Remote Control Patents (Class 244/3.11)
  • Publication number: 20100237184
    Abstract: A system is provided for the remote control of a spinning projectile, the system comprising: a polarized radiation source emitting polarized radiation wherein commands are encoded; a projectile round; a polarized radiation receiver disposed on the projectile round and configured to receive the polarized radiation; and a projectile steering mechanism, the mechanism directing movement of the projectile according to the commands communicated by means of rotation of polarization of the polarized radiation source.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 23, 2010
    Applicant: BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INTEGRATION INC.
    Inventor: Robert D. Frey, JR.
  • Patent number: 7795566
    Abstract: Systems and methods for are adapted for automatic implementation of exclusion zone avoidance for target-tracking vehicles, such as spacecraft. The systems and methods are configured to monitor pointing commands (commanded attitude and angular rates) generated for target tracking, and modify these commands as necessary to avoid pointing a boresight into an exclusion zone.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: September 14, 2010
    Assignee: SpaceDev, Inc.
    Inventor: Jesse D. Koenig
  • Patent number: 7767945
    Abstract: SAL designation uses absolute time coding of the pulse-stream to disambiguate the designator in a manner that reduces the number of pulses in a pulse-stream and reduces the total pulse energy on the target. This requires timing synchronization between the designator and receiver. For improved rejection of unintended returns, more precise time gating (narrower absolute time window) is required. This can be achieved by removing the path length and or firing time uncertainty errors. Absolute time coding reduces the number of pulses and total energy on target in two ways. First, the designator may only have to transmit the pulse-code once. The “spot” appears for the brief time associated with a pulse-stream and disappears; continuous lasing of the target is not required. Second, the designator can be disambiguated using a combination of pulse-code (relative spacing of pulses) and pulse-position (absolute timing of pulses) modulation.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: August 3, 2010
    Assignee: Raytheon Company
    Inventor: Darin S. Williams
  • Patent number: 7745767
    Abstract: The object of the invention is a method of control of an ammunition or submunition, and in particular of the control of initiation of fire and/or of control of a trajectory correction and/or of a direction of fire, from a target detection. The method consists of the following steps: (1) a field zone (2) is sweeped from the ammunition (6) or submunition using a laser beam (10), (2) a potential target (1) located on the field is spotted using a passive surveillance means (4), and (3) when the means of passive surveillance (4) detects the laser beam (10) transmitted by the ammunition or submunition, the transmission of an order of confirmation is controlled and/or of at least one off-target data via the means of surveillance (4) and towards the ammunition or submunition.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: June 29, 2010
    Assignee: Nexter Munitions
    Inventor: Thierry J. M Bredy
  • Patent number: 7728264
    Abstract: The disclosed system, device and method for targeting and measurement of stationary target locations in addition to prediction of moving target positions for given weapon intercept times generally includes: a target location system (TLS) configured with a computing device, a GPS receiver, mapping software, calibration software and digital filtering software. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve target acquisition and engagement. Exemplary embodiments of the present invention generally provide for improved accuracy of range finders, magnetometers and inclinometers as well as for improved prediction of moving target positions.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: June 1, 2010
    Assignee: Raytheon Company
    Inventors: Erwin De Sa, Ebbert Marvin, Rodney Krebs
  • Patent number: 7718937
    Abstract: A beam-riding missile (10) has a freely rotating control portion (11) forming its nose and carrying a pair of fixed ailerons (13) and a pair of fixed elevators (14). Detecting means (not shown) gather information indicative of the location of the missile in the beam and steering logic circuitry (not shown) provides signals to a clutch (18) which interfers with the free rotation of the nose in such a way that the elevators are effective to maintain the chosen flight path. The clutch can be electromagnetic, piezo-electric or function on the Johnson-Raebeck effect. The combination of fixed control surfaces and steering by a single actuator leads to the possibility of useful reductions in the size, weight and complexity of the missile.
    Type: Grant
    Filed: September 7, 1983
    Date of Patent: May 18, 2010
    Assignee: Short Brothers PLC
    Inventors: Albert Dunn, Richard Sutton Ransom
  • Patent number: 7696459
    Abstract: A guidable projectile has a nose member, a projectile body, and a nose member articulation assembly which couples the nose member to the projectile body. The nose member articulation assembly includes a stator attached to the nose member, a rotor attached to the projectile body, and rotational support hardware interconnecting the stator to the rotor. The stator defines a central axis. The rotational support hardware is constructed and arranged to guide rotation of the rotor around the central axis defined by the stator. Such a guidable projectile enables circuitry such as the driver of the stator and the power source to reside at fixed locations relative to the stator thus alleviating the need for slip rings which would otherwise present potential points of failure.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: April 13, 2010
    Assignee: HR Textron, Inc.
    Inventor: Amir Harnoy
  • Publication number: 20100070111
    Abstract: A system for launching, controlling and delivering in a preselected target pattern a plurality of low-cost, guided fire-retardant-containing vehicles, i.e., “smart water bombs” equipped with control surfaces sufficient to provide limited lift and maneuverability to respond to guidance command to place it at a selected GPS coordinate within a large footprint in time and space and to discharge its payload of fire retardant at a preselectable altitude in a very precise manner and dispersion pattern. A controller determines bombing patterns and timing for all bombs and trajectories for each guided bomb. Dynamic differential equations are used to determine location and time of release of the guided bombs to achieve the target while avoiding collisions among guided bombs and aircraft.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 18, 2010
    Applicant: Lonestar Inventions. L.P.
    Inventor: Osman Ersed Akcasu
  • Publication number: 20100059622
    Abstract: A method for guiding a moving object to a target. The method comprising: transmitting a signal from one or more illuminating sources defined in a reference coordinate system; receiving the signal at three or more cavity waveguides disposed on the moving object; using one or more forward observers to determine the position of the target; fixing the one or more illuminating sources to the one or more forward observers; determining a position and/or orientation of the object in the reference coordinate system based on a strength of the signal received in the three or more cavity waveguides; and guiding the moving object to the target based on the determined position and/or orientation.
    Type: Application
    Filed: August 30, 2009
    Publication date: March 11, 2010
    Applicant: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Patent number: 7652234
    Abstract: A method for obtaining a sky view of a battle site, comprising launching an interceptor (2) towards at least one detected flying threat (3); the interceptor (2) tracking the threat (3) using at least one remote sensor for achieving a kill of the threat (3) at a designated kill site (4) being at a large range from the at least one sensor; when the interceptor (2) approaches the kill site (4), releasing from the interceptor (2) at least one detachable vehicle (7) that includes at least one local sensor (8) for sensing the kill site (4) from a range considerably shorter than the large range and communicating the sensed data.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: January 26, 2010
    Assignee: Israel Aerospace Industries Ltd.
    Inventor: Eli Shukrun
  • Publication number: 20100001118
    Abstract: A tornado disarming network includes a command center, tornado detection systems, and tornado busting missile launch sites in communications with the command center. Tornado busting missiles are at the tornado busting missile launch sites. Each tornado busting missile includes a radar, a guidance system and a solid rocket motor for propelling the missile toward the tornado. A thruster control system causes the tornado busting missile to travel upward within the tornado upon reaching the tornado. An explosive discharge system explodes within the tornado to generate heat for causing the air within the tornado to expand, thereby weakening the tornado.
    Type: Application
    Filed: July 6, 2009
    Publication date: January 7, 2010
    Inventor: RILEY H. NELSON
  • Publication number: 20090314878
    Abstract: An interception system for intercepting incoming missiles and/or rockets including a launch facility, a missile configured to be launched by the launch facility, the missile having a fragmentation warhead, a ground-based missile guidance system for guiding the missile during at least one early stage of missile flight and a missile-based guidance system for guiding the missile during at least one later stage of missile flight, the missile-based guidance system being operative to direct the missile in a last stage of missile flight in a head-on direction vis-a-vis an incoming missile or rocket.
    Type: Application
    Filed: September 3, 2007
    Publication date: December 24, 2009
    Applicant: E.C.S. EINGINEERING CONSULTING SERVICES-AEROSPACE
    Inventor: Dov Raviv
  • Publication number: 20090256024
    Abstract: A method is provided for optically providing at least one of power and data to a projectile from an external optical source. The method including: outputting an optical signal from an external optical source into an interior of the projectile; receiving the optical signal in the interior of projectile and at least one of converting the optical signal to electrical energy and storing data provided in the optical signal. The electrical energy can be provided to the one or more electronic components and/or energy storage medium disposed on the interior of the projectile. The data provided in the optical signal can be provided to a data storage medium disposed on the interior of the projectile.
    Type: Application
    Filed: September 8, 2008
    Publication date: October 15, 2009
    Applicant: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Publication number: 20090230234
    Abstract: A guided missile has a sensor unit, a propulsion unit, and a payload unit. A missile casing forms the outer contour, extends along a longitudinal direction, and accommodates the sensor unit, the propulsion unit, and the payload unit. At least two of the units can be fitted alongside one another in the longitudinal direction. In comparison to conventional guided missiles, the guided missile is distinguished by increased modularity and thus by increased flexibility with regard to different operational scenarios.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: DIEHL BGT DEFENCE GMBH & CO. KG
    Inventors: Peter Gerd Fisch, Michael Gross
  • Patent number: 7589663
    Abstract: A system for the measurement of an angle of roll of a projectile is disclosed. The projectile has a casing with a rear end, a front end, and a side wall extending therebetween. The system includes a radar configured to transmit a polarized electromagnetic signal toward the projectile and a groove disposed on the side wall of the casing. The groove has a width, a depth, and a length, the width extending along a longitudinal axis of the projectile, the depth extending inwardly from an outer surface of the casing toward the longitudinal axis, and the length extending along the outside of the casing. The radar is further configured to receive a return signal from the projectile, wherein the return signal from the groove is modulated as a function of the angle of roll of the projectile. Amplitude or phase modulation of the return signal from the groove can be used to uniquely determine the roll angle of the projectile.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: September 15, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Geoffrey H. Goldman, William O. Coburn, Thomas J. Pizzillo
  • Patent number: 7582853
    Abstract: The invention relates to a method and device for producing an optical link using light flashes. According to the invention, an arrangement (13) comprising a plurality of capacitors (C1 to C5) is provided in order to power a flash lamp (3) and the connection of said capacitors within the arrangement is controlled in a programmed manner such that the resulting capacitance thereof increases from one flash in the next.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: September 1, 2009
    Assignee: MBDA France
    Inventor: Bernard Teneze
  • Patent number: 7552669
    Abstract: A method for generating plans against ballistic missiles begins with the locations of regions from which missiles may be launched and identifies regions to be defended. The available sensor and engagement assets, their capabilities and possible locations are identified. At least some of the assets have sensor and engagement capabilities independent those of other assets. Initial potential plans are binary encoded, and applied to a genetic algorithm for producing a population of genetically modified solutions. These modified solutions are decoded and evaluated for fitness. The fitness evaluations are iteratively reapplied to the genetic algorithm to ultimately produce improved plans. The improved plans are decoded and finally evaluated for fitness and application. This process continues for a fixed number of iterations, at the end of which the best solution is presented as the plan best fit to achieve a valid defense against the BMD threats.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: June 30, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Nikolaos A. Denis, David R. Gavelek
  • Patent number: 7550697
    Abstract: Boresighting systems and methods are disclosed. In one embodiment, an assembly adapted for boresighting a launch system includes first and second elongated members adapted to be coupled to the launch system. First and second alignment members are coupled to and extend between the first and second elongated members and are adapted to position the elongated members in a substantially aligned, spaced-apart relationship. A mirror assembly is coupled to each elongated member, the mirror assemblies being adapted to provide an average angular position resulting in a single corrector value for the launch system. In a particular embodiment, each of the first and second elongated members is sized to simulate a Stinger missile.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: June 23, 2009
    Assignee: The Boeing Company
    Inventors: Jeffrey S. Veselovsky, Andrew R. Zimmerle, Dean Van De Laare
  • Publication number: 20090145996
    Abstract: A method for varying the flight path of a missile, in particular of a spin-stabilized projectile, which has an outer wall and which is provided with at least one impulse device. The impulse device can be activated deliberately at a defined time during the flight of the missile. The impulse device is arranged with respect to the longitudinal axis of the missile such that, when it is activated, it generates an impulse that initiates a tumbling movement which causes the flight-path of the missile to be shortened or varied. A spin-stabilized projectile is provided with such an impulse device and it is configured so that the impulse device may be triggered during flight so as to initiate the flight-altering tumbling movement.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 11, 2009
    Applicant: DIEHL BGT DEFENCE GMBH & CO. KG
    Inventors: Bernd Gundel, Hans-Rainer Graf, Helmut Hammer, Gunther Thurner
  • Patent number: 7537181
    Abstract: There is provided a guidance system for allowing an air vehicle to guide a moving object, comprising a Synthetic Aperture Radar located on the air vehicle, and a means of communication for allowing the air vehicle to communicate with the moving object, wherein the Synthetic Aperture Radar is capable of determining the position and orientation of the air vehicle relative to a desired location, and information provided by the Synthetic Aperture Radar is used, via the means of communication, to guide the moving object towards the desired location. A guidance system wherein a seeker is utilised on the moving object is also provided.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: May 26, 2009
    Assignee: MBDA UK Limited
    Inventors: Geoffrey L Owens, Andrew R Beckett
  • Patent number: 7503521
    Abstract: The homing tag (1) has a transmissive housing (3), which is attached to a cartridge case (5). The transmissive housing (3) includes an aft body (7) to provide an interface with the cartridge case (5). Rotating bands (9) are located at a leading edge of the aft body (7). The transmissive housing (3) further includes a central body (11). The ogive-shaped nose (13) is formed of transparent material. A pluralit of slots (15) are provided for cooling the transmissive housing (3).
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: March 17, 2009
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John A. Maynard, James M. Ortolf, Mark A. Carlson, Paul D. Zemany
  • Patent number: 7495198
    Abstract: A method for improving nighttime visual awareness of a pilot flying an aircraft carrying an air-to-air missile including one or more one gimbaled imaging sensor. The method includes providing a helmet for the pilot, a helmet tracking system for determining the attitude of the helmet relative to the aircraft, and a helmet-mounted display. The method also includes determining a current imaging sensor viewing direction of the imaging sensor of the air-to-air missile, sampling an image from the imaging sensor of the air-to-air missile and displaying the image on the helmet-mounted display. The determining and the displaying are performed so that the image displayed on the helmet-mounted display viewed by the pilot is spatially aligned with the scene viewed by the imaging sensor.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: February 24, 2009
    Assignee: Rafael Advanced Defense Systems Ltd.
    Inventor: Tsafrir Ben Ari
  • Publication number: 20090008495
    Abstract: Systems and methods for are adapted for automatic implementation of exclusion zone avoidance for target-tracking vehicles, such as spacecraft. The systems and methods are configured to monitor pointing commands (commanded attitude and angular rates) generated for target tracking, and modify these commands as necessary to avoid pointing a boresight into an exclusion zone.
    Type: Application
    Filed: March 27, 2008
    Publication date: January 8, 2009
    Inventor: Jesse D. Koenig
  • Patent number: 7474856
    Abstract: A method and device produce an optical link with laser pulses between an emitter of the pulses and a receiver of the pulses. The optical link is used by a locating device for locating a body moving at constant speed away from the locating device. The locating device delays the start of emission of the laser pulses with respect to the departure of the moving body and varies the energy of the successive laser pulses in proportion to the square of the time elapsed since the start of emission of the pulses.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: January 6, 2009
    Assignee: MBDA France
    Inventors: Bernard Teneze, Frank Bernoux
  • Patent number: 7467762
    Abstract: An Unmanned Aerial Vehicle (UAV) system that couples the speed and responsiveness of a shoulder-launched rocket with the stable, slow-moving aerial platform of a parafoil is disclosed. The unique use of an over-damped rocket automatically positions the parafoil upwind of its target and overcomes the inherent inability of the parafoil to make headway in adverse wind conditions. This marriage of a rocket and a parafoil creates a valuable new synergy that allows the rocket to very quickly position a payload at altitude and defeat any adverse winds, while the parafoil provides an inexpensive and easy-to-fly vehicle for reconnaissance or accurately placing a payload on a target. The system is suitable for aerial videography, thermal imagery, target designation, sensor placement or precision munitions delivery; and can perform these functions at a small fraction of the cost of any other UAV. Unlike other UAV's, no flying skills are required of the operator.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: December 23, 2008
    Inventor: John Charles Parsons
  • Patent number: 7467761
    Abstract: A method for adjusting the flight path of an unguided projectile, which comprises the steps of: (a) Measuring the magnitude and direction of the jittering of a projectile launch tube, at an ejection time of a projectile from the launch tube; (b) Measuring a velocity deviation of the projectile from a nominal velocity; (c) Measuring an angular deviation of the sight of the launch tube, being equal to the angular deviation between a line coinciding with the direction of gravity and a line passing through the center of the launch tube and the center of the sight; (d) Determining a compensating impulse vector to be applied to the projectile during an initial flight path thereof based on the magnitude and direction of the jittering, velocity deviation and angular deviation; and (e) Applying the compensating impulse vector to the projectile by activating a flight correction unit, the thrust developed by the flight correction unit suitable for adjusting the flight path of the projectile by a magnitude and direction
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: December 23, 2008
    Assignee: Rafael-Armament Development Authority Ltd
    Inventors: Oded Yehezkeli, Irad Kunreich
  • Patent number: 7446291
    Abstract: A method guides an interceptor missile toward an accelerating target. The method sets up a line-of-sight between the interceptor and the target, and monitors the acceleration of the angle of the line-of-sight. The acceleration is multiplied by a gain factor dependent upon the range between the target and the interceptor, to generate a driving acceleration. The acceleration of the interceptor in a direction perpendicular to the line-of-sight is added to the driving acceleration, to generate pre-weighted acceleration. The pre-weighted acceleration is multiplied by a navigation factor to produce commanded interceptor acceleration.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: November 4, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: Gregory F. Bock
  • Patent number: 7410119
    Abstract: The invention concerns a rotating missile emitting light pulses. The invention is characterized in that means are provided to interrupt said light pulses (5) when the rotational movement (3) of the missile (2) about its longitudinal axis (L-L) stops.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: August 12, 2008
    Assignee: MBDA France
    Inventors: Fabienne Leon, Bernard Teneze, Franck Bernoux
  • Patent number: 7400289
    Abstract: A methodology determines the offset distance between a threat missile plume and its hardbody during boost phase to aid in guiding a kinetic weapon (KW) or interceptor missile to the threat missile hardbody using the KW infrared sensor of the interceptor missile in conjunction with a radar sensor.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: July 15, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: David E. Wolf
  • Patent number: 7395987
    Abstract: The invention relates to the field of gun-launched guidance systems and to a navigation system based on inertial sensors mounted in a spinning projectile using at least one rotation sensing device with input components perpendicular to the spinning body's longitudinal axis, and an appertaining method for upfinding. The phase of the sinusoidal angular rate as detected by a phase-locked loop or correlator is used to determine the local vertical orientation. This invention may be used to align the inertial navigation system in spinning projectiles in ballistic trajectories, which can include artillery shells, satellites or underwater torpedoes.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: July 8, 2008
    Assignee: Honeywell International Inc.
    Inventors: Erik Lindquist, Ruth D. Kreichauf
  • Patent number: 7350744
    Abstract: A system for increasing a warhead's chance of hitting a target comprises a system for causing the warhead to deviate from its projected trajectory so that it will have an increased chance of avoiding intercepting force such as a kill vehicle a missile, an airplane, an explosive gun, a laser gun, an electron gun, radiation gun, a particles gun, a fire gun, a jet air gun, and/or a remote control guided explosive. The warhead has one or more thrusters, which cause it to deviate from its projected trajectory. An on-board computer controls the thrusters' ignition and burning time in a closed loop with an on-board Global Positioning System (GPS) unit. The GPS data is used for predicting the warhead's trajectory and to assure that the thrusters provide motion displacements of the warhead. In the event the GPS unit fails, the warhead computer and controller can be overridden by an off-board remote control.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: April 1, 2008
    Inventors: Nira Schwartz, Richard Woods
  • Patent number: 7348918
    Abstract: The present invention is directed towards a ballistic missile detection and defense system. The system of the present invention comprises a ship based interceptor or antiballistic missile, a missile launch detection and tracking system, and a signal processing system capable of receiving said tracking signal calculating an intercept trajectory for an antiballistic missile to intercept a ballistic missile, and further capable of outputting an intercept trajectory program to an antiballistic missile.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: March 25, 2008
    Assignee: Lockheed Martin Corporation
    Inventor: Richard T. Redano
  • Patent number: 7339537
    Abstract: Disclosed are antenna embodiments and air vehicles so equipped that include a first antenna component, and a second antenna component, separated by a free space gap, where the antenna embodiments are adapted to capacitively couple the first antenna component and the second antenna component across one or more portions of the free space gap and where the first antenna component member has a degree or axis of rotation, relative to the second antenna component.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: March 4, 2008
    Assignee: Alliant Techsystems Inc.
    Inventor: Harold Kregg Hunsberger
  • Patent number: 7333044
    Abstract: A rocket tube for housing a reloadable rocket motor is connected to a spacer element and a wire-rider element. A sensor target for reflecting radar signals is screwably attached to the rocket tube. The sensor target is provided with a plug for effectively sealing one end of the rocket tube with the other end of the rocket tube being utilized to reload a rocket motor upon completion of a test firing. A guide wire is threaded through the wire-rider element with the guide wire serving as a travel path. The rocket tube, spacer element, and wire-rider element are connected in an easily assembled, aerodynamic manner that allows for multiple radar tests using the same components within a brief time period.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: February 19, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Destin W. Sandlin
  • Publication number: 20080012751
    Abstract: There is provided a guidance system for allowing an air vehicle to guide a moving object, comprising a Synthetic Aperture Radar located on the air vehicle, and a means of communication for allowing the air vehicle to communicate with the moving object, wherein the Synthetic Aperture Radar is capable of determining the position and orientation of the air vehicle relative to a desired location, and information provided by the Synthetic Aperture Radar is used, via the means of communication, to guide the moving object towards the desired location. A guidance system wherein a seeker is utilised on the moving object is also provided.
    Type: Application
    Filed: September 25, 2002
    Publication date: January 17, 2008
    Inventors: Geoffrey L Owens, Andrew R. Beckett
  • Patent number: 7275691
    Abstract: An indirect artillery fire control system is shown, in which a plurality of indirect artillery systems are linked with a fire direction system such that a call for fire order is communicated as a fire command to a selected indirect artillery system, with that system being selected by reason of a characteristic of that indirect artillery system.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: October 2, 2007
    Inventors: Curtis Wright, Thomas Bradley
  • Patent number: 7219853
    Abstract: A target identification and tracking system includes a carrier vehicle and one or more tracking vehicles. The carrier vehicle may determine an aimpoint of a target from a high resolution image of the target and may generate an offset from a tracking point to the aimpoint. The offset may be conveyed to an assigned tracking vehicle for tracking the tracking point of the target while navigating toward the aimpoint of the target. The tracking point may be the target's centroid. The carrier vehicle may employ a high-resolution LIDAR imaging system to identify the aimpoint from a target's features; while the tracking vehicle may employ a lower resolution optical imaging system for tracking the target's tracking point. The carrier vehicle may correct the offset for parallax and the offset may be revised as the tracking vehicle approaches the target.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: May 22, 2007
    Assignee: Raytheon Company
    Inventor: Darin S. Williams
  • Patent number: 7193556
    Abstract: A system for measuring a position and orientation of an object in flight relative to a reference coordinate system is provided.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: March 20, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Carlos M. Pereira, Jahangir S. Rastegar
  • Patent number: 7190304
    Abstract: A method for intercepting and a defeating rocket propelled grenade (RPG) which includes the steps of detecting a thermal signature from a launch of the RPG; and cueing a narrow beam radar which locates the RPG and develops a ballistic solution and target intercept point for intercepting the PPG with an intercept vehicle.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 13, 2007
    Assignee: Bae Systems Information and Electronic Systems Integration Inc.
    Inventor: Mark A. Carlson
  • Patent number: 7185845
    Abstract: A wide field-of-view optical system that may be used in determining a direction to a source of light, or for determine steering corrections to direct a vehicle toward a target, is disclosed. The optical system, which may be used as a seeker in a missile or other weapon, comprises a spherical ball lens truncated to provide one or more facets on which detectors may be mounted to measure relative intensities as a blur spot image of a source of light, which may be a reflection from a laser designated target, moves across the detectors, which may be individual elements in a quadrant detector. Narrow band filters may be used to suppress undesired wavelengths and enhance performance. The innovative design enables implementation of a wide field-of-view seeker with no moving parts. The spherical ball lens may be used directly as an aerodynamic surface without a need for a separate optical dome.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: March 6, 2007
    Inventors: Richard Leon Hartman, Randall Wayne Griffin
  • Patent number: 7175130
    Abstract: A guidance system for a missile with a laser beam source located at a distance from the missile generating a modulated laser beam that is directed towards the missile. A group of backward looking sensors on the body of the missile detect any radiation scattered from the laser beam along with a group of forward looking sensors located on the missile. Both groups look at an angle to the missile's longitudinal axis. Signals from the sensors are applied to processing electronics in the missile that determine the phase shift in signals derived from when a backward looking sensor detects scattered radiation from a laser beam and a forward looking sensor detects scattered radiation from that beam. The processing electronics can then accurately determine the distance between the missile and the beam from the phase shift and correct the missile's trajectory to maintain its position with respect to the beam.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: February 13, 2007
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of National Defence of Her Majesty's Canadian Government
    Inventors: Jacques Dubois, Jean Fortin, Pierre Mathieu
  • Patent number: 7150428
    Abstract: A guidance system for a missile utilitizes a laser beam source at a missile launch pad to generate a laser beam that is directed towards a target. A sensor on the body of a spinning missile detects radiation scattered from the laser beam, the sensor looking sideways and backward at an angle to the missile's longitudinal axis. Signals generated by that sensor are applied to a missile's guidance system's processing electronics that then determines the distance from the missile to the beam from the width of the signal generated by the sensor due to detecting scattered radiation from that laser beam. Once the distance between the missile and the beam is determined, the missile's guidance system corrects the missile's trajectory to maintain its position at a predetermined distance from the beam.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: December 19, 2006
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of National Defence
    Inventors: Jacques Dubois, Jean Fortin
  • Patent number: 7121502
    Abstract: A guidance system for guiding each of several projectiles toward a moving target has a platform having a radar system for illuminating the target with a radar signal. Each projectile has a receiver for receiving the radar signal reflected from the target, a transponder for replying to Global Positioning System (GPS) like timing signals from several timing signal sources, and a data link transceiver for establishing a bidirectional data link to the platform. The data link carries the measured frequency shift of the radar signal reflected from the target as measured by the projectile. A computer on the platform computes a relative position of each projectile with respect to the target from tracking the moving target using the radar system and the reply signal from the transponder on each projectile. The data link sends guidance commands from the platform to each projectile to guide the projectile to the target.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: October 17, 2006
    Assignee: Raytheon Company
    Inventors: Kapriel V. Krikorian, Robert A. Rosen
  • Patent number: 7104496
    Abstract: An interceptor device for protecting a platform against an incoming threat is provided. The interceptor device comprises a housing and a countermeasure device. At least one detonating charge is capable of deploying the countermeasure device. A controller device housed by the housing is capable of directing the detonating charge(s) to deploy the countermeasure device at least partially radially outward of the housing, corresponding to the threat trajectory. A sensor device is in communication with the controller device, and comprises a range-finding apparatus including one of a LADAR, a RADAR, and a LIDAR device, capable of sensing the threat and/or a range thereof, at least partially radially outward of the housing, and notifying the controller device if the threat is sensed, to cause the controller device to direct the detonating charge(s) to deploy the countermeasure device to impact the threat in the intercept zone. Associated systems, and methods are also provided.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: September 12, 2006
    Assignee: Chang Industry, Inc.
    Inventor: Yu-Wen Chang
  • Patent number: 7083139
    Abstract: Method for guiding a rocket (1) to a target, wherein, the rocket (1) being equipped with automatic guiding means with an image-formation device (10) and means for correction of the trajectory (11): the target is acquired by a sighting device and its position is determined; the sighting device and the rocket image-formation device (10) are brought into line; the images of the rocket image-formation device (10) are stabilized; a guiding law is produced; the rocket (1) is launched; and the rocket is guided according to this law until the rocket itself acquires the target.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: August 1, 2006
    Assignee: Sagem SA
    Inventor: Michel Broekaert
  • Patent number: 7079070
    Abstract: Disclosed is an autonomous radar guidance of an otherwise radar-directed projectile (RDP). The preferred embodiment uses an inexpensive radar receiver with an inexpensive slow wave antenna, placed internally in a gun projectile, and on the surface of the projectile, respectively. The receiver detects the angle and range of the target relative to the body coordinates of the projectile. The radar receiver operates as a bistatic radar apparatus with the primary illumination emanating from the fire control radar directing the fire of the gun. When integrated with an on-board trajectory correcting system, such as divert thrusters of miniature proportions, the projectile autonomously refines its otherwise ballistic trajectory to the target. The trajectory refinements produce improved kills per round, with the potential for reducing the ammunition expended and time-loading on the fire control system and its guns.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: July 18, 2006
    Assignee: Alliant Techsystems Inc.
    Inventors: Knut Kongelbeck, Ada Mendelovicz
  • Patent number: 7066427
    Abstract: An interceptor device adapted to protect a platform associated therewith against an incoming threat having a trajectory by intercepting the threat in an intercept zone is provided. Such an interceptor device comprises a housing defining an axis and a countermeasure device operably engaged with the housing. At least one detonating charge is housed by the housing and is operably engaged with the countermeasure device. A controller device is in communication with the at least one detonating charge, wherein the controller device is housed by the housing and is configured to direct the at least one detonating charge to deploy the countermeasure device at least partially radially outward with respect to the axis of the housing and in correspondence with the trajectory of the threat to thereby cause the countermeasure to impact the threat in the intercept zone. Associated apparatuses, systems, and methods are also provided.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: June 27, 2006
    Assignee: Chang Industry, Inc.
    Inventor: Yu-Wen Chang
  • Patent number: 7059560
    Abstract: A system for determining the distance between a target (4) and a laser guided weapon traveling towards the target (4). The system (1) comprises a laser designator (5) on a remote platform (2) for radiating a first train of pulses (l1) on a set wavelength in the direction of the target (4). In the weapon (3) a receiver (6) is arranged to receive and detect pulses on the set wavelength reflected from the target (4). There is also a direction sensing means in the weapon (3) for determining the direction of the target (4). A transmitter (7) is arranged in the weapon (3) to periodically transmit a second train of pulses (l2) on the set wavelength in the direction of the target (4). There are means in the receiver (6) to extract a reflection from the target (4) of the second train of pulses (l2). There are further timing means to determine the period of time from transmitting the second train of pulses (l2) to receiving the reflection from the target (4) of the second train of pulses (l2).
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: June 13, 2006
    Assignee: SAAB AB
    Inventors: Peter Ljungberg, Christer Regebro
  • Patent number: 7039367
    Abstract: A communications system and method utilizes an unmanned surface vehicle (USV) capable of collecting data about an environment in which the USV resides. At least one micro-aerial vehicle (MAV), equipped for unmanned flight after a launch thereof, is mounted on the USV. Each MAV has onboard radio frequency (RF) communications. Each MAV launched into the air transmits the data collected by the USV using the MAV's RF communications.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: May 2, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Daniel Kucik
  • Patent number: 7036767
    Abstract: The present invention relates to a projectile seeker which comprises: (a) A hollow in the projectile for accommodating a light sensor; (b) A light sensor located within said hollow for sensing light which is emitted or reflected from a target, and for producing an electronic signal upon sensing such emitted light; and (c) A longitudinal shaped opening at the slanted front-side surface of the projectile for enabling a shaped field of view to said light sensor which is limited by the boundaries of said opening, the opening width varies in a direction from the front to the back of the projectile in order to cause said electronic signal to depend on the spinning of the projectile and to be proportional to the orientation of the projectile with respect to the object.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: May 2, 2006
    Assignee: Rafael-Armament Development Authority Ltd.
    Inventor: Ehud Chishinski