Emission Tomography Patents (Class 250/363.04)
  • Patent number: 9324167
    Abstract: The invention relates to an apparatus for generating an attenuation correction map. An image providing unit (5, 6) provides an image of an object comprising different element classes and a segmentation unit (11) applies a segmentation to the image for generating a segmented image comprising image regions corresponding to the element classes. The segmentation is based on at least one of a watershed segmentation and a body contour segmentation based on a contiguous skin and fat layers in the image. A feature determination unit (12) determines features of at least one of a) the image regions and b) boundaries between the image regions depending on image values of the image and an assigning unit (13) assigns attenuation values to the image regions based on the determined features for generating the attenuation correction map.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: April 26, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Blaffert, Steffen Renisch, Bernd Schweizer, Zhiqiang Hu
  • Patent number: 9317969
    Abstract: A method involving an image of an anatomy, includes: obtaining an image of an anatomy; obtaining a program instruction from a user for creating an object in the image; and executing the program instruction to create the object in the image, wherein the act of executing the program instruction is performed using a processor. A computer product having a non-transitory medium storing a set of instructions, an execution of which causes a method to be performed, the method includes: obtaining an image of an anatomy; obtaining a program instruction from a user for creating an object in the image; and executing the program instruction to create the object in the image.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: April 19, 2016
    Assignee: Varian Medical Systems, Inc.
    Inventors: Benjamin M. Haas, Micheal Waschbuesch, Thomas Coradi
  • Patent number: 9311707
    Abstract: A method for attenuation correction of a phantom image in a PET imaging system includes obtaining raw scan data of a scanned phantom, a non attenuation corrected template image of a stock phantom of like type to the scanned phantom, and an attenuation map of the stock phantom. The method further includes generating a non-attenuation corrected raw image of the scanned phantom based on the raw scan data, registering the template image and attenuation map to the raw image through a rigid image transform, and applying the registered attenuation map to the raw scan data to enable reconstruction of an attenuation corrected final image.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: April 12, 2016
    Assignee: General Electric Company
    Inventors: Timothy Wayne Deller, Michael Lee Spohn, Sonal Ambwani
  • Patent number: 9301726
    Abstract: A CT machine for scanning a stationary patient may provide for two-bar linkage articulated arms to move a CT gantry in an arbitrary trajectory. In one embodiment, the gantry may fit within a cavity to expose a central platform, which may support a patient for vertical scans in which the gantry housing rises from the cavity after the patient is so positioned.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: April 5, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Thomas Mackie, George Petry, Peter Muir, Mark Markel, Robert Swader
  • Patent number: 9269167
    Abstract: A nuclear camera acquires projections which are iteratively reconstructed by a reconstruction processor into an motion-artifacted image and stored in an image memory. The motion-artifacted image is forward-projected by a forward-projector to create forward-projections which are compensated for image degrading factors, such as resolution recovery, scatter and attenuation, and are compared with the acquired projections by a comparing unit to generate a motion-correction. A motion compensator operates on the acquired projections with the motion-correction to generate a motion-corrected projection data set in which each of the projections is in a common motion state. The motion-corrected projections are reconstructed into a motion-corrected image.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: February 23, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jinghan Ye, Teimuraz Bandzava, Xiyun Song
  • Patent number: 9226722
    Abstract: A computed tomography (CT) or ultra sound imaging system and method are configured to construct images of an object. The imaging system includes: a radiation or ultrasound source including a collimating or a blocking device configured to generate both a narrow beam and a wide beam; a detector configured to detect radiation or ultrasound wave from the radiation or ultrasound wave from the radiation or ultrasound source; and at least one processing circuit configured to: determine a scatter-to-primary ratio (SPR) of the wide beam based on the narrow beam; determine a primary component of the wide beam based on the SPR to thereby separate the primary component from a scattered component of the wide beam; and construct an image of an object inside a patient using the primary component to thereby improve a contrast of the object.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: January 5, 2016
    Inventors: Yongwang Li, Li Ma, Feng Ma
  • Patent number: 9192346
    Abstract: A medical imaging system is provided that includes a first gantry having a plurality of first detector units coupled within a bore of the first gantry such that the first detector units form a first field of view (FOV) of the first gantry. The first detector units are configured to acquire SPECT data. Further, the medical imaging system includes a second gantry having a plurality of second detector units coupled within a bore of the second gantry such that the second detector units form a second FOV of the second gantry. The second detector units are configured to acquire x-ray CT data. The second gantry is positioned adjacent to the first gantry. The medical imaging system also includes a patient table movable through the bores and a controller unit configured to control a rotation speed of the first detector units and the second detector units around the examination axis.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 24, 2015
    Assignee: General Electric Company
    Inventor: Yulim Zingerman
  • Patent number: 9165360
    Abstract: The disclosure herein provides methods, systems, and devices for automated reorientation and/or analysis of medical scans and/or images. The methods, systems, and devices for automated analysis of medical scans can be configured to mark, score, grade, and/other otherwise classify medical scans that are more time-sensitive, severe, and/or the like to allow a medical professional reviewing and/or analyzing medical scans to view and/or analyze such scans more efficiently by using a common image orientation and/or taking into account knowledge of the risk of severity, time-sensitiveness, and/or other priority.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: October 20, 2015
    Assignee: ZEPMED, LLC
    Inventors: Douglas Bates, Nathan S. White
  • Patent number: 9103919
    Abstract: A method is disclosed for transmission of register contents of a CT detector with hierarchical hardware structure, wherein the first hierarchy level is formed by a control unit containing a register table for the read-out register contents of FPGAs lying lower down in the hierarchy and an intermediate register store for register contents to be written. With each new reading, the new register contents for FPGAs lying lower down in the hierarchy arriving during the respective preceding reading from the central control at the control unit are forwarded to the next hierarchy level. With each new reading, the register contents of all FPGAs lying lower down in the hierarchy are re-entered into the register table of the control unit. Finally, in the event of a readout command transferred asynchronously from the central control, the register contents are read out exclusively from the register table.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: August 11, 2015
    Assignee: SIEMENS AKTIEGESELLSCHAFT
    Inventors: Klaus Geisslinger, Alexander Graf, Edmund Götz, Stefan Hartmann
  • Patent number: 9053569
    Abstract: The DCC (Data Consistency Condition) algorithm is used in combination with MLAA (Maximum Likelihood reconstruction of Attenuation and Activity) to generate extended attenuation correction maps for nuclear medicine imaging studies. MLAA and DCC are complementary algorithms that can be used to determine the accuracy of the mu-map based on PET data. MLAA helps to estimate the mu-values based on the biodistribution of the tracer while DCC checks if the consistency conditions are met for a given mu-map. These methods are combined to get a better estimation of the mu-values. In gated MR/PET cardiac studies, the PET data is framed into multiple gates and a series of MR based mu-maps corresponding to each gate is generated. The PET data from all gates is combined. Once the extended mu-map is generated the central region is replaced with the MR based mu-map corresponding to that particular gate.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: June 9, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Girish Bal, Frank Kehren, Vladimir Y. Panin, Christian J. Michel, Johan Nuyts
  • Patent number: 9029787
    Abstract: In an open PET device including a plurality of detector rings that are arranged apart in the direction of the body axis of a subject and having a physical open field of view area, at least one of the detector rings or another imaging device arranged in parallel is configured to be movable by simple device moving means in order to change the configuration of the PET device. This improves the versatility of the open PET device for easier introduction to facilities.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: May 12, 2015
    Assignee: National Institute of Radiological Sciences
    Inventors: Taiga Yamaya, Hideo Murayama
  • Patent number: 9014330
    Abstract: A radiation diagnostic apparatus includes a CT gantry apparatus, a PET gantry apparatus and a controller. The CT gantry apparatus includes an X-ray tube and an X-ray detector for reconstructing an X-ray CT image. The PET gantry apparatus includes a plurality of photodetectors for reconstructing nuclear medicine images and an FE circuit that is connected to the back of the photodetectors. The controller exerts control such that, when X-rays are radiated from the X-ray tube, the output from the photodetectors to the FE circuit is stopped or reduced.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 21, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Takuzo Takayama
  • Patent number: 8987674
    Abstract: A PET apparatus and a processing method according in this invention carry out arithmetic processes in parallel, in steps S4 (forward projection) and S5 (back projection), for every LOR, on list data (created from event data obtained by detecting gamma rays), and can therefore be applied to other arithmetic mechanisms and have versatility. Since parallel processing is carried out on the list data and the parallel processing is carried out in each of steps S4 (forward projection) and S5 (back projection), a competition for memory can be prevented to realize an improvement in speed. As a result, high versatility and an improvement in speed of the calculations can be attained.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: March 24, 2015
    Assignee: Shimadzu Corporation
    Inventors: Ayako Akazawa, Keishi Kitamura, Yoshihiro Yamada
  • Patent number: 8987653
    Abstract: A process and system including a detector having a photosensor therein that outputs a signal and a plurality of after-pulse detector devices independently connected to the photosensor via respective pathways. The after-pulse detector devices each detecting an after-pulse in the signal, where the after-pulse represents an after-event in the photosensor triggered from a previous photon generating event. The system further includes a processing device that receives an indication of the detection of the after-pulse from each of the plurality of after-pulse detector devices and determines a relative delay between the respective pathways based on timing the received indications, and includes a memory that stores the relative delay in association with an identification of the corresponding after-pulse detector devices.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 24, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Huini Du, Gin Chung Wang, Jerry Wang
  • Patent number: 8977026
    Abstract: Methods and systems for locating a region of interest in an object are provided. One method includes acquiring planar nuclear medicine (NM) images of a subject from an NM system, wherein the planar NM images include at least one identified region of interest. The method also includes acquiring a three-dimensional (3D) x-ray Computed Tomography (CT) volume image of the subject from an x-ray CT system and locating the region of interest within the 3D CT volume image using the planar NM images.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: March 10, 2015
    Assignee: General Electric Company
    Inventor: Avi Bar-Shalev
  • Patent number: 8969816
    Abstract: A printed circuit board (PCB) assembly of a data processing unit for an integrated magnetic resonance (MR) and positron emission tomography (PET) system, the PCB assembly includes a plurality of PCB layers disposed in a stacked arrangement, first and second PET signal processing circuits carried by a first layer of the plurality of PCB layers, first and second ground plane structures carried by a second layer of the plurality of PCB layers and configured relative to the first and second PET signal processing circuits, respectively, and a ground partition that separates the first PET signal processing circuit from the second PET signal processing circuit on the first layer. The ground partition extends through the first layer to provide electromagnetic interference (EMI) shielding between the first and second PET signal processing circuits.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: James Frank Caruba, Patanit Sanpitak, Grant Arthur Albert, Darryl Hrdina, Roger E. Arseneau, John P. Valenta
  • Patent number: 8969815
    Abstract: An integrated magnetic resonance (MR) and positron emission tomography (PET) system includes an MR scanner including a magnet that defines an opening in which a subject is positioned, a set of PET detectors disposed about the opening, a plurality of data processing units each electrically connected with a respective one or more of the PET detectors of the set of PET detectors, and a plurality of power supply modules, each power supply module being operable to generate a DC power supply for different groups of one or more of the data processing units. Each power supply module is discrete from the other power supply modules.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: James Frank Caruba, Darryl Hrdina, Grant Arthur Albert, Paul Finlon
  • Patent number: 8963600
    Abstract: An apparatus for delaying a plurality of chain-based time-to-digital circuits (TDCs). The apparatus includes a plurality of propagation path devices each connected to a respective one of the plurality of TDCs, each propagation path device delays a common start signal by a selectable amount based on a delay selection signal received by the propagation path device, and transmits the delayed start signal to the respective one of the TDCs.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 24, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Gregory J. Mann
  • Publication number: 20150048252
    Abstract: A method, system and device time resolved information compression. One or more detectors receive a plurality of protons, and a processing device resolves the received plurality of photons into a sample signal shown in a time domain. The processing device transforms the received plurality of photons as shown in the time domain into a frequency response shown in a frequency domain based upon a rate of detection of the plurality of photons and isolates a frequency peak position in the frequency response. The processing device further converts the frequency peak position into projection data.
    Type: Application
    Filed: April 24, 2013
    Publication date: February 19, 2015
    Inventor: Mark Doyle
  • Patent number: 8957362
    Abstract: A process and system including a detector having a photosensor therein that outputs a signal and a plurality of after-pulse detector devices independently connected to the photosensor via respective pathways. The after-pulse detector devices each detecting an after-pulse in the signal, where the after-pulse represents an after-event in the photosensor triggered from a previous photon generating event. The system further includes a processing device that receives an indication of the detection of the after-pulse from each of the plurality of after-pulse detector devices and determines a relative delay between the respective pathways based on timing the received indications, and includes a memory that stores the relative delay in association with an identification of the corresponding after-pulse detector devices.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: February 17, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Huini Du, Gin Chung Wang, Jerry Wang
  • Patent number: 8946642
    Abstract: A common or single type of positron emission tomography (PET) coincidence processor is useable with different PET systems. The ports are configurable to operate with different coincidence algorithms, allowing different numbers of ports to be used in different systems. The ports are configurable to provide different outputs and/or connect with different types of detectors. A programming port allows programming of an appropriate coincidence algorithm so that different such algorithms are usable by the controller. Any one or more of these accessible and/or versatile features are provided on a controller.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: February 3, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Andrew Philip Moor, William Scott Hood
  • Patent number: 8941071
    Abstract: A method for generating a Positron Emission Tomography (PET) image includes defining a scan window having a predetermined length along an examination axis of a PET imaging system, the scan window corresponding to a region of interest to be continuously scanned by the PET imaging system, defining at least two data bins corresponding to two separate scan regions within the scan window, defining a transition region that overlaps a portion of each of the separate scan regions within the scan window, the transition region having a width that is shorter than a length of the scan window, binning emission data acquired within the transition region into the two data bins, binning emission data acquired from outside the transition region into one of the two data bins, and reconstructing an image using the emission data in the two data bins.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventor: Charles William Stearns
  • Patent number: 8941076
    Abstract: The techniques described herein provide for correcting for pulse pile-up and/or charge sharing in a radiation scanner (100). It finds particular application with the use of a pixilated radiation detector (116) (e.g., a photon counting detector). A circuit (200), comprising a plurality of comparators (204, 206, 208), is configured to determine the energy spectrum of a pulse produced from a photon strike. If the energy spectrum is greater than the energy range for a pulse produced by a single photon strike given an input spectrum and/or if pulses produced from adjacent pixels have temporal coincidence, pulse pile-up and/or charge sharing may be identified and a correction mechanism/correction factors may be applied to determine an actual number of photons that struck the detector (116).
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: January 27, 2015
    Assignee: Analogic Corporation
    Inventor: Doug Abraham
  • Publication number: 20150021488
    Abstract: A method for generating a Positron Emission Tomography (PET) image includes defining a scan window having a predetermined length along an examination axis of a PET imaging system, the scan window corresponding to a region of interest to be continuously scanned by the PET imaging system, defining at least two data bins corresponding to two separate scan regions within the scan window, defining a transition region that overlaps a portion of each of the separate scan regions within the scan window, the transition region having a width that is shorter than a length of the scan window, binning emission data acquired within the transition region into the two data bins, binning emission data acquired from outside the transition region into one of the two data bins, and reconstructing an image using the emission data in the two data bins.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventor: Charles William Stearns
  • Patent number: 8934959
    Abstract: Magnetic resonance (MR) imaging typically has excellent spatial resolution, but relatively poor temporal resolution. In contrast, positron emission tomography (PET) typically has excellent temporal resolution, but poor spatial resolution relative to MR. Resultantly, it is advantageous to use combined PET-MR imaging sequences to create hybrid or enhanced images that reap the benefits of both modalities. A contrast agent (80) that includes both a PET tracer (82) and MR contrast enhancement (86) can be used in such a combined modality setting. The contrast agent (80) also includes a targeting system (84) that allows the contrast agent (80) to pool in a region of interest.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: January 13, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Dragos-Nicolae Peligrad
  • Publication number: 20150001398
    Abstract: A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Cornelis RONDA, Herbert SCHREINEMACHER, Guenter ZEITLER, Norbert CONRADS, Simha LEVENE
  • Patent number: 8880144
    Abstract: Provided is a positron emission tomography (PET) detector module using Geiger-mode avalanche photodiode (GAPD) as a photosensor. The PET detector module includes: a PET detector unit with a scintillation crystal detecting gamma rays emitted from a living body and converting them into a scintillation light and a first GAPD photosensor and a second GAPD photosensor each being connected to either end of the scintillation crystal and converting the scintillation light into an electrical signal; and a depth of interaction (DOI) decoding unit receiving the signals from the PET detector unit and comparing amplitude of the signals detected by the first GAPD photosensor and the second GAPD photosensor, thereby providing the depth information where the gamma rays are incident on the scintillation crystal (DOI). The disclosed PET detector module can provide improved energy resolution and additional DOI information while maintaining linearity.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: November 4, 2014
    Assignee: Industry—University Cooperation Foundation Sogang University
    Inventors: Jihoon Kang, Yong Choi, Key Jo Hong, Wei Hu, Yoon Suk Huh, Hyun Keong Lim, Sangsu Kim
  • Publication number: 20140319360
    Abstract: A gantry free nuclear imaging system (10) images a region of interest (ROI) (16). The system (10) includes one or more radiation detectors (20) generating radiation data indicating the location of gamma photon strikes. The system includes a reconfigurable frame (22) positioning the radiation detectors (20) at fixed viewing angles of the ROI (16) and at least one processor (44, 48). The processor (44, 48) receives the radiation data from the radiation detectors (20) and reconstructs an image of the ROI (16) from the received radiation data.
    Type: Application
    Filed: November 12, 2012
    Publication date: October 30, 2014
    Inventors: Herfried Karl Wieczorek, Jinghan Ye, Lingxiong Shao, Rizwan Hassan
  • Patent number: 8868154
    Abstract: A front end for an imaging system. The front end comprises at least one magnetically-insensitive high-energy photon detector and an interface for converting an output of the at least one high-energy photon detector to an optical signal and transmitting the optical signal. A receiver is optically coupled to the interface to receive the optical signal and convert the optical signal into a voltage signal.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: October 21, 2014
    Assignee: The Board of Trustees of The Leland Stanford Junior University
    Inventors: Craig S. Levin, Peter D. Olcott
  • Patent number: 8866087
    Abstract: Systems, devices and methods of reconstructing an image from a positron emission tomography scan that may include detecting a plurality of photons selected from scattered photons and unscattered photons by a plurality of detectors, identifying a time interval for each of the plurality of photons by a processing device, matching each of the plurality of photons into a plurality of pairs of coincident photons based upon a substantially simultaneous time interval identified by the processing device, measuring an energy produced by each of the plurality of photons by the plurality of detectors, determining a scattering angle for each pair of coincident photons from an annihilation point relative to the position of the plurality of detectors by the processing device based on the energy produced and reconstructing an image using a reconstruction algorithm, wherein the reconstruction algorithm uses the scattering angle of each pair of coincident photons.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: October 21, 2014
    Assignee: University of Manitoba
    Inventors: Stephen Pistorius, Hongyan Sun
  • Patent number: 8809791
    Abstract: A continuous time-of-flight scatter simulation method is provided, with a related method of correcting PET imaging data to compensate for photon scatter. Scatter contributions from each imaging pixel in a field of view may be calculated without binning data.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: August 19, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Patrick Olivier, Parmeshwar Khurd
  • Patent number: 8809793
    Abstract: Present embodiments relate to the calibration of detectors having one or more arrays of pixelated detectors. According to an embodiment, a method includes detecting optical outputs generated by a plurality of scintillation crystals of a detector with an array of pixelated detectors, generating, with the array of pixelated detectors, respective signals indicative of the optical outputs, generating, from the respective signals, a unique energy spectrum correlated to each of the plurality of scintillation crystals, grouping subsets of the plurality of scintillation crystals into macrocrystals, determining a representative energy spectrum peak for each macrocrystal based on the respective energy spectra of the scintillation crystals in the macrocrystal, comparing a value of the representative energy spectrum peak for each macrocrystal with a target peak value, and adjusting an operating parameter of at least one pixelated detector in the array of pixelated detectors as a result of the comparison.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: August 19, 2014
    Assignee: General Electric Company
    Inventors: Ashwin Ashok Wagadarikar, Ravindra Mohan Manjeshwar, Sergei Ivanovich Dolinsky
  • Publication number: 20140217293
    Abstract: A method is disclosed for generating a PET or SPECT image dataset. In an embodiment, the method includes acquiring a plurality of PET or SPECT measurement signals from an examination region; acquiring a plurality of anatomy image datasets that show the examination region using a second imaging modality at the same time as acquiring the PET or SPECT measurement signals; determining the similarity of a reference anatomy image dataset acquired at a time point t? using the second imaging modality to at least one anatomy image dataset acquired at a different time point and/or predetermining a temporal weighting function; and generating a PET or SPECT image dataset taking into account the similarity of the anatomy image datasets and/or weighting the PET measurement signals temporally. A hybrid imaging modality is also disclosed.
    Type: Application
    Filed: January 28, 2014
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Björn HEISMANN
  • Patent number: 8772730
    Abstract: A photon counting detector and a photon counting and detecting method using the same is provided. The photon counting detector includes readout circuits configured to count photons in multi-energy radiation incident to a sensor, the photons being counted with respect to each of a plurality of energy bands of the multi-energy radiation, the readout circuits respectively corresponding to pixels of a region onto which the multi-energy radiation is irradiated, each of the readout circuits being configured to count photons in a predetermined one of the energy bands, at least one of the readout circuits being configured to count photons in at least one of energy bands other than the predetermined one of the energy bands.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-wook Han, Dong-goo Kang, Young-hun Sung
  • Patent number: 8767908
    Abstract: A technique for processing of data from time-of-flight (TOF) PET scanners. The size of TOF PET data may be reduced without significant loss of information through a process called rebinning. The rebinning may use the Fourier transform properties of the measured PET data, taken with respect to the time-of-flight variable, to perform data reduction. Through this rebinning process, TOF PET data may be converted to any of the following reduced representations: 2D TOF PET data, 3D non-TOF PET data, and 2D non-TOF PET data. Mappings may be exact or approximate. Approximate mappings may not require a Fourier transform in the axial direction which may have advantages when used with PET scanners of limited axial extent. Once TOF PET data is reduced in size using this rebinning, PET images may be reconstructed with hardware and/or software that is substantially less complex and that may run substantially faster in comparison to reconstruction from the original non-rebinned data.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: July 1, 2014
    Assignee: University of Southern California
    Inventors: Richard Leahy, Sanghee Cho, Sangtae Ahn, Quanzheng Li
  • Publication number: 20140175293
    Abstract: In the present invention, to conduct multiple molecular imaging in a PET device, both a first probe and a second probe, each of which has a nuclide that emits unique gamma rays as a result of gamma decay after beta decay, are administered to a subject to be imaged, and then the image capturing is performed by a multiple probe PET device (100). The multiple probe PET device (100) is provided with a group of PET gamma ray detectors (10) and an energy-resolving gamma ray detector (20), and, when an imaging processor (30) executes image reconstruction based on a pair-annihilation detection signal from the group of PET gamma ray detectors (10), images are reconstructed differently according to the energy values of the unique gamma rays. Imaging can also be carried out using a nuclide that does not emit any unique gamma ray and a nuclide that emits a unique gamma ray.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 26, 2014
    Applicant: RIKEN
    Inventors: Tomonori Fukuchi, Shuichi Enomoto
  • Patent number: 8748825
    Abstract: An apparatus comprising a radiation source, coincident positron emission detectors configured to detect coincident positron annihilation emissions originating within a coordinate system, and a controller coupled to the radiation source and the coincident positron emission detectors, the controller configured to identify coincident positron annihilation emission paths intersecting one or more volumes in the coordinate system and align the radiation source along an identified coincident positron annihilation emission path.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: June 10, 2014
    Assignee: RefleXion Medical, Inc.
    Inventor: Samuel Mazin
  • Patent number: 8748826
    Abstract: A method for imaging is providing, including administering a teboroxime species to an adult human subject, administering TI-201-thallous chloride to the subject, performing a teboroxime species SPECT imaging procedure of the teboroxime species on a region of interest (ROI) of the subject, and, after administering the teboroxime species, performing a TI-201-thallous chloride SPECT imaging procedure of the TI-201-thallous chloride on the ROI. Administering the teboroxime species and the TI-201-thallous chloride and performing the teboroxime species and the TI-201-thallous chloride SPECT imaging procedures comprise administering the teboroxime species and the TI-201-thallous chloride and performing the teboroxime species and the TI-201-thallous chloride SPECT imaging procedures during a time period having a duration of no more than 30 minutes. Other embodiments are also described.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 10, 2014
    Assignee: Biosensor International Group, Ltd.
    Inventors: Benny Rousso, Dalia Dickman
  • Patent number: 8748827
    Abstract: A system of performing a volumetric scan. The system comprises a surface of positioning a patient in a space parallel thereto, a plurality of extendable detector arms each the detector arm having a detection unit having at least one radiation detector, and an actuator which moves the detection unit along a linear path, and a gantry which supports the plurality of extendable detector arms around the surface so that each the linear path of each respective the extendable detector arm being directed toward the space.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: June 10, 2014
    Assignee: Biosensors International Group, Ltd.
    Inventors: Yoel Zilberstein, Nathaniel Roth, Benny Rousso, Shlomo Ben-Haim
  • Patent number: 8742360
    Abstract: Plural camera heads are each placed in a position capable of detection of radiation emitted from a radiation source. Compton cones obtained from the detection data output from each of the plural camera heads are projected onto three-dimensional space and an image based on the radiation source is reconstructed. In addition, projected images from projecting Compton cones obtained from the detection data output from each camera head onto two-dimensional planes are also employed for determining a three-dimensional space excluding regions where the radiation source is not present. Reconstruction of images based on the radiation source is then performed within the determined three-dimensional space.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: June 3, 2014
    Assignees: National University Corporation Gunma University, Japan Atomic Energy
    Inventors: Mitsutaka Yamaguchi, Hirofumi Shimada, Takashi Nakano, Naoki Kawachi, Kazuo Arakawa, Tadayuki Takahashi, Shin Watanabe, Shinichiro Takeda, Hirokazu Odaka, Yoshikatsu Kuroda, Masahiro Kato, Kei Genba
  • Patent number: 8742371
    Abstract: Measurement data of intensities of fluorescence obtained by directing excitation light onto a subject is acquired. An initial value of an absorption coefficient of the phosphor is set on the basis of a concentration distribution of the phosphor, an intensity distribution of the fluorescence on the basis of an absorption coefficient and a diffusion coefficient (reduced scattering coefficient) of the subject, which are set beforehand, are calculated, and the measurement data is compared with the calculation result. If these are found not to be matched, an absorption coefficient of the phosphor at which the error will be a minimum is estimated by performing an inverse problem calculation using a mathematical model. The calculation of the intensity distribution of the fluorescence and evaluation of the error from the obtained concentration distribution are repeated using the absorption coefficient, and a concentration distribution for which the error is the minimum is acquired.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: June 3, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Hiroaki Yamamoto, Yukio Yamada, Shinpei Okawa
  • Patent number: 8735834
    Abstract: A mobile PET imager and method for the same is provided. The mobile PET imager includes a plurality of detector modules forming a ring detector, each for nuclear radiation detection. The imager may include a plurality of attenuation source housings including sources for attenuation such that each attenuation source housing is placed between two of the detector modules. A plurality of channel cards for processing data from the plurality of detector modules may be in the imager so that each channel card is shared by more than one of the detector modules. The imager may include at least one channel card for processing data from the detector modules and at least one resistor network acting as preamplifier, coupling to the detector modules and the channel card such that the channel card is mounted on the detector module in layer.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 27, 2014
    Inventors: John Millett, Iain Stark
  • Patent number: 8735835
    Abstract: A data processing unit for an integrated magnetic resonance (MR) and positron emission tomography (PET) system includes an RF shield housing, a first input port in the RF shield housing configured to receive a PET detector signal, a first filter disposed in the RF shield housing, in communication with the first input port, and configured to remove MR noise from the PET detector signal, a second input port in the RF shield housing configured to receive DC power, a second filter disposed in the RF shield housing, in communication with the second input port, and configured to remove the MR noise from the DC power, and a signal processing circuit disposed in the RF shield housing and powered by the DC power, the signal processing circuit including an analog-to-digital converter to digitize the PET detector signal.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 27, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: James Frank Caruba
  • Patent number: 8729480
    Abstract: A tomography scanner has intentionally designed, well defined gaps between detector rings with image reconstruction obtained with the use of conventional tomography data processing. The scanner is particularly advantageous as a small animal PET scanner.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 20, 2014
    Assignee: Trident Imaging, Inc.
    Inventors: Jurgen Seidel, Michael V. Green, Juan José´ Vaquero
  • Patent number: 8718973
    Abstract: A method, device, and system for calculating first and second distance ratios used to calculate a geometric probability between a voxel and a tube-of-response (TOR). The method includes determining a first-edge-line including a first-middle-point, determining a second-edge-line including a second-middle-point, determining a middle line of the TOR, projecting a first point of a first surface of the voxel to the middle line, projecting a second point of a second surface of the voxel to the middle line, calculating a first distance between one of the first and second middle-points and the first-projected-point, and a second distance between the one of the first and second middle-points and the second-projected-point, and determining a first distance ratio based on the first and second distances. The method calculates the second distance ratio similarly to the first distance ratio. The geometric probability is proportional to the product of the first and second distance ratios.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: May 6, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Hongwei Ye, Wenli Wang
  • Patent number: 8710445
    Abstract: The invention relates to an apparatus for evaluating an activity distribution obtained in a moved target object by a beam that is generated by an irradiation device. Said apparatus comprises: a positron emission tomograph designed to record photons generated in the target object by the beam and generate measurement data representing points of origin of the photons; a movement detection device designed to generate a movement signal representing the movement of the target object; and an evaluation unit designed to associate the points of origin of the measured photons with positions in the target object with the help of the movement signal such that three-dimensional characteristics of the activity distribution actually generated in the target object can be evaluated by means of the photons generated by the beam. The invention further relates to an irradiation system and a method in which such an apparatus is used.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: April 29, 2014
    Assignees: GSI Helmholtzzentrum fur Schwerionenforschuntg GmbH, Siemens AG, Forschungszentrum Dresden-Rossendorf E.V., Heidelberger Ionenstrahl-Therapie (HIT) Betriebs-Gesellschaft AM Universitatsklinikum
    Inventors: Christoph Bert, Eike Rietzel, Wolfgang Enghardt, Katia Parodi
  • Publication number: 20140110592
    Abstract: The invention provides novel Compton camera detector designs and systems for enhanced radiographic imaging with integrated detector systems which incorporate Compton and nuclear medicine imaging, PET imaging and x-ray CT imaging capabilities. Compton camera detector designs employ one or more layers of detector modules comprised of edge-on or face-on detectors or a combination of edge-on and face-on detectors which may employ gas, scintillator, semiconductor, low temperature (such as Ge and superconductor) and structured detectors. Detectors may implement tracking capabilities and may operate in a non-coincidence or coincidence detection mode.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Inventors: Robert Sigurd Nelson, William Bert Nelson
  • Patent number: 8704190
    Abstract: A radiation detection signal processing method and a radiation detection signal processing system using the method are provided, which combine trigger signals and time mark information. The method includes: providing a radiation detection signal processing system having a plurality of front-end detectors, where each front-end detector detects a radiation event to generate a corresponding energy signal; generating a corresponding trigger signal according to the corresponding energy signal; generating a first signal and a second signal according to all trigger signals; and obtaining time differences among the trigger signals according to the first signal and the second signal, converting the time differences into a set of time marks, merging all of the trigger signals and the set of time marks into a hybrid time signal, and transmitting the hybrid time signal to a hybrid event coincidence detection circuit.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: April 22, 2014
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Chung-Hung Chang, Sheng-Pin Tseng, Meei-Ling Jan
  • Patent number: 8698087
    Abstract: Provided are time-of-flight positron emission tomography devices comprising a detector array having at least two segments configured to accommodate a body part and to acquire tracer emission signals from a target within an imaging situs with a timing resolution of less than about 600 ps and a processor that receives the acquired signals from the detector array and converts the signals into a three dimensional image reconstruction of the target.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: April 15, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Suleman Surti, Joel S. Karp
  • Patent number: 8687869
    Abstract: A method for reconstructing an image from emission data includes generating a compressed point-spread function matrix, generating an accumulated attenuation factor; and performing at least one image projection operation on an image matrix of the emission data using the compressed point-spread function matrix and the accumulated attenuation factor. The image projection operation can include rotating an image matrix and an exponential attenuation map to align with a selected viewing angle. An accumulated attenuation image is then generated from the rotated image matrix and rotated exponential attenuation map and a projection image is generated for each voxel by multiplying the accumulated attenuation image and point spread function matrix for each voxel. The rotating and multiplying operations can be performed on a graphics processing unit, which may be found in a commercially available video processing card, which are specifically designed to efficiently perform such operations.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 1, 2014
    Assignee: The Research Foundation of State of University of New York
    Inventors: Jerome Z. Liang, Zigang Wang