases, resulting in a liquid precursor hydrozate and a solid precursor hydrozate. The liquid precursor having significant economic value, and being suitable for uses such as, for example, lower cost and improved efficiency ethanol production. A method for lower cost, improved efficiency alcohol production that uses the resulting liquid precursor hydrozate being produced at distributed sources is further disclosed.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: September 10, 2013
    Assignee: Sweetwater Energy, Inc.
    Inventor: Jerry Wayne Horton
  • Patent number: 8524089
    Abstract: A combined sedimentation and pressure floatation wastewater treatment tank includes a tank body, a sedimentation treatment device and a pressure floatation treatment device. The tank body contains a predetermined amount of wastewater for treatment. The sedimentation treatment device is used to remove relatively heavier sludge from the wastewater by sedimentation treatment, and the pressure floatation treatment device is used to remove relatively lighter sludge from the initially treated wastewater by pressure floatation treatment. In operation, the wastewater is initially treated by the sedimentation treatment device and is further treated by the pressure floatation treatment device. Alternatively, the wastewater is initially treated by the pressure floatation treatment device and is further treated by the sedimentation treatment device.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: September 3, 2013
    Inventor: Kuei-Lin Tsai
  • Patent number: 8518262
    Abstract: A method of integrating individual water treatment assemblies into a seamless water treatment control system. A Reverse Osmosis assembly contains a controller wherein all other pretreatment and post-treatment assemblies are electrical coupled thereto. The controller is preprogrammed for use in recognizing the coupling of the pretreatment and/or post treatment assemblies wherein and for receiving all control commands for operation thereof. The controller employs cells that allows and installer to interconnect assemblies by coupling low voltage control signal wiring having predefined inputs, set up as PnP, or by use of a personal wireless network.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 27, 2013
    Assignee: Nalco Company
    Inventors: Scott Watkins, Raymond Perdue
  • Publication number: 20130213903
    Abstract: An apparatus (25) for use in screening a liquid and solids mixture feed (2) comprises a conduit (18), including a screening portion (22) that is formed and arranged to divide a liquid and solids mixture feed flowing through the conduit. The feed (2) is divided into a first, cleaned stream (C1) comprising liquid and solid particles of below a selected size limit, and a second, concentrated, stream (24) comprising liquid, and particles above the selected size limit. The apparatus (25) may be a stand alone module, part of a system with other solids and liquids separating equipment or an integral part of a solids and liquid separator such as a shale shaker. Methods of using the apparatus (25) are also described.
    Type: Application
    Filed: June 24, 2011
    Publication date: August 22, 2013
    Inventor: Marshall Graham Bailey
  • Publication number: 20130213893
    Abstract: A system adapted to condition an initial water feed stream into a treated water stream and to discharge the treated water stream. The initial water feed stream includes at least one of: a plurality of particles; an oil; a volatile organic compound; a hydrogen sulfide; a non-volatile compound; a heavy metal; and, a dissolved ion. The system includes a particle and oil removal subsystem adapted to treat the initial water feed stream to remove the plurality of particles and the oil to form a first partial treated water stream, a chemical oxygen demand reduction subsystem adapted to treat the first partial treated water stream to remove the volatile organic compound, the hydrogen sulfide and/or the non-volatile organic compound to form a second partial treated water stream, and a heavy metal and dissolved ion removal subsystem adapted to treat the second partial treated water stream to remove the heavy metal and the dissolved ion to form a treated water stream.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 22, 2013
    Inventor: Richard Paul Posa
  • Patent number: 8512576
    Abstract: A system for the production or handling of heavy oil comprises means (18) for introducing an immiscible viscosity-reducing fluid into the heavy oil at an upstream end of a flow line (10,22) to create a dispersion of oil and viscosity-reducing fluid, and means (24,30) for separating the viscosity-reducing fluid at least partially from the oil at a downstream end of the flow line. The separating means comprises a cyclonic fluid conditioning unit (24) connected receive the dispersion of oil and viscosity-reducing fluid from the downstream end of the flow line (22), said cyclonic fluid conditioning unit being constructed and arranged to subject the dispersion to a cyclonic conditioning process; and a gravity separator unit (30) connected to receive the conditioned dispersion from the cyclonic fluid conditioning unit.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: August 20, 2013
    Assignee: Caltec Limited
    Inventors: Mahmood Mir Sarshar, Ali Najam Miraz Beg, Carl Wordsworth
  • Patent number: 8512577
    Abstract: Process and apparatus for completely recovering the reusable components of an abrasive slurry used in slicing crystalline materials of silicon, quartz or ceramics when it becomes exhausted and enriched with undesired waste matter. The process consists of an initial centrifuge separation of the exhausted slurry as such and of a wet size-sorting treatment of the fraction containing the abrasive grains obtained from the centrifuge, carried out in a battery of hydrocyclones or centrifuges connected in series. The section for the recovery and purification of the abrasive grains comprises a multifunctional apparatus that performs all the required operations within a single pressure vessel.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 20, 2013
    Assignee: SIC Processing AG
    Inventor: Guido Fragiacomo
  • Patent number: 8512942
    Abstract: The disclosure provides methods of making a cell-containing product having a uniform amount of cells therein. The method comprises pooling red blood cells from a plurality of blood units, and inactivating any pathogen contained therein. A storage solution added to the cellular component results in a cell-containing product that is essentially pathogen and white blood cell free and has an extended shelf life of about 42 to about 100 days. The cell-containing product is further divided into units which comprise a uniform dose of RBCs per unit.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 20, 2013
    Assignee: New York Blood Center, Inc.
    Inventors: Beth H. Shaz, Christopher D. Hillyer
  • Publication number: 20130206698
    Abstract: Fluid distribution filters having spiral filter media and associated systems and methods are disclosed herein. In one embodiment, for example, a filter assembly can include a canister having a body portion positioned between a first opening and a second opening. The filter assembly can further include a filter media positioned in the body portion of the canister. The filter media can include at least one channel in fluid communication with the first and second openings. The channel can have a spiral-like shape and be configured to distribute incoming fluid across the filter media and move the fluid at a substantially equal velocity across the filter media.
    Type: Application
    Filed: August 13, 2012
    Publication date: August 15, 2013
    Applicant: McAlister Technologies, LLC.
    Inventor: Roy Edward McAlister
  • Patent number: 8506820
    Abstract: A continuous online process for rejuvenating whole stream of contaminated lean sulfolane in an extraction system is provided. A rejuvenator is installed in the solvent circulation loop to remove the contaminants continuously to keep the solvent clean, effective and less corrosive. The rejuvenator includes a high pressure vessel with a removable cover and a round rack with vertical stainless steel tubes fitted in the high pressure vessel. A magnetic bar is placed in each stainless steel tube. A screen cylinder is installed outside the ring of stainless steel tubes. As the contaminated sulfolane is passed through the rejuvenator, the rejuvenator picks up contaminants. The rejuvenator can be dissembled to remove the contaminants periodically. The rejuvenator is simple in construction, reliable in operation, and low in operation and maintenance costs. With this rejuvenator, the extraction system operates at high efficiency and high capacity without the dreaded corrosion.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: August 13, 2013
    Assignee: CPC Corporation, Taiwan
    Inventors: Ping-Wen Yen, Yuh-Sheve Ho, Hung-Tzu Chiu, Chung-Jong Hwu, June-Cheng Chang, Tzong-Bin Lin, Tsoung Y. Yan, Cheng-Tsung Hong, Hung-Chung Shen
  • Patent number: 8506819
    Abstract: A system and method of filtering metalworking fluid is disclosed. A particle filter is provided in fluid communication with a sump of machining equipment to filter particles from a metalworking fluid. The metalworking fluid is filtered using the particle filter to remove metal filings and debris from the metalworking fluid. A tramp oil filter is provided in fluid communication with the particle filter to remove tramp oil, wherein the tramp oil filter includes hydrophobic material to absorb oil. The oil-free metalworking fluid may then be re-circulated back to the machining equipment.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 13, 2013
    Inventor: Gary Major
  • Patent number: 8506817
    Abstract: Disclosed is an economical process for the purification of water containing soluble and sparingly soluble inorganic compounds using single-stage or two-stage membrane processes that integrate membrane water purification with chemical precipitation softening and residual hardness and silica removal from the membrane concentrates using ion exchange resins and silica sequestering media, respectively.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 13, 2013
    Inventor: Riad Al-Samadi
  • Publication number: 20130200013
    Abstract: Provided are an apparatus for filtering water from and oil and gas well and a method of filtering water from an oil and gas well. The filtration unit utilizes gravity fed filtration that is open to the environment.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 8, 2013
    Inventor: Robert L. Miller
  • Patent number: 8501017
    Abstract: A coolant filtration system and method for use with one or more metal working machines. The system includes a housing, pump, conveyer assembly, drum assembly, and centrifugal separator. The housing includes a tank that receives and holds coolant coming out of the one or more metal working machines. The pump is used to drive the coolant through the coolant filtration system. A part of the conveyer assembly is disposed within the housing in order to carry-away workpiece chips from the coolant. The drum assembly is located near the conveyer assembly in order to filter the coolant. The centrifugal separator receives coolant processed by the conveyor and drum assemblies. The system can further include one or more fine filters for additional filtering of the coolant outputted by the centrifugal separator.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: August 6, 2013
    Assignee: JK Industries, LLC
    Inventor: Keith Urban
  • Patent number: 8501034
    Abstract: Processes and apparatus for purifying brine are provided including (1) providing an aqueous brine solution comprising one or more inorganic salts and one or more organic compounds and (2) conducting at least one unit operation for removing organic compounds from the brine solution to obtain a purified brine solution.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 6, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Bruce Hook, Dan Tirtowidjojo, Anil Mehta
  • Publication number: 20130193089
    Abstract: A filtration system for clarifying a cloudy beverage from at least one tank in which dregs have formed, the clarifying occurring through a cross-flow filtration. The filtration system includes: a first filtration module having a first filtration element, the first filtration element including a first channel having a first diameter; and, a second filtration circuit located in parallel to the first filtration circuit, the second filtration circuit including a second filtration module having a second filtration element, the second filtration element including a second channel having a second diameter, the second diameter being larger than the first diameter. A method for filtering a cloudy beverage from at least one tank in which dregs have formed, the method using the just-described filtration system.
    Type: Application
    Filed: March 10, 2011
    Publication date: August 1, 2013
    Applicant: GEA MECHANICAL EQUIPMENT GMBH
    Inventors: Wolf-Dietrich Herberg, Reimar Gutte
  • Patent number: 8496833
    Abstract: A method of removing leukocytes that through reducing of clogging of a leukocyte removing filter element by blood cell components and plasma proteins being a problem encountered at the time of removing leukocytes from blood, shortens the filtration time at refrigerated filtration and exhibits high leukocyte removing performance at room temperature filtration. There is provided a method of removing leukocytes including filtering blood containing leukocytes through a leukocyte removing filter apparatus having multiple fibrous filter elements with different average fiber diameters to thereby remove leukocytes from the blood, characterized in that use is made of a leukocyte removing filter apparatus wherein the multiple fibrous filter elements include at least leukocyte removing filter element (A) of 2.0 to <4.0 ?m average fiber diameter and leukocyte removing filter element (B) of 0.7 to 1.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: July 30, 2013
    Assignee: Asahi Kasei Medical Co., Ltd.
    Inventor: Kenji Kobayashi
  • Patent number: 8491788
    Abstract: One embodiment of a method to system for enhancing TOC removal while maintaining membrane filter performance is the implementation of a dual pH control system. This embodiment will enhance the ability to maximize TOC removal while maintaining optimum membrane filter performance. By adjusting pH, dosing a chemical coagulant and incorporating liquid-solids separation, a considerably higher degree of TOC removal is possible. By adjusting pH again after liquid-solids separation this embodiment can drastically increase the efficiency of the membrane microfiltration/ultrafiltration system. Thus pH control for soluble organic removal is critical. This pH level however may not be the ideal set point for minimizing membrane fouling which is the basis for this embodiment. An example: the pH set point for optimum soluble organic removal is designated to be 5.5. However, the optimum pH set point for optimum membrane performance is 7.0.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: July 23, 2013
    Assignee: Siemens Industry, Inc.
    Inventor: Gregg A. McLeod
  • Patent number: 8491795
    Abstract: An apparatus and methods for converting seawater to drinking water at room temperature include using the processes of osmosis, vacuum stripping, nanofiltration, ion exchange, and breakpoint chlorination, to provide a low-cost alternative to prior seawater conversion methods.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 23, 2013
    Inventor: Kenneth Yat-Yi Chen
  • Patent number: 8486275
    Abstract: An automated water treatment system and methods for treating raw water to produce potable water are disclosed. The system is a self-contained portable water treatment system having several selectable treatment subsystems and a controller which automatically selects and controls the mode of operation from a transient, normal or backwashing mode, automatically controls the flow of water through a treatment path based upon the selected mode of operation and the measured water quality characteristics of the water at selected locations, automatically determines, based upon the selected mode of operation and the water quality parameter measurements, which of the plurality of the selectable subsystems is needed to produce potable water at the output; and automatically direct the flow of water through a treatment path through the system to bypass the water treatment subsystems and elements that are not needed to produce potable water.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: July 16, 2013
    Assignee: Omni Water Solutions, Inc.
    Inventor: Wayne Allan Wolf