Methods Patents (Class 250/391)
  • Patent number: 11841471
    Abstract: This disclosure provides systems, methods, and apparatus related to neutron detection and gamma ray detection. In one aspect, a detector comprises a scintillator structure that comprises an organic scintillator and an inorganic scintillator. The organic scintillator is in the form of one or more elements of a specified length. The inorganic scintillator is in the form of one or more elements of the specified length. First ends of the one or more organic scintillator elements and first ends of the one or more inorganic scintillator elements define a first surface. Second ends of the one or more organic scintillator elements and second ends of the one or more inorganic scintillator elements define a second surface.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: December 12, 2023
    Assignee: The Regents of the University of California
    Inventors: Stephen Derenzo, Edith Bourret
  • Patent number: 11733409
    Abstract: A neutron imaging system includes a neutron generator, a flight tube, a stage, a neutron imaging module, and a neutron shield. The flight tube enables neutrons from the neutron generator to enter the flight tube through an input opening and exit through an output opening. The stage supports a sample object to receive neutrons that pass through the entire length of the flight tube and the output opening. The neutron imaging module has a neutron-sensitive component that receives neutrons that pass through the sample object and generates neutron detection signals. The neutron shield surrounds at least a portion of the flight tube and the neutron imaging module to block at least a portion of stray neutrons that travel toward the neutron-sensitive component of the neutron imaging module, in which the stray neutrons do not enter the flight tube through the input opening of the flight tube.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: August 22, 2023
    Assignee: Photonis Scientific, Inc.
    Inventors: Brian White, W. Bruce Feller, R. Gregory Downing
  • Patent number: 11619598
    Abstract: The present disclosure provides systems, apparatuses, and methods for measuring submerged surfaces. Embodiments include a measurement apparatus including a main frame, a source positioned outside a pipe and connected to the main frame, and a detector positioned outside the pipe at a location diametrically opposite the source and connected to the main frame. The source may transmit a first amount of radiation. The detector may receive a second amount of radiation, determine a composition of the pipe based on the first and second amounts of radiation, and send at least one measurement signal. A control canister positioned on the main frame or on a remotely operated vehicle (ROV) attached to the apparatus may receive the at least one measurement signal from the detector and convey the at least one measurement signal to software located topside.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 4, 2023
    Assignee: DELTA SUBSEA LLC
    Inventors: Scott P. Dingman, Roger Warnock, Alessandro Vagata
  • Patent number: 10629318
    Abstract: A neutron beam diffraction material treatment system utilizes a neutron beam source configured to produce a first neutron beam having a first direction and second neutron beam source configured to produce a second neutron beam having a second direction. The neutron beam diffraction material treatment system can direct the first and second neutron beams to intersect with each other in or on a work-piece and thereby treat the work piece by neutron diffraction. One or more of the neutron beams may be configured to move to change the location of the intersecting point within the work-piece and/or the work-piece may be configured to move. The first and second neutron beams may be configured with a magnetic coil configured around the neutron beam and between the neutron beam source and the work-piece. The magnetic coil may be used to contain the neutron beams and reduce the scattering of neutron.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: April 21, 2020
    Inventor: Michelle Corning
  • Patent number: 10224122
    Abstract: An object of the invention is to provide a reactor instrumentation system that can be easily repaired or replaced. The invention includes: an instrumentation tube provided in a reactor core; a gas flow pipe provided in the instrumentation tube; a suction mechanism for supplying gas containing oxygen to the gas flow pipe; and a nuclide analysis device for measuring a nuclide in the gas in the gas flow pipe. According to the invention, it is possible to provide a reactor instrumentation system that can be easily repaired or replaced.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: March 5, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Kouichi Okada, Takahiro Tadokoro, Katsunori Ueno, Yasushi Nagumo
  • Patent number: 9810797
    Abstract: An arrangement for detecting neutrons. A first neutron detector includes at least some helium, and may include some Helium-3. The first neutron detector has an associated gain performance. A second neutron detector includes at least some helium. The second neutron detector may include some Helium-3 and may include some Helium-4. The second neutron detector has an associated gain performance. In an aspect, the gain performance of the second neutron detector matches the gain performance of the first neutron detector. In an aspect, the amount of all helium of the second detector is the same as the amount of all helium in the first detector. In an aspect, at least one of the first and second detectors includes at least some additional, different neutron-sensitive substance. In an aspect, at least one of the first and second detectors includes some Boron-10 as the additional, different neutron-sensitive substance.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: November 7, 2017
    Assignee: General Electric Company
    Inventors: Kevin Scott McKinny, Matthew Thomas McPheeters
  • Patent number: 9103378
    Abstract: A bearing (X) inside which a lubricant is able to be sealed is provided with: a rotary motion body (X2) that moves when a rotation drive force is applied; and a rotation angle indicator (X6) that is provided on the rotary motion body (X2) and that is moved, in conjunction with the movement of the rotary motion body (X2), to a position that corresponds to the rotation angle of the rotary motion body (X2).
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: August 11, 2015
    Assignee: IHI CORPORATION
    Inventors: Takehisa Takano, Hiroyuki Nose, Akira Ito
  • Patent number: 9099207
    Abstract: According to one embodiment of a reactor core monitoring system, includes: an information retention portion for retaining a regular cycle and a short cycle as calculation information of reactor core performance data; a signal processing portion for creating heat balance data based on a process signal; a data acquisition portion for acquiring, in a timing of the regular cycle, the heat balance data and reactor core performance data which was calculated in a previous timing of the regular cycle, while acquiring, in a timing of the short cycle asynchronous to the regular cycle, the heat balance data and reactor core performance data which was calculated most recently; and a data calculation portion for calculating new reactor core performance data based on the acquired reactor core performance data and the heat balance data.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: August 4, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Motoko Yoshida, Atsuhiko Koizumi, Masayuki Okada
  • Patent number: 9074987
    Abstract: The direction of the main axis of a bearing is adjusted by turning a supporting base (12a) that is supporting the bearing, and by then receiving a neutron beam that has been transmitted through the bearing from the direction of the main axis thereof, and converting it into an electromagnetic wave, and by then forming images using the received electromagnetic wave, lubricant distribution data that shows the distribution of a lubricant inside the bearing is acquired.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 7, 2015
    Assignee: IHI CORPORATION
    Inventors: Takehisa Takano, Hiroyuki Nose, Akira Ito
  • Publication number: 20150115168
    Abstract: A light emitting element according to one embodiment of the present invention is configured of a metal fluoride crystal which is represented by chemical formula LiM1M2F6 (wherein Li includes 6Li; M1 represents at least one alkaline earth metal element selected from among Mg, Ca, Sr and Ba; and M2 represents at least one metal element selected from among Al, Ga and Sc), said metal fluoride crystal containing 0.02% by mole or more of Eu and having an Eu2+ concentration of less than 0.01% by mole.
    Type: Application
    Filed: April 18, 2013
    Publication date: April 30, 2015
    Inventors: Sumito Ishizu, Kentaro Fukuda, Noriaki Kawaguchi, Akira Yoshikawa, Takayuki Yanagida, Yui Yokota, Yutaka Fujimoto
  • Patent number: 9006672
    Abstract: A neutron detector includes a microchannel plate having a structure that defines a plurality of microchannels, and layers of materials disposed on walls of the microchannels. The layers include a layer of neutron sensitive material, a layer of semiconducting material, and a layer of electron emissive material. For example, the layer of neutron sensitive material can include boron-10, lithium-6, or gadolinium.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: April 14, 2015
    Assignee: Nova Scientific, Inc.
    Inventors: W. Bruce Feller, Paul L. White
  • Patent number: 8975593
    Abstract: A gas avalanche neutron detector (GAND) filled with counting gas for detecting thermal neutrons or neutron radiation without the use of a conventional proportional counter is provided. The GAND may include a layer of thermalization material, a cathode having a face with a layer of material, exhibiting neutron capture followed by charged particle emission such as Boron-10, a microstructure amplifier, and an anode. Thermal neutrons may enter the detector and interact with the material on the face of the cathode producing alpha particles. The alpha particles may ionize the counting gas inside the detector and produce ionization electrons. The cathode, microstructure amplifier and anode may have voltages applied that create electric fields that cause the ionization electrons to drift toward the microstructure amplifier. The microstructure then accelerates the electrons causing an avalanche effect within the gas and provides an amplification of the signal dramatically increasing neutron detection sensitivity.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 10, 2015
    Assignees: SCI Technology, Inc., Bubble Technologies Industries Inc.
    Inventors: David J. Best, Daniel T. Wakeford, Hugh Robert Andrews, Harry Ing, Marius Facina, Michael Dick
  • Publication number: 20150001413
    Abstract: A spherical device for detecting neutrons includes a sphere-shaped cathode and a ball-shaped anode. The cathode forms an enclosure filled with an ionising gas. The ionising gas is pure nitrogen. The ionising gas can also be mixed with a quencher. In this case, the quencher may be ethane.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 1, 2015
    Inventors: Ioannis GIOMATARIS, Gilles GERBIER, Thomas PAPAEVANGELOU, Ilias SAVVIDIS
  • Patent number: 8912502
    Abstract: A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 16, 2014
    Assignee: Sandia Corporation
    Inventors: Mark S. Derzon, Paul C. Galambos, Ronald F. Renzi
  • Publication number: 20140361186
    Abstract: The invention relates to an improved method for detecting and possibly identifying and/or characterizing nuclear and/or radiological material in a container, vehicle, or on a person, comprising the steps of: a. providing at least one detector, which is capable of detecting radiation events being interrelated to nuclear or radiological material; b. bringing the at least one detector in the vicinity of the container, vehicle or person to be monitored; c. detecting radiation events being interrelated to the container, vehicle or person to be monitored; d. assigning each detected radiation event an individual time stamp in order to generate a time pattern of the detected radiation events; and e. analyzing the time pattern with respect to time correlation structures in order to identify a presence and/or characteristics of the nuclear or radiological material.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 11, 2014
    Inventors: Rico Chandrasekharan, David Murer, Ulisse Gendotti, Giovanna Davatz
  • Publication number: 20140346365
    Abstract: An instrument for detecting radiation is provided, which comprises an inner core housing a neutron detector, and another core comprising a neutron-moderating material, the instrument further including at least one elongate thermal neutron guide located within the outer core and having an inner end that terminates proximal to the neutron detector. In use, the elongate thermal neutron guide channels thermal neutrons towards the neutron detector. Also provided is a method for using said instrument.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Applicant: THE SECRETARY OF STATE FOR HEALTH
    Inventors: Rick Tanner, Jonathan Eakins
  • Publication number: 20140326891
    Abstract: A method and apparatus for detecting an isotope. Embodiments can detect radioactive isotopes. Embodiments can utilize a detector that incorporates at least two sub-detectors. Each sub-detector can receive energy from an isotope and create a signal corresponding to the received energy. Each sub-detector can incorporate a detector element, such as a detector element incorporating one or more diodes, a detector element incorporating a crystal, a detector element incorporating a solid-state device, or a detector element incorporating a scintillator. The sub-detectors can be configured such that for each isotope to be detected at least two of the sub-detectors produce different output signals, or readings. In an embodiment, each sub-detector is configured such that when there are at least two sub-detectors exposed to the isotope each of the corresponding readings from the sub-detectors is different from each of the other readings.
    Type: Application
    Filed: April 5, 2013
    Publication date: November 6, 2014
    Applicant: H. LEE MOFFITT CANCER CENTER & RESEARCH INSTITUTE
    Inventor: H. LEE MOFFITT CANCER CENTER & RESEARCH INSTITUTE
  • Patent number: 8878139
    Abstract: A neutron measurement apparatus includes: an analog signal processor; a digitizing processor; an FFT calculation processor; and a signal processor. The analog signal processor amplifies alternating current components of detector output signals output from a neutron detector, and filters to remove high frequency components from the output signals, which the digitizing processor digitizes at a constant sampling period in a time series; the FFT calculation processor converts certain of the signals in a time domain from the digitizing processor into signals in a frequency domain, and filters the signals in the frequency domain; and the signal processor selects and extracts signals having required frequency components through the calculation processing on the FFT calculation processor, to calculate power spectral densities of the extracted signals, and to convert the calculated power spectral densities into a neutron measurement value.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigehiro Kono, Makoto Tomitaka
  • Patent number: 8858831
    Abstract: Scintillator compositions are provided which include a solvent or matrix containing a fluorophore having the formula (I) and/or a fluorophore having the formula (II), wherein R1 and R2, being identical or different, are independently chosen from the group consisting of hydrogen, halogen, alkyl which optionally contains one or more heteroatoms, alkoxy, aryl and alkyne with an aryl end group; R3 is chosen from the group consisting of hydrogen, alkyl which optionally contains one or more heteroatoms, aryl, heterocycle, ether and ester; R4 and R5, being identical or different, are independently chosen from the group consisting of hydrogen, alkyl which optionally contains one or more heteroatoms, aryl, heterocycle, ether and ester, whereby the R4 and R5 groups are optionally combined to one cyclic structure; and R6, if present, is chosen from the group consisting of hydrogen, aryl and alkyl.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 14, 2014
    Assignee: Stichting Incas3
    Inventors: Peter Dijkstra, Heinrich Johannes Wörtche
  • Publication number: 20140264058
    Abstract: The invention relates to a method for obtaining information or signatures about the presence or the nature of a nuclear radiation source, especially in a homeland security application, said nuclear radiation source emitting in a time or angle correlated manner at least a first radiation and a second radiation. The method includes the steps of detecting said first radiation with at least one first radiation detector and detecting said second radiation with at least one second radiation detector. The detection of said second radiation is triggered by said detection of said first radiation in a manner that is adapted to the radiation's correlation structure, thereby increasing the signal-to-background ratio for the detection of said second radiation.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 18, 2014
    Applicant: Arktis Radiation Detectors Ltd.
    Inventors: Rico Chandrasekharan, Giovanna Davatz, Ulisse Gendotti, David Murer
  • Publication number: 20140205068
    Abstract: The present invention provides a method for evaluating the rebound resilience, hardness, or energy loss of polymer materials, capable of sufficiently evaluating the difference in performance between samples with excellent measurement accuracy. The present invention relates to a method for evaluating the rebound resilience, hardness, or energy loss of a polymer material, including irradiating the polymer material with X-rays or neutrons to perform X-ray scattering measurement or neutron scattering measurement.
    Type: Application
    Filed: September 11, 2012
    Publication date: July 24, 2014
    Applicant: SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventors: Ryo Mashita, Hiroyuki Kishimoto
  • Publication number: 20140191135
    Abstract: Disclosed is an instrument for detecting neutron backscatter from an object including a source of neutrons (12), a neutron detector (14) capable of detecting thermal neutrons and a housing (10) which is impervious to water and having at least one external operating surface (20) for placing adjacent the object, the source and detector being located within the housing in such a way that the distance between the detector and the operating surface(s) is less than 25 mm and the distance between the detector and any other external surface of the housing is at least 50 mm.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 10, 2014
    Inventors: Thomas John PARTINGTON, Ken PEARSON
  • Publication number: 20140166891
    Abstract: A neutron detector for detecting neutrons includes an exterior shell bounding and sealing an interior volume. The exterior shell serves as a cathode. A central structure extends longitudinally within the exterior shell. The central structure serves as an anode and is maintained at a first voltage. The neutron detector includes an insulating portion extending between the central structure and the exterior shell and longitudinally past a shell end of the exterior shell towards a structure end of the central structure. A guard structure extends circumferentially around an outer insulating surface. The guard structure is positioned on the insulating portion between the shell end and the structure end. The guard structure is maintained at a second voltage such that a leakage current on the outer insulating surface is absorbed by the guard structure. A method of detecting neutrons with the neutron detector is also provided.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raymond Larrick, Mark Edwin Burns
  • Publication number: 20140151569
    Abstract: A method and a device examine a sample with radiation emitted from a radiation source, which is directed to the sample carried by a sample holder via a beam-forming unit and detected by a detector and evaluated in an evaluating unit. Prior to the examination of the sample, at least one of the following components, including the radiation source, beam-forming unit, sample holder, detector, and a primary beam stop, are oriented and/or positioned in terms of spatial location in relation to at least one of the other components and/or in relation to a predefined fixed point and/or in relation to the optical path with a control unit via actuating drives. The radiation intensity measured by the detector, in a predefined detector range, and/or a value derived therefrom is used for establishing a control variable conferred from the control unit to the actuating drives assigned to the components.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 5, 2014
    Applicant: ANTON PAAR GMBH
    Inventors: HEIMO SCHNABLEGGER, JOSEF GAUTSCH, WOLFGANG GIGERL
  • Publication number: 20140097351
    Abstract: The present invention includes an apparatus and method for neutron radiation detection. The apparatus comprises combining thin walled, boron-coated straw tubes with a plastic moderator material interspersed around the tubes. The method involves using such an apparatus through application of voltage to a central wire running inside the tubes and collecting electrical pulses generated thereby.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 10, 2014
    Applicant: Proportional Technologies, Inc.
    Inventor: Jeffery L. Lacy
  • Publication number: 20140077087
    Abstract: A method for detecting a neutron includes providing a first voltage to an input electrode of a microchannel plate, providing a second voltage to an output electrode of the microchannel plate, the second voltage being more positive than the first voltage, measuring a signal on the output electrode, and detecting a neutron based on a comparison of the signal at the output electrode with a baseline value.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Inventors: Jon. H. Chappell, W. Bruce Feller
  • Patent number: 8610080
    Abstract: A method for determining the spectral and spatial distribution of a braking photon flow along at least one direction in space (x, y, z), characterized in that the method comprises measuring the neutrons resulting from the impact of the braking photons (ph) on at least one conversion target which is moved in the direction (x, y, z) in space. The invention can be used for X-rays, medical imaging, tomography, etc.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Abdallah Lyoussi, Emmanuel Payan, Alain Mariani
  • Publication number: 20130270443
    Abstract: Scintillator compositions are provided which include a solvent or matrix containing a fluorophore having the formula (I) and/or a fluorophore having the formula (II), wherein R1 and R2, being identical or different, are independently chosen from the group consisting of hydrogen, halogen, alkyl which optionally contains one or more heteroatoms, alkoxy, aryl and alkyne with an aryl end group; R3 is chosen from the group consisting of hydrogen, alkyl which optionally contains one or more heteroatoms, aryl, heterocycle, ether and ester; R4 and R5, being identical or different, are independently chosen from the group consisting of hydrogen, alkyl which optionally contains one or more heteroatoms, aryl, heterocycle, ether and ester, whereby the R4 and R5 groups are optionally combined to one cyclic structure; and R6, if present, is chosen from the group consisting of hydrogen, aryl and alkyl.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Applicant: STICHTING INCAS3
    Inventors: Peter Dijkstra, Heinrich Johannes Wörtche
  • Publication number: 20130264486
    Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 10, 2013
    Inventor: UT-Battelle, LLC
  • Patent number: 8541756
    Abstract: Systems and methods for generating X-rays and neutrons using a single linear accelerator are disclosed. Such system and methods may interrogate an object at times with X-rays and at other times with neutrons, e.g., after suspicious material is detected based on the X-rays. A system may include a single linear accelerator for generating first and second electron beams; first and second targets; a magnet configured to control irradiation of the first and second targets by the first and second electron beams; and a controller that (a) causes the linear accelerator to generate the first electron beam and causes the magnet to direct the beam to first target to generate X-rays; and (b) causes the linear accelerator to generate the second electron beam and causes the magnet to direct the beam to the second target to generate neutrons.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: September 24, 2013
    Assignee: Accuray Incorporated
    Inventor: Paul Dennis Treas
  • Publication number: 20130240749
    Abstract: An apparatus for determining a location of a neutron emitting source includes: a plurality of neutron detectors configured to receive incoming neutrons from an area of interest, each neutron detector being configured to produce an image of a path of light depicting a direction of travel of an incoming neutron; and a central processor coupled to each neutron detector in the plurality of neutron detectors and configured to receive the direction of travel of the incoming neutron from each neutron detector and to compute the location using the received directions.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, RAYTHEON COMPANY
    Inventors: Timothy J. Imholt, Susan N. Gottschlich, Peter Fisher
  • Publication number: 20130240743
    Abstract: An auxiliary neutron detector apparatus designed for attaching and supplementation to an existing gamma-ray spectrometer adds improved neutron detection capabilities. The apparatus uses the existing detector and so does not require additional detector materials, including 3He, which are required by conventional neutron detector attachments. Because of the cost and limited availability of detector materials, this invention is particularly valuable for upgrading systems without existing neutron detector, and for repairing systems with damaged neutron detectors.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: Princeton Gamma Tech Instruments Inc.
    Inventor: Greg Nelson
  • Publication number: 20130221231
    Abstract: A neutron measurement apparatus includes: an analog signal processor; a digitizing processor; an FFT calculation processor; and a signal processor. The analog signal processor amplifies alternating current components of detector output signals output from a neutron detector, and filters to remove high frequency components from the output signals, which the digitizing processor digitizes at a constant sampling period in a time series; the FFT calculation processor converts certain of the signals in a time domain from the digitizing processor into signals in a frequency domain, and filters the signals in the frequency domain; and the signal processor selects and extracts signals having required frequency components through the calculation processing on the FFT calculation processor, to calculate power spectral densities of the extracted signals, and to convert the calculated power spectral densities into a neutron measurement value.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 29, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: KABUSHIKI KAISHA TOSHIBA
  • Publication number: 20130168566
    Abstract: Methods and apparatus for a detector system to detect gamma and neutron radiation. In one embodiment, a detector comprises a tank to hold a liquid, a plurality of tubes adjacent the tank to detect neutrons, and a plurality of photon detectors to detect Cherenkov light generated by gamma radiation in the liquid. The tank is configured to contain the liquid so that the liquid generates the Cherenkov light and moderates the neutrons.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: Raytheon Company
    Inventors: Brandon W. Blackburn, Michael V. Hynes, Anthony G. Galaitsis, Bernard Harris, Erik D. Johnson, Bruce William Chignola
  • Patent number: 8445861
    Abstract: Neutrons can be detected using first information derived from a first charge induced on an input electrode of a microchannel plate and second information derived from a second charge induced on an output electrode of the microchannel plate. For example, a ratio between the first charge and the second charge is calculated, a sum of the first and second charges is calculated, and whether a neutron has been detected can be determined based on the ratio and the sum.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: May 21, 2013
    Assignee: Nova Scientific, Inc.
    Inventors: W. Bruce Feller, Paul L. White
  • Patent number: 8445858
    Abstract: A device includes a neutron-sensitive composition. The composition includes, in weight percent, a non-zero amount of aluminum oxide (e.g., approximately 1% to approximately 3.5% aluminum oxide), greater than 12% (e.g., approximately 12% to approximately 17%) boron oxide, greater than approximately 60% silicon oxide (e.g., approximately 62% to approximately 68% silicon oxide), and a non-zero amount of sodium oxide (e.g., approximately 10% to approximately 14% sodium oxide). The device is capable of interacting with neutrons to form an electron cascade.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: May 21, 2013
    Assignee: Nova Scientific, Inc.
    Inventors: W. Bruce Feller, Paul L. White, William J. S. Zhong
  • Publication number: 20130119261
    Abstract: A 10B neutron detector and an associated method of detecting neutrons. The detector includes an exterior shell bounding and sealing an interior volume, a neutron-sensitive boron coating located on at least part of the exterior shell at the interior volume. One of the boron coating and the exterior shell serves as a cathode, and a central structure located within the interior volume and serves as an anode. The detector includes gas within the interior volume that conducts an electrical energy pulse between the cathode and the anode in response to a neutron impinging upon the neutron-sensitive boron coating. The gas includes a quantity of 3He gas sensitive to neutron impingement and generating an electrical energy pulse for reception by the anode in response to a neutron impinging upon the 3He gas. The method includes detecting at least one neutron via impingement of the neutron upon the 3He gas.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Applicant: General Electric Company
    Inventors: Kevin Scott McKinny, Nathan Herbert Johnson, Thomas Robert Anderson
  • Patent number: 8436316
    Abstract: A method of determining directionality of radiation is disclosed which comprises dividing the tensioned metastable fluid liquid volume adjacent to a radioactive source into a plurality of sectors, determining the opposing sector ratio of the respective sector and determining the direction of the radiation based on the opposing sector ratios of the plurality of sectors. The method further comprising determining directionality of incoming radiation from the tension pressure assisted elongation of bubble shapes pointing towards direction of radiation particles that interacted with nuclei of tensioned metastable fluid detector system. A device capable of carrying out these methods is also disclosed.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: May 7, 2013
    Assignee: Sagamore/Adams Laboratories LLC
    Inventor: Rusi P. Taleyarkhan
  • Publication number: 20130093931
    Abstract: To avoid reset noise in a CMOS chip for direct particle counting, it is known to use Correlative Double Sampling: for each signal value, the pixel is sampled twice: once directly after reset and once after an integration time. The signal is then determined by subtracting the reset value from the later acquired value, and the pixel is reset again. In some embodiments of the invention, the pixel is reset only after a large number of read-outs. Applicants realized that typically a large number of events, typically approximately 10, are needed to cause a full pixel. By either resetting after a large number of images, or when one pixel of the image shows a signal above a predetermined value (for example 0.8×the full-well capacity), the image speed can be almost doubled compared to the prior art method, using a reset after acquiring a signal.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 18, 2013
    Applicant: FEI Company
    Inventor: FEI Company
  • Publication number: 20130068958
    Abstract: A neutron detector includes a bulk of a neutron moderating material, a first housing consisting of or comprising a gamma ray attenuating material, a second housing consisting of or comprising a gamma ray attenuating material, a first sensor device comprising a gadolinium cover disposed in the first housing, and a second sensor device disposed in the second housing. The first sensor device and the second sensor device are each sensitive to gamma rays. The first housing and the second housing are arranged adjacent to each other in the bulk.
    Type: Application
    Filed: May 26, 2010
    Publication date: March 21, 2013
    Applicant: UNIVERSITAET DUISBURG-ESSEN
    Inventors: Bhaskar Mukherjee, Jamil Lambert, Reinhard Hentschel, Jonathan Farr
  • Publication number: 20130056643
    Abstract: This disclosure relates to systems and methods for material discrimination. The systems and methods include a single source that generates both neutrons and photons, and a single imaging array with a common detector that detects the neutrons and the photons generated from the single source. The systems and methods allow for a determination of the contents, and/or the effective atomic number (“Z”) of the contents, of an object without physical inspection of the interior of the object.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: L-3 Communications Security and Detection Systems, Inc.
    Inventors: Vitaliy Ziskin, David Perticone
  • Patent number: 8384004
    Abstract: Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: February 26, 2013
    Assignee: Lawrence Livermore National Security
    Inventors: Mark S. Rowland, Raymond A. Alvarez
  • Publication number: 20120326047
    Abstract: A method for detecting neutron radiation in accordance with particular embodiments includes exposing a neutron detector array comprising at least one two-dimensional array of neutron detectors to a first scene of interest. The neutron detector array is based on at least one two-dimensional array of microbolometer detectors. The method also includes receiving a plurality of response values from a corresponding plurality of neutron detectors of the neutron detector array. The method further includes generating a comparison value based on the plurality of response values and a baseline response value. The method additionally, includes determining whether more than a first threshold amount of neutron radiation is being generated by the first scene based on the comparison value.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: Raytheon Company
    Inventors: Adam M. Kennedy, David R. Rhiger, Stefan T.A. Baur
  • Patent number: 8338795
    Abstract: An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12° to about 10°. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6° without adding additional detectors or ancillary electronics.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 25, 2012
    Assignee: Sandia Corporation
    Inventors: Nicholas Mascarenhas, Peter Marleau, Mark Gerling, Robert Lee Cooper, Stanley Mrowka, James S. Brennan
  • Publication number: 20120305788
    Abstract: A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.
    Type: Application
    Filed: August 1, 2012
    Publication date: December 6, 2012
    Inventors: Ephraim Fischbach, Jere Jenkins
  • Publication number: 20120298878
    Abstract: Haunted quantum entanglement involves entanglement between two entities where entanglement is based on one particle (1) supplying which-way information to the other particle (2). This entanglement is lost when the entities are spatially separated before 2 is detected and before which-way information for 1 becomes available to the environment or an irreversible which-way measurement is made on 1. The loss of entanglement in haunted quantum entanglement is accompanied by the loss of which-way information supplied by 1 to 2. If the haunted quantum entanglement scenario is repeated, one obtains an overall distribution of 2 exhibiting interference. The entanglement is lost by injecting many particles of a similar character to 1 into the container/s in which 1 could be located. If the entanglement is not lost, one obtains instead an overall which-way information distribution. Whether or not 1 is lost through the injection of other particles is a delayed choice.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 29, 2012
    Inventor: Douglas Michael Snyder
  • Publication number: 20120286166
    Abstract: A thermal neutron detector and method employ Gd-containing nanoscintillators. Thermal neutron radiation is detected by observing scintillation events from the nanoscintillators.
    Type: Application
    Filed: April 5, 2012
    Publication date: November 15, 2012
    Inventors: Marek A. Osinski, Brian A. Akins, John B. Plumley, Antonio C. Rivera, Gennady A. Smolyakov, Jose M. Vargas, Nathan J. Withers
  • Publication number: 20120286164
    Abstract: An apparatus for inspecting the contents of a cargo container includes a neutron source having an ion source configured to provide deuterium or tritium ions and an accelerator configured to accelerate the ions toward a target having at least one of deuterium or tritium. The apparatus further includes a radiation detector where the neutron source is configured to deliver a neutron flux into the container and the radiation detector is configured to detect radiation exiting the container subsequent to the delivery of the neutron flux into the container.
    Type: Application
    Filed: December 14, 2010
    Publication date: November 15, 2012
    Applicant: Phoenix Nuclear Labs LLC
    Inventor: Gregory Piefer
  • Patent number: 8294114
    Abstract: A method for monitoring a container or the contents in a volume (39, 47), including allowing at least one of a beta, gamma, neutron, and proton radiation emerging from said container or volume (39, 47), and/or secondary particles or radiation brought forth by said radiation, to pass through a measuring volume (12, 12?) of at least one radiation detector (10, 10?, 10?), said measuring volume (12, 12?) containing a noble gas and/or a noble gas isotope, or a mixture of noble gases and/or noble gas isotopes and detecting the photons generated within said measuring volume (12, 12?) by an interaction (18, W1, . . . , W4) of the radiation with the noble gas or noble gases and/or their isotopes of the measuring volume (12, 12?). The output of said photon detecting means (15, 16, 53) is then used to derive information about the container or the contents in said volume (39, 47), whereby this information is used to discriminate protons, neutrons, beta and gamma rays respectively.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: October 23, 2012
    Assignee: ETH Zürich, ETH Transfer
    Inventor: Rico S. Chandrasekharan
  • Publication number: 20120223242
    Abstract: A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to 3He-based detectors without requiring 3He and without containing toxic, flammable, or high-pressure materials.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 6, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Gilbert M. Brown, David Eugene Holcomb, Roger Allen Kisner