Horizontal Launch Patents (Class 244/171.4)
  • Patent number: 11077960
    Abstract: A system for launching aerospace payloads includes an unmanned modified lifting body spacecraft (100), with a payload compartment in the forward section of the spacecraft. The spacecraft is propelled by hybrid rockets clustered in the aft section of the spacecraft. Reaction control system (RCS) modules control the flight path and its associated avionics hardware and software. This system also includes a carrier aircraft (200) configured to air-launch the spacecraft. The carrier aircraft includes a flight operations control system, which monitors the spacecraft's payload and monitors and controls launch and flight operations of the spacecraft. A ground-based mission control system monitors and controls the spacecraft's payload and monitors and controls the launch and flight operations of the spacecraft.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: August 3, 2021
    Inventors: Harlan Donald Bryan, Christopher Michael Carey
  • Patent number: 8702041
    Abstract: An aircraft having propulsion units for both conventional aircraft flight in the atmosphere and for high-altitude operation as a rocket. The aircraft is divided into a payload compartment and a compartment containing rocket propulsion unit propellant or fuel, and includes a long transverse wing with a small back-sweep to favor lift in the dense layers of the atmosphere and to thus make it possible to climb to high altitudes at a subsonic speed before using the rocket propulsion units. The return flight portion is performed by gliding or controlled as for a conventional aircraft.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: April 22, 2014
    Assignee: Astrium, S.A.S
    Inventors: Christophe Chavagnac, Jérôme Bertrand, Hugues Laporte-Weywada, Olivier Poulain, Philippe Matharan, Robert Laine
  • Publication number: 20130299626
    Abstract: A vehicle comprises a first stage supersonic aircraft, and a second stage hypersonic aircraft. The second stage aircraft is in tandem with the first stage aircraft.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Applicant: The Boeing Company
    Inventors: Thomas R. Smith, Kevin G. Bowcutt
  • Patent number: 8528853
    Abstract: A vehicle includes a first sub-vehicle, and a second sub-vehicle which is repeatably moveable between coupled and uncoupled conditions with the first sub-vehicle. The first and second sub-vehicles each include a landing system and propulsion system. The first and second sub-vehicles are in the coupled condition during take-off. The first and second sub-vehicles are separately flyable in the uncoupled condition. Both vehicles are launched horizontally, by a ramp, or vertically, using atmospheric lift to achieve atmospheric flight, orbital, or sub-orbital launch.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: September 10, 2013
    Inventor: David I. Luther
  • Patent number: 8403254
    Abstract: An aero-assisted pre-stage (10) with a commensurably large wing area having a short-burn rocket propulsion system providing sufficient thrust is used to launch a variety of single-stage and multiple-stage space vehicles (20), such as conventional ballistic rockets and prospective spaceplanes, from conventional runways. This method of launch eliminates the need for dedicated ground launch structures and/or dedicated long runways. The vehicle to be launched (20) is mated to this aero-assisted pre-stage (AP) (10), with their flight directions aligned, using a lock-and-release mechanism (30). The resulting stack takes off like a conventional airplane using the propulsion and aerodynamic lift of the AP. After the desired trajectory of the vehicle is achieved and propulsion system of the AP is shut down, the vehicle is separated from the AP, the propulsion system of the vehicle is ignited, and the vehicle continues its ascent. The AP returns back to the surface for reuse or disposal.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 26, 2013
    Inventor: Eugene Alexis Ustinov
  • Patent number: 7934684
    Abstract: A method for racing rocket-powered vehicles directly against one another is provided in which a first rocket-powered vehicle simultaneously races against a second rocket-powered vehicle to be the first to complete a race course. The method may include the first and second rocket-powered vehicles performing a pre-determined maneuver while proximate a group of spectators, and/or the rocket-powered vehicles strategically performing the steps of gliding and boosting the flight of their rocket-powered vehicle in accordance with a pre-determined maximum fuel criteria. The method further may include permitting spectator interaction with participants of the racing competition and enabling spectators to compete with actual participants via virtual vehicles. The method may also include the rocket-powered vehicles performing a refueling operation. The method may further include providing audible or visual identifiers of the vehicles.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: May 3, 2011
    Assignee: Rocket Racing, Inc.
    Inventors: Peter H. Diamandis, Granger Whitelaw, Michael R. D'Angelo
  • Patent number: 7523892
    Abstract: A method of launching space vehicles by towing them aloft, then twirling them around a large transport aircraft (40) at the center of a formation (AA) of other tow aircraft (28, 34) and other devices of the invention. A lengthy, semi-rigid tow pipeline (14) serves as a conduit for the transfer of fuels and oxidizers, as the tow cable, and as an energy storage device that reflexes efficiently when it is flexed. The flexing of tow pipeline (14) is caused by a parachute (22) acting in conjunction with all the aircraft making the tighest turn they are capable of doing. Tow aircraft in certain arrays (28) are joined to tow pipeline (14) by sliding trollies (26) that also host canard rotor wings for the aerodynamic support of the main tube (12). The tow trollies (26) aid the sliding tow aircraft arrays (28) in gaining mechanical advantage to accelerate the space vehicle.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: April 28, 2009
    Inventor: Michael Leon Cook
  • Patent number: 7458544
    Abstract: A system for launching a launch vehicles mounted beneath an aircraft. A mechanism which separates the launch vehicle from the carrier aircraft engages the launch vehicle, and prevents the launch vehicle from coming into contact with the carrier aircraft as the launch vehicle is dropped away from the launch vehicle. A lanyard extends from the carrier aircraft applies an impulse to the launch vehicle as it is separated from the aircraft causing the launch vehicle to rotate upwardly of the pitch plane. A drogue parachute applies a rearward force to the launch vehicle holding the rigid trapeze in engagement with the launch vehicle, and damping the rate of rotation in the pitch plane as the rotation of the pitch plane brings a launch vehicle to a substantially vertical launch attitude, were powered flight of launch vehicle is begun. The launch vehicle follows a trajectory that crosses behind the carrier aircraft.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: December 2, 2008
    Assignee: Airlaunch LLC
    Inventors: Marti Sarigul-Klijn, Nesrin Sarigul-Klijn
  • Patent number: 7281682
    Abstract: A spacecraft system for achieving LEO and beyond includes a lifting body spacecraft, and an acceleration bed unit for accelerating the spacecraft horizontally on a runway to liftoff. The rocket engines of the spacecraft then power the spacecraft into LEO, and the spacecraft glides back to earth, where it is refurbished for reiterative use. A belly assembly of the spacecraft is removable and replaceable. The hydrogen fuel tanks of the spacecraft are modular units, and each include a bladder that expands to fill the tank when empty to prevent explosion hazards.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: October 16, 2007
    Assignee: DBI/Century Fuels & Aerospace Services
    Inventor: Hector A. D'Auvergne
  • Patent number: 7252270
    Abstract: System for launching a missile from a launch region within the atmosphere of a planet, the missile being located within a flying vehicle before launching the missile, the system including a missile support coupled with the missile, and a foldable control-surface mechanism coupled with the missile support, the foldable control-surface mechanism being in a folded position before ejecting the missile support and the missile from the flying vehicle, the foldable control-surface mechanism moving from a folded position to an operational position after ejecting the missile support and the missile from the flying vehicle, wherein the foldable control-surface mechanism maneuvers the missile and the missile support to a predetermined orientation suitable for launching the missile, wherein the missile support is decoupled from the missile when the missile and the missile support are at the predetermined orientation, and wherein the missile is launched after reaching the predetermined orientation.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: August 7, 2007
    Assignee: Israel Aircraft Industries, Ltd.
    Inventor: Gil Mitzmacher
  • Patent number: 7240878
    Abstract: The Hypersonic Orbital Fighter and the methods of flying it are disclosed. The Hypersonic Orbital Fighter is characterized by a winged, modified lifting body shape with the forward ventral section comprising an X-30 type compressive air inlet, throttleable supersonic combustion ramjet array under the center of gravity and half-cone exhaust outlet at the back, fore mounted canards, cockpit/payload area top front and mid section and one or more tailplanes at the top back. Flight profile comprising runway takeoff, high subsonic climb up to 65,000 feet, alternatively full power climb from zero to 65,000 feet, with progressive acceleration from there up to Mach 24 @ required orbital altitude. Able to intercept missiles from early through post-boost phase from chosen orbit or suborbital arc, to intercept aircraft and to interdict surface targets. Winged dynamic soaring capability in reentry followed by powered runway landing.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: July 10, 2007
    Inventor: Andrew James Towne
  • Patent number: 7131613
    Abstract: A system is disclosed for lifting a rocket into the upper atmosphere and establishing forward flight at several hundred miles per hour, before the rocket engines are ignited and the rocket is released from the lifting system. The main subassemblies of this lifting system comprise: (1) an array of large helium-filled dirigibles, of a size that can provide hundreds or thousands of tons of lifting force; (2) a tank-holding assembly that will be tethered to the dirigibles, and that will contain pumps and high-pressure tanks, to recapture and store the helium for use in subsequent launches; and, (3) a winged platform, with wings that can be rotated vertically during liftoff, and horizontally to establish forward flight after a desired altitude has been reached, and having conventional aircraft engines on each wing. This system enables safer, less expensive, and more efficient launching of rockets and heavy payloads into space, using easily reusable subassemblies.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: November 7, 2006
    Assignee: Tetraheed LLC
    Inventor: Patrick D. Kelly