With Dose Measurement Patents (Class 250/390.03)
  • Patent number: 9910170
    Abstract: A device for detecting neutron emission comprises a housing, a moderator structure, a neutron detection element, and a plurality of plate electrodes. The housing provides an enclosure and shielding from radiation other than neutron emission. The moderator structure is positioned within the housing and is formed from energy absorbing material. The moderator structure includes a first side wall and a second side wall spaced apart and oriented parallel to one another. The neutron detection element includes a neutron reactive material deposited on a planar substrate. The plate electrodes are formed from electrically conductive material and spaced apart from one another. Each adjacent pair of plate electrodes has a voltage therebetween, wherein one neutron detection element is positioned between adjacent pairs of plate electrodes and the combination of plate electrodes and neutron detection elements is positioned between the first side wall and the second side wall of the moderator structure.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: March 6, 2018
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventors: Gregory Billiard, George Bohnert, Christopher Boese
  • Patent number: 9733369
    Abstract: Provided are a neutron monitor device and a neutron measurement method which make it easier to measure the intensity of the neutrons having the energy region of 10 KeV to several hundreds KeV. A neutron monitor device includes a first detector which includes a hemispherical first body formed of PE and having a radius of 31 mm, a first specimen containing GaN disposed at the center of the first body, a Cd layer provided on an outer surface of the first body, and a B layer provided inside the first body, and a second detector which includes a hemispherical second body formed of PE and having a radius of 27 mm, a second specimen containing GaN disposed at the center of the second body, a B layer provided on the outer surface of the second body, and a Cd layer provided inside the second body.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 15, 2017
    Assignees: MITSUBISHI HEAVY INDUSTRIES MECHATRONICS SYSTEMS, LTD., OSAKA UNIVERSITY
    Inventors: Shuhei Kuri, Toshiharu Takahashi, Hiroshi Horiike, Eiji Hoashi, Isao Murata, Sachiko Doi
  • Patent number: 9651505
    Abstract: A method for obtaining information about an unknown neutron source or an unknown material interacting with a known neutron source comprises the steps of: (a) providing a radiation detector capable of delivering a neutron energy information allowing the production of response histogram(s) as a function of neutron energy, (b) measuring with said radiation detector neutrons being emitted from said unknown neutron source or from said unknown material, (c) deriving from said measured neutrons a neutron energy spectrum, especially in form of a histogram, (d) normalizing said energy spectrum or histogram relative to a parameter or set of parameters derived from the measurement of a different variable, (e) comparing said normalized energy spectrum or histogram with known energy spectra or histograms, and (f) drawing conclusions on the basis of said comparison about the nature of the unknown neutron source or unknown material.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 16, 2017
    Assignee: Arktis Radiation Detectors Ltd
    Inventors: Rico Chandrasekharan, Giovanna Davatz, Alexander Howard
  • Patent number: 9568623
    Abstract: A neutron detector that utilizes cells in which a liquid scintillator is contained in elongated detector tubes, with photo-detectors disposed at each end of the tube to measure scintillation light generated by incident neutrons. The liquid scintillator is an interblended mixture including an ionic liquid blended with a scintillation enhancer and/or a moderator and/or a controlled optical attenuator. A longitudinal position of an incident neutron is determined by the magnitudes of the scintillation light portions arriving at each photo-detector, which are proportional to the distances between the neutron interaction point and the photo-detectors. The cells are arranged in a closely-spaced parallel planar array to facilitate determining incident neutron location in two dimensions. A detector system utilizes a first detector array to detect fast neutrons, a thermalizer (e.g., polyethylene) to convert fast incident neutrons to thermal neutrons, and a second detector array to detect the thermal neutrons.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: February 14, 2017
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Saroj Kumar Sahu, Craig Eldershaw, Martin Sheridan
  • Patent number: 9529101
    Abstract: An instrument for detecting radiation is provided, which comprises an inner core housing a neutron detector, and an outer core comprising a neutron-moderating material, the instrument further including at least one elongate thermal neutron guide located within the outer core and having an inner end that terminates proximal to the neutron detector. In use, the elongate thermal neutron guide channels thermal neutrons towards the neutron detector. Also provided is a method for using said instrument.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: December 27, 2016
    Assignee: The Secretary of State for Health
    Inventors: Rick Tanner, Jonathan Eakins
  • Patent number: 9442202
    Abstract: An instrument for detecting radiation is provided, which comprises an inner core housing a neutron detector, and another core comprising a neutron-moderating material, the instrument further including at least one elongate thermal neutron guide located within the outer core and having an inner end that terminates proximal to the neutron detector. In use, the elongate thermal neutron guide channels thermal neutrons towards the neutron detector. Also provided is a method for using said instrument.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: September 13, 2016
    Assignee: The Secretary of State for Health
    Inventors: Rick Tanner, Jonathan Eakins
  • Patent number: 9040932
    Abstract: A surface contamination monitoring system/method configured to correct the detected the radioactive net count rate (NCR) value of a whole-body surface contamination monitoring device based on monitored subject height and thickness is disclosed. The system includes a height detection means for determining the height of a monitored subject and a thickness detection means for determining the thickness of at least a portion of the monitored subject. The net count rate (NCR) is corrected based on the determined height and thickness of the monitored subject as applied to site calibration factor data and self-shielding factor data to produce a corrected net count rate (CNR). If the corrected net count rate (CNR) registers above a preset alarm threshold, the monitored subject is considered contaminated and an appropriate alarm is registered.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: May 26, 2015
    Assignee: CANBERRA INDUSTRIES, INC.
    Inventors: Dante Nakazawa, James Zickefoose, Lloyd Cass, Gregory Bogorodzki, Dominique Rothan, Timothy Spillane
  • Patent number: 9040933
    Abstract: Controlling electromagnetic (‘EM’) radiation in a data center having a number EM sections, including: receiving, by an EM controller, a specification of preferred EM radiation characteristics for the data center; and setting, by the EM controller, a state of each EM section in accordance with the specification, where the state of each EM section may be one of: an absorption state in which the EM section absorbs EM radiation or a reflection state in which the EM section reflects EM radiation.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: May 26, 2015
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Milton Cobo, James E. Hughes, Thomas D. Pahel, Jr., Pravin S. Patel, Challis L. Purrington, Jack P. Wong
  • Patent number: 8865011
    Abstract: The invention provides a method for optimizing the spectroscopy performance of a spectroscopy scintillator by surrounding the scintillator by a reflector material, performing a scan measuring resolution and light output at three or more axial locations on the crystal, where at least one location is close to the PMT or below the crystal (near the PMT) at least one location is at the end away from the PMT of the scintillator), and adjusting the surface finish of the crystal and/or the reflector to obtain equal light output and optimal resolution over the length and different azimuth of the crystal.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: October 21, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Olivier G. Philip, Markus Berheide
  • Patent number: 8748838
    Abstract: A system and method for correcting, based on a monitored subject's height and thickness, the net count rate value of a whole-body surface contamination monitoring device. The device includes a height detection means for determining the height of a subject being monitored, and a thickness detection means for determining the thickness of at least a portion of the body of the subject being monitored. The net count rate is based on site calibration factor data and self-shielding factor data, wherein both types of factor data consider the determined height and thickness.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: June 10, 2014
    Assignee: Canberra Industries, Inc.
    Inventors: Dante Nakazawa, James Zickefoose, Lloyd Cass, Gregory Bogorodzki, Dominique Rothan, Timothy Spillane
  • Patent number: 8610080
    Abstract: A method for determining the spectral and spatial distribution of a braking photon flow along at least one direction in space (x, y, z), characterized in that the method comprises measuring the neutrons resulting from the impact of the braking photons (ph) on at least one conversion target which is moved in the direction (x, y, z) in space. The invention can be used for X-rays, medical imaging, tomography, etc.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Abdallah Lyoussi, Emmanuel Payan, Alain Mariani
  • Patent number: 8569710
    Abstract: The present invention includes an apparatus and method for neutron radiation detection. The apparatus comprises combining thin walled, boron-coated straw tubes with a plastic moderator material interspersed around the tubes. The method involves using such an apparatus through application of voltage to a central wire running inside the tubes and collecting electrical pulses generated thereby.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: October 29, 2013
    Assignee: Proportional Technologies, Inc.
    Inventor: Jeffrey L. Lacy
  • Patent number: 8389947
    Abstract: A method for detecting neutron radiation in accordance with particular embodiments includes exposing a neutron detector array comprising at least one two-dimensional array of neutron detectors to a first scene of interest. The neutron detector array is based on at least one two-dimensional array of microbolometer detectors. The method also includes receiving a plurality of response values from a corresponding plurality of neutron detectors of the neutron detector array. The method further includes generating a comparison value based on the plurality of response values and a baseline response value. The method additionally, includes determining whether more than a first threshold amount of neutron radiation is being generated by the first scene based on the comparison value.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 5, 2013
    Assignee: Raytheon Company
    Inventors: Adam M. Kennedy, David R. Rhiger, Stefan T. A. Baur
  • Patent number: 8222616
    Abstract: A system and method of adapting a radiation therapy treatment plan for a patient by varying the fraction size delivered to the patient on any individual day, based at least partially on the use of daily patient registration (i.e., taking images of the patient before each fraction is delivered to see the position and size of the tumor on that day). The fraction size can be dynamically altered based upon the biology of the tumor.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: July 17, 2012
    Assignee: Tomotherapy Incorporated
    Inventors: Weiguo Lu, Mingli Chen, Quan Chen, Kenneth J. Ruchala, Gustavo H. Olivera
  • Patent number: 8212218
    Abstract: A system for determining an amount of radiation includes a dosimeter configured to receive the amount of radiation, the dosimeter comprising a circuit having a resonant frequency, such that the resonant frequency of the circuit changes according to the amount of radiation received by the dosimeter, the dosimeter further configured to absorb RF energy at the resonant frequency of the circuit; a radio frequency (RF) transmitter configured to transmit the RF energy at the resonant frequency to the dosimeter; and a receiver configured to determine the resonant frequency of the dosimeter based on the absorbed RF energy, wherein the amount of radiation is determined based on the resonant frequency.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Michael S. Gordon, Steven J. Koester, Conal E. Murray, Kenneth P. Rodbell, Stephen M. Rossnagel, Robert L. Wisnieff, Jeng-bang Yau
  • Patent number: 8188440
    Abstract: A system includes emission of a first treatment beam associated with a first energy toward a neutron dose detector, determination of a first number of soft errors experienced by a semiconductor-based device exposed to neutrons generated by the first treatment beam, determination of a first neutron dose based on the first treatment beam using the neutron dose detector, and association of the first energy of the first treatment beam with the first number of soft errors and the first neutron dose. Some aspects include emission of a second treatment beam associated with the first energy toward a target, determination of a second number of soft errors experienced by the semiconductor-based device exposed to neutrons generated by the second treatment beam, and determination of a second neutron dose at the target based on the association between the first energy, the first number of soft errors and the first neutron dose.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: May 29, 2012
    Assignees: Siemens Medical Solutions USA, Inc., University of Santiago de Compostela
    Inventors: Faustino Gómez Rodríguez, Francisco Miguel Hernandez-Guerra, Alfredo Iglesias Lago
  • Patent number: 8148701
    Abstract: Described is device comprising dosimeter for measuring one or more doses of radiation; and an RFID tag comprising an antenna for communicating with an RFID tag reader and non-volatile memory for storing data therein.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: April 3, 2012
    Assignee: Landauer, Inc.
    Inventor: R. Craig Yoder
  • Publication number: 20110180718
    Abstract: The invention relates to a neutron dosimeter comprising a neutron moderator (12), a first radiation detector (14), which is situated in the neutron moderator (12) and is surrounded by a first metal body (28) containing material that can be activated by neutrons, a second radiation detector (16), which is situated in the neutron moderator (12) close to the first radiation detector (14) and is surrounded by a second metal body (30) that substantially cannot be activated by neutrons. The first metal body (28) and the second metal body (30) are designed in such a way that they substantially have the same degree of absorption of photons. The dosimeter also comprises an evaluation circuit, which is connected to the radiation detectors and is equipped to suppress electrical impulses generated by ionising radiation using a pulse intensity that lies below a predefined pulse intensity threshold.
    Type: Application
    Filed: August 26, 2009
    Publication date: July 28, 2011
    Inventors: Marlies Luszik-Bhadra, Eike Hohmann
  • Publication number: 20110168902
    Abstract: Described is device comprising dosimeter for measuring one or more doses of radiation; and an RFID tag comprising an antenna for communicating with an RFID tag reader and non-volatile memory for storing data therein.
    Type: Application
    Filed: April 9, 2010
    Publication date: July 14, 2011
    Applicant: Landauer, Inc.
    Inventor: R. CRAIG YODER
  • Publication number: 20110156916
    Abstract: Disclosed is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.
    Type: Application
    Filed: December 24, 2009
    Publication date: June 30, 2011
    Inventors: Noel Felix Savignac, Leo S. Gomez, William Graham Yetton, Alex Robinson, Steven Limmer
  • Publication number: 20110127438
    Abstract: A system for determining an amount of radiation includes a dosimeter configured to receive the amount of radiation, the dosimeter comprising a circuit having a resonant frequency, such that the resonant frequency of the circuit changes according to the amount of radiation received by the dosimeter, the dosimeter further configured to absorb RF energy at the resonant frequency of the circuit; a radio frequency (RF) transmitter configured to transmit the RF energy at the resonant frequency to the dosimeter; and a receiver configured to determine the resonant frequency of the dosimeter based on the absorbed RF energy, wherein the amount of radiation is determined based on the resonant frequency.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., Michael S. Gordon, Steven J. Koester, Conal E. Murray, Kenneth P. Rodbell, Stephen M. Rossnagel, Robert L. Wisnieff, Jeng-bang Yau
  • Publication number: 20110101234
    Abstract: In a neutron dosimeter, G(L) function data, which causes the tendency of a characteristic when neutron energy is plotted along the horizontal axis and the ambient dose equivalent (1 cm dose equivalent) is plotted along the vertical axis to approximate a neutron fluence-ambient dose equivalent (1 cm dose equivalent) conversion coefficient curve (neutron energy-ICRP 74 H* (10) response curve), is used to compensate the output of a mixed gas detector which encapsulates a gas mixture of a nitrogen gas and an organic compound gas and outputs detection pulse signals with peaks according to the energies of detected neutrons.
    Type: Application
    Filed: February 27, 2009
    Publication date: May 5, 2011
    Inventors: Takashi Nakamura, Tomoya Nunomiya
  • Publication number: 20100258732
    Abstract: A system includes emission of a first treatment beam associated with a first energy toward a neutron dose detector, determination of a first number of soft errors experienced by a semiconductor-based device exposed to neutrons generated by the first treatment beam, determination of a first neutron dose based on the first treatment beam using the neutron dose detector, and association of the first energy of the first treatment beam with the first number of soft errors and the first neutron dose. Some aspects include emission of a second treatment beam associated with the first energy toward a target, determination of a second number of soft errors experienced by the semiconductor-based device exposed to neutrons generated by the second treatment beam, and determination of a second neutron dose at the target based on the association between the first energy, the first number of soft errors and the first neutron dose.
    Type: Application
    Filed: September 20, 2006
    Publication date: October 14, 2010
    Inventors: Faustino Gomez Rodriguez, Francisco Miguel Hernandez-Guerra, Alfredo Iglesias Lago
  • Publication number: 20100108901
    Abstract: A device and method for on line dosimetry monitoring of a hadron beam generated from a source of radiation and delivered to a target, the device comprising a plurality of support plates arranged in parallel in a face-to-face relation, separated from each other by gas filled gaps and perpendicularly to the central axis of said hadron beam, and forming a plurality of ionization chambers, each support plate having on a first side one or more collecting electrodes and on a second side one or more high voltage electrode, arranged in such a way that each support plate has said first side substantially opposed to said second side of another support plate. Each support plate has an opening so as to form an inner cavity for allowing the undisturbed passage of a central portion of the hadron beam delivered to said target and a peripheral region for intercepting and measuring, by means of said plurality of ionization chambers, a peripheral portion of said hadron beam.
    Type: Application
    Filed: March 29, 2008
    Publication date: May 6, 2010
    Inventors: Damien Prieels, Victor Breev
  • Patent number: 7655921
    Abstract: Disclosed is a dosimeter (1) for the detection of neutron radiation within an energy range of 0.025 eV to several hundred GeV, comprising a substantially spherical base body (3) which is used as a moderation body and which comprises hydrogenous material, a detection element (5) which is arranged in the center of the base body (3), and a neutron converter (7) surrounding the detection element (5). The neutron converter (7) comprises metal atoms which convert the energy of the high-energy neutron radiation essentially into neutrons within a suitable energy range. The dosimeter (1) is characterized in that the base body (3) is provided with an access (19) through which the detection element (5) can be introduced into the neutron converter (7) and removed thereform, and in that the neutron converter (7) is embodied in the form of a cylinder.
    Type: Grant
    Filed: April 9, 2005
    Date of Patent: February 2, 2010
    Assignee: GSI Helmholtzzentrum fur Schwerionenforschung GmbH
    Inventors: Georg Fehrenbacher, Georg Johannes Festag, Frank Gutermuth, Torsten Radon
  • Publication number: 20090321650
    Abstract: A radiation detection blanket for use in surveying a broad or irregular area of interest for radiation emissions. Small radiation detectors are affixed to the fabric and distributed relative to its surface area. The detector materials may be of the OSL, TLD, or ERD variety, or may be a combination of OSL, TLD and ERD. Detector materials having varying thicknesses of high Z coatings may be clustered together in the blanket fabric to yield a gamma radiation spectrum. Use of a converter material on the detector material allows the blanket to detect neutron radiation. The blanket includes specialized transmission means for allowing the detector materials to be read individually, by passing the reader along a surface or along an edge of the blanket. A composite radiation measurement is obtained upon reading the individual detectors, allowing determination of the radiation distribution within the object being surveyed by the blanket.
    Type: Application
    Filed: April 22, 2008
    Publication date: December 31, 2009
    Inventors: Steven P. Kadner, Markku J. Koskelo, Robert Craig Yoder
  • Publication number: 20090302231
    Abstract: Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.
    Type: Application
    Filed: March 16, 2007
    Publication date: December 10, 2009
    Applicant: KANSAS STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Douglas S. McGregor, John K. Shultis, Blake B. Rice, Walter J. McNeil, Clell J. Solomon, Eric L. Patterson, Steven L. Bellinger
  • Patent number: 7606686
    Abstract: The invention relates generally to a method for the calculation of radiation field distributions employing a new parallel 3-D radiation transport code and, a multi-processor computer architecture. The code solves algorithms using a domain decomposition approach. For example, angular and spatial domains can be partitioned into subsets and, the subsets can be independently allocated and processed.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: October 20, 2009
    Assignee: Westinghouse Electric Co LLC
    Inventor: Gianluca Longoni
  • Publication number: 20090084974
    Abstract: The invention relates generally to a method for the calculation of radiation field distributions employing a new parallel 3-D radiation transport code and, a multi-processor computer architecture. The code solves algorithms using a domain decomposition approach. For example, angular and spatial domains can be partitioned into subsets and, the subsets can be independently allocated and processed.
    Type: Application
    Filed: September 25, 2008
    Publication date: April 2, 2009
    Inventor: Gianluca LONGONI
  • Publication number: 20090039279
    Abstract: Disclosed is a dosimeter (1) for the detection of neutron radiation within an energy range of 0.025 eV to several hundred GeV, comprising a substantially spherical base body (3) which is used as a moderation body and which comprises hydrogenous material, a detection element (5) which is arranged in the center of the base body (3), and a neutron converter (7) surrounding the detection element (5). The neutron converter (7) comprises metal atoms which convert the energy of the high-energy neutron radiation essentially into neutrons within a suitable energy range. The dosimeter (1) is characterized in that the base body (3) is provided with an access (19) through which the detection element (5) can be introduced into the neutron converter (7) and removed therefrom, and in that the neutron converter (7) is embodied in the form of a cylinder.
    Type: Application
    Filed: April 9, 2005
    Publication date: February 12, 2009
    Applicant: GSI Gesellschaft fur Schwerionenforschung mbH
    Inventors: Georg Fehrenbacher, Georg Johannes Festag, Frank Gutermuth, Torsten Radon
  • Patent number: 7465937
    Abstract: A dosimeter for detecting high-energy neutron radiation having a neutron converter and a detection element is proposed which is characterized by the neutron converter comprising metal atoms which convert the energy of the neutrons into protons, alpha particles and other charged nuclei in a suitable energy range so that they are detectable.
    Type: Grant
    Filed: May 29, 2004
    Date of Patent: December 16, 2008
    Assignee: Gesellschaft für Schwerionenforschung mbH
    Inventor: Georg Fehrenbacher
  • Publication number: 20080217551
    Abstract: The present invention provides a system, device, computer program product and article for a telepositional dosimeter (TPD) and a radiation measurement system (RMS) having one or more TPDs capable of communicating environmental radiation measurements to a network, database or other data management technology. The present invention combines radiation measurement technology, wireless network and mobile communication technology, software, and related technologies to enable applications in various environments including the areas of environmental protection, homeland security, anti-terrorism, nuclear safety, radiation material handling and safety, and emergency response.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Inventors: Chong ZHANG, Xiangiun XU
  • Patent number: 7208743
    Abstract: The invention relates to an instrument which uses an individual semi-conductive detector with special coverings as an essential sensor, and a method whereby the amplitude information of the signals from said semi-conductive detector are used to determine a person's dose in mixed neutron/photon-fields. Said instrument is highly sensitive and has a low energy dependency. It is possible for the dose to be read directly, and to emit a warning if the dose limit is exceeded. The inventive method enables a compact person's dose meter, which is immune to interference, to be produced with low power consumption.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: April 24, 2007
    Assignee: Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Arbeit, dieses wiederum vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt
    Inventors: Marlies Luszik-Bhadra, Wilfried Wendt
  • Patent number: 7151267
    Abstract: A method of measuring the activity of a radioisotope (3) placed in an ionisation chamber (1) consists in:—determining the energy spectrum of the radiation emitted by the radioisotope;—automatically comparing the energy spectrum with a set of pre-recorded or pre-programmed radioisotope energy spectra in such a way as to identify the radioisotope present;—subsequently, automatically directing the calibration coefficient corresponding to the radioisotope present to the electronic measuring elements in order to obtain the appropriate activity measurement. The invention provides a totally automatic activity measurement. Moreover, the invention also relates to an activity meter with radioisotope recognition which is used to obtain an automatic activity measurement. The device employs one or more scintillation—or semi-conductor-type radiation detectors (10) for determining the energy spectrum of the radioisotope present.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: December 19, 2006
    Assignee: Lemer Protection Anti-X par Abreviation Societe Lemer Pax
    Inventor: Pierre-Marie Lemer
  • Patent number: 6924487
    Abstract: A neutron detector is provided which is able to measure thermal neutron radiation within a gap filled with a substance that permits scintillation in the absorption of thermal neutron radiation, the gap being formed between at least a first and second spaced apart photodetector working in electrical coincidence. The substance disposed within the gap can be either a gas, liquid or solid. In the case of a gas, a shell is used so that the gas can be retained and kept under pressure. The neutron detector is able to differentiate between gamma radiation and neutron energy. An alternate embodiment of the novel detector includes a device which employs a plurality of detectors surrounding a moderator which can be used to measure both thermal and high energy neutrons.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: August 2, 2005
    Assignee: Constellation Technology Corporation
    Inventors: Alexander I. Bolozdynya, John D. Richards, Anatoli Arodzero
  • Patent number: 6596998
    Abstract: A method for determining which of a plurality of detectors transmitted a signal, such as a signal related to neutron or gamma emissions, includes connecting each of the detectors to a single cable, such as an environmentally rugged cable. Signals are transmitted from each of the detectors over the single cable. The two ends of the cable are connected to two receivers. A different unique delay is introduced between receipt by the two receivers of a signal over the cable for each of the detectors. The receivers, which have a preamplifier, an amplifier and a discriminator, receive the signals from the two ends of the cable. A timing analyzer, such as a time-to-amplitude converter, measures a delay between one signal from one end and the other signal from the other end of the cable. A processor employs the amplitude of the signal output by the timing analyzer.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: July 22, 2003
    Assignee: Westinghouse Electric Company LLC
    Inventor: George G. Siedel
  • Patent number: 6529573
    Abstract: A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: March 4, 2003
    Assignee: The Regents of the University of California
    Inventors: Richard H. Olsher, David T. Seagraves
  • Patent number: 6362485
    Abstract: A neutron monitoring instrument, principally of the survey type, is provided with an inner neutron detector(s) enclosed in a layer of neutron attenuating material and one or more outer neutron detectors provided on the attenuating layer and enclosed in a layer of neutron moderating material. The inner detector(s) monitor neutrons in the 100 KeV to 15 MeV energy range, with the outer detectors monitoring neutrons in the thermal to 100 KeV range. Sensitivity across the spectrum and evenness of response are improved compared with the prior art to give better close equivalence determinations.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: March 26, 2002
    Assignee: British Nuclear Fuels PLC
    Inventors: Malcolm John Joyce, Brian Robert More, David Thomas Bartlett, Richard John Tanner, David Glyndwr Jones