With Wax, Bitumen, Resin, Or Gum Patents (Class 252/62.53)
  • Patent number: 7837892
    Abstract: Rubber compound containing at least one nanoscale, magnetic filler and at least one non-magnetic filler. Vulcanizable mixture containing the rubber compound and at least one crosslinking agent and/or vulcanization accelerator. Molding obtainable from the vulcanizable mixture by heat treatment or action of an electrical, magnetic or electromagnetic alternating field.
    Type: Grant
    Filed: August 20, 2005
    Date of Patent: November 23, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Markus Pridoehl, Guido Zimmermann, Joachim Froehlich, Achim Gruber, Gregor Grun, Thomas Ruehle, Dirk W. Schubert
  • Publication number: 20100257725
    Abstract: To provide a magnetic powder production method, a magnetic sheet production method, and an antenna module production method that are capable of reducing a size of magnetic particles, achieving thinning and a low loss, and improving magnetic permeability without lowering it. At least two oxide-based magnetic materials are mixed, preliminarily calcined, and pulverized. The pulverized magnetic materials are typically formed into a paste by being dispersed in an organic solvent, and the magnetic materials are applied onto a film after being subjected to defoaming processing. Accordingly, a sheet-like magnetic material is formed. The sheet-like magnetic material is cut into predetermined sizes so as to be fragmented into particles, with the result that magnetic particles are formed.
    Type: Application
    Filed: November 10, 2008
    Publication date: October 14, 2010
    Applicant: SONY CORPORATION
    Inventor: Hiraku Akiho
  • Publication number: 20100224821
    Abstract: A nanostructure and method for assembly thereof are disclosed. An exemplary nanostructure includes a gain medium nanoparticle with an output coupler linked to the gain medium nanoparticle. A tier of metal nanoparticles is linked about the gain medium nanoparticle.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 9, 2010
    Applicant: BAE Systems Information And Electronic Systems Integration Inc.
    Inventors: Idan Mandelbaum, Tadd C. Kippeny
  • Publication number: 20100178709
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 15, 2010
    Applicant: LUMINEX CORPORATION
    Inventors: Don J. Chandler, Jason Bedre
  • Publication number: 20100163777
    Abstract: Magnetic particles containing a magnetic material and a biodegradable polymeric compound; the magnetic particles having average particle diameter in the range of from 10 nm or more to 1,000 nm or less.
    Type: Application
    Filed: August 8, 2007
    Publication date: July 1, 2010
    Inventor: Kazumichi Nakahama
  • Publication number: 20100155648
    Abstract: Disclosed is a resin composition, which comprises a thermosetting resin contained therein in an amount of 40 volume % or more, and a wax contained therein in an amount of 5 to 30 volume %, wherein: the thermosetting resin exists in liquid form at room temperature; and the wax exists in powder form at room temperature and has a melting point of 70 to 150° C., and wherein the resin composition has a viscosity of 50000 to 150000 mPa·s as measured at room temperature.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Applicant: TOKO, INC.
    Inventors: Koichi SAITO, Yukio Nagashima, Kunio Sasamori
  • Patent number: 7718082
    Abstract: The invention concerns a powder metallurgical composition containing, preferably a coarse, soft magnetic iron or iron-based powder, wherein the particles are surrounded by an insulating inorganic coating and as lubricant at least one non-drying oil or liquid having a crystalline melting point below 25° C., a viscosity (?) at 40° C. above 15 mPas and wherein said viscosity is temperature dependent according to the following formula: 10 log ?=k/T+C wherein the slope k is above 800 T is in Kelvin and C is a constant in an amount between 0.05 and 0.4% by weight of the composition.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: May 18, 2010
    Assignee: Höganäs AB
    Inventors: Hilmar Vidarsson, Paul Skoglund, Björn Sk{dot over (a)}rman
  • Patent number: 7708901
    Abstract: The invention relates to magnetorheological materials comprising at least one non-magnetisable carrier medium and magnetisable particles contained therein, in addition a combination of magnetic and non-magnetic inorganic materials and/or composite particles thereof being contained.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: May 4, 2010
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung e.V.
    Inventors: Holger Böse, Alexandra-Maria Trendler
  • Publication number: 20100092419
    Abstract: Disclosed are magnetic fluids containing ionic liquids and containing no stabilisation agents or containing selected stabilisation agents. These magnetic fluids can be used in different fields of industry, for example as an ink, as a damping fluid, as a sealing fluid, in imaging applications, in sink flotation techniques, in biomedical applications, as a reaction medium to perform chemical reactions, as a reversible seal for occluding blood vessels in living organisms in medical therapy or as a transportation means and/or delivery means for chemical substances at a selected location within a chemical or biological system.
    Type: Application
    Filed: October 6, 2007
    Publication date: April 15, 2010
    Inventors: Carlos Guerrero-Sanchez, Mircea Rasa, Ulrich S. Schubert
  • Patent number: 7691285
    Abstract: The invention relates to a method for producing magnetic nanoparticles which are made of metal oxide-polymer composites and are provided with an increased magnetic mobility, among other things, due the high metal oxide content and the morphological structure thereof. High-pressure homogenization has proven to be a reliable technique for producing the inventive magnetic nanoparticles. According to said technique, the components metal oxide and polymer are processed in a carrier medium. Water is used in most cases at pressures ranging from 500 bar to 1200 bar while using great shearing forces. High pressure homogenization creates a colloidally stable magnetic particle population having a diameter ranging below 200 nm while also resulting in the produced magnetic nanoparticles being provided with greater magnetic moments than the metal oxide used as an initial material at low magnetic field strengths.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: April 6, 2010
    Assignee: Micromod Partikeltechnologie GmbH
    Inventors: Joachim Teller, Fritz Westphal, Cordula Gruettner
  • Publication number: 20100079015
    Abstract: According to the present invention, a dust core having excellent insulating properties, high strength, and high density (high magnetic flux density), a method for producing the same, and an electric motor or reactor having a core member composed of the dust core are provided. Therefore, a method for producing a dust core is provided, such method comprising the following steps: a 1st step of preparing a resin powder 2 and a magnetic powder 1 comprising soft magnetic metal powder (pure iron powder 11) particles each having an insulating film (silica film 12) preliminarily formed on the surface thereof; a 2nd step of obtaining a powder mixture by mixing the magnetic powder 1 and the resin powder 2; and a 3rd step of allowing the resin powder 2 to gel in an atmosphere at a certain temperature, press-molding the powder mixture so as to obtain a press molded body 10, and annealing the press molded body 10 so as to produce a dust core 20.
    Type: Application
    Filed: April 18, 2008
    Publication date: April 1, 2010
    Inventors: Eisuke Hoshina, Toshiya Yamaguchi, Yusuke Oishi, Junghwan Hwang, Kazuhiro Kawashima
  • Publication number: 20100068512
    Abstract: Disclosed is a magnetic material for a high frequency wave which has high magnetic permeability and small eddy-current loss, particularly a magnetic material for a high frequency wave which can be used suitably in an information device which works in a high frequency field of 1 GHz or higher. Specifically disclosed is a composite magnetic material for a high frequency wave, which comprises a (rare earth element)-(iron)-(nitrogen)-based magnetic material and a (rare earth element)-(iron)-(nitrogen)-based magnetic material whose surface is coated with a ferrite magnetic material.
    Type: Application
    Filed: April 25, 2008
    Publication date: March 18, 2010
    Inventors: Nobuyoshi Imaoka, Masanori Abe, Takashi Nakagawa, Sasaru Tada
  • Publication number: 20100012881
    Abstract: In manufacturing a magnetic sheet, the magnetic sheet is formed by applying on a prescribed substrate a magnetic paint made from a mixture of at least flat soft magnetic powder and polymeric binder dissolved in a solvent and drying the magnetic paint. Subsequently, the magnetic paint is further coated on the magnetic sheet formed by drying the magnetic paint and is dried. Thus, an extremely high quality magnetic sheet is made with high productivity.
    Type: Application
    Filed: April 5, 2007
    Publication date: January 21, 2010
    Applicant: SONY CHEMICAL & INFORMATIOIN DEVICE CORPORATION
    Inventor: Keisuke Aramaki
  • Publication number: 20100008854
    Abstract: The disclosure provides metal nanocomposites including one or more metal nanoparticles having a hydrophobic surface and at least partially enclosed by cationic and hydrophilic polymers. The metal nanocomposites are useful as among others, a contrast agent, a diagnostic composition or a pharmaceutical composition.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 14, 2010
    Inventors: Seung Joo Haam, Sung Baek Seo, Jae Moon Yang
  • Publication number: 20090321676
    Abstract: An ink including stabilized magnetic single-crystal nanoparticles, wherein the value of the magnetic anisotropy of the magnetic nanoparticles is greater than or equal to 2×104 J/m3. The magnetic nanoparticle may be a ferromagnetic nanoparticle, such as FePt. The ink includes a magnetic material that minimizes the size of the particle, resulting in excellent magnetic pigment dispersion stability, particularly in non-aqueous inkjet inks. The smaller sized magnetic particles of the ink also maintains excellent magnetic properties, thereby reducing the amount of magnetic particle loading required in the ink.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Applicant: XEROX CORPORATION
    Inventors: Marcel P. BRETON, Richard P.N. VEREGIN, Karen A. MOFFAT, Peter M. KAZMAIER, Patricia A. BURNS, Paul F. Smith
  • Publication number: 20090191401
    Abstract: Magnetic receptive Paints and coatings have been developed to allow one to paint a wall with this coating and apply magnets to this surface. The further development of magnetic receptive coatings incorporates the use of multiple size particles giving the finished surface a smoother appearance and increasing the particle load in the dry mill surface. This is useful in the coating of substrates where the need to coat the thinnest possible coating on the surface of a substrate such as papers and films as well as painting on walls, gives you the highest magnetic receptive surface possible at the thinnest mill thickness of applied coating.
    Type: Application
    Filed: April 28, 2005
    Publication date: July 30, 2009
    Inventor: Dayton Joseph Deetz
  • Publication number: 20090127492
    Abstract: Transparent monolithic aerogels based on silica, the bioderived polymer chitosan, and coordinated ions are employed to serve as a three-dimensional scaffold decorated with metal ions such as Au, Pt and Pd ions. It has also been found that the metal aerogels, such as Au(III) aerogels, can be imaged photolytically to produce nanoparticles.
    Type: Application
    Filed: July 3, 2007
    Publication date: May 21, 2009
    Inventors: William M. Risen, JR., Xipeng Liu, Chunhua Yao, Yu Zhu
  • Publication number: 20090072186
    Abstract: An electromagnetic wave absorption material and a manufacturing method thereof are disclosed. Mix 40% to 70% weight percent liquid resin with 30% to 60% weight percent bamboo charcoal evenly. After cooling, pour the mixture into a mold for curing to produce sheet product. The microwave absorption material of the present invention meets environmental requirements.
    Type: Application
    Filed: September 19, 2007
    Publication date: March 19, 2009
    Applicant: CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY, ARMAMENTS BUREA,M.N.D.
    Inventors: JEN-SUNG HSU, TZU-HAO TING, KAO-HUI WU, MING-HO CHANG
  • Publication number: 20090068115
    Abstract: Amine functionalized magnetic nanoparticle compositions and processes for synthesizing the same are described. The process consists of obtaining a carboxylated polymer in substantially pure form, which is used to prepare a substantially size homogeneous, polymer coated carboxyl, functionalized magnetic nanoparticle. The carboxyl groups are converted to reactive primary amino groups by the use of a water-soluble carbodiimide followed by reaction of a large excess of a diamine. The amine-terminated nanoparticles are then reacted with bifunctional crosslinking agents and with various biomolecules to make nanoparticles for in vitro assays, cell sorting applications and target specific MR contrast agents.
    Type: Application
    Filed: May 9, 2008
    Publication date: March 12, 2009
    Inventors: Debra A. Gaw, Lee Josephson
  • Patent number: 7494600
    Abstract: The invention concerns powder compositions consisting of electrically insulated particles of a soft magnetic material of an iron or iron-based powder and 0.1-2% by weight of a lubricant selected from the group consisting of fatty acid amides having 14-22 C atoms. Optionally a thermoplastic binder such as polyphenylene sulphide may be included in the composition. The invention also concerns a method for the preparation of soft magnetic composite components.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: February 24, 2009
    Assignee: Höganäs AB
    Inventors: Lisa Kjellén, Åsa Ahlin, Lars Hultman, Ola Andersson
  • Publication number: 20090039644
    Abstract: Systems and methods for using microscopic capsules containing orientable materials for document security and processing applications are presented. A security application comprising a medium having a substrate and a plurality of microcapsules is disclosed. The microcapsules contain magnetically orientable material and a liquid. The magnetically orientable material is oriented in a first alignment. Application of a magnetic field to the medium orients the magnetically orientable material to a second alignment, thereby altering the opacity of the medium. Magnetic material may also be dragged into a concentrated arrangement by a magnetic field, thereby altering the opacity of the medium.
    Type: Application
    Filed: July 21, 2008
    Publication date: February 12, 2009
    Applicant: Spectra Systems Corporation
    Inventor: Nabil M. Lawandy
  • Publication number: 20090014681
    Abstract: A magnetorheological fluid formulation comprising magnetizable particles dispersed in carrier fluid and a thixotropic agent wherein the thixotropic agent comprises a fluorocarbon grease.
    Type: Application
    Filed: July 12, 2007
    Publication date: January 15, 2009
    Inventors: Vardarajan R. Iyengar, Sally M. Yurgelevic, Robert T. Foister
  • Publication number: 20080220291
    Abstract: A magnetic paint is prepared by a method comprising a surface-treating step for magnetic powder, to obtain a first composition by mixing and stirring a composition which comprises a magnetic powder, a dispersant and/or a binder resin, and an organic solvent, and which contains 40% by weight or less of a non-solvent component, while applying a shear force to the composition; and a concentrating step to obtain a second composition by concentrating the first composition until the content of the non-solvent components of the first composition reaches 80% by weight or more.
    Type: Application
    Filed: March 6, 2008
    Publication date: September 11, 2008
    Applicant: HITACHI MAXELL, LTD.
    Inventors: Kazuhiko Nakiri, Sadamu Kuse, Hiroyuki Mitsuhashi
  • Publication number: 20080187474
    Abstract: Provided are a valve filler and a valve unit including the valve filler. The valve filler includes: a phase transition material; and a heating fluid comprising a carrier oil and a plurality of micro heating particles suspended in the carrier oil, the heating fluid being mixed with the phase transition material, wherein, when external energy is supplied, the micro heating particles receive the external energy and generate heat to melt the phase transition material into a fluid state, and when no external energy is supplied, the phase transition material hardens into a solid state.
    Type: Application
    Filed: February 7, 2008
    Publication date: August 7, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong-myeon PARK, Beom-seok LEE
  • Patent number: 7366454
    Abstract: The long magnet includes a magnet block made of a mixture of rare earth magnetic powder, thermoplastic resin particles, fluidity additive, pigment, wax and charge control agent, and a reinforcing member to reinforce the magnet block. At least part of the reinforcing member is arranged inside of the magnet block.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: April 29, 2008
    Assignee: Ricoh Company, Limited
    Inventors: Makoto Nakamura, Mieko Kakegawa, Sumio Kamoi, Tsuyoshi Imamura, Kyohta Koetsuka, Noriyuki Kamiya
  • Patent number: 7344653
    Abstract: A bitumen film containing magnetic powder is heated prior to magnetization to a temperature enabling the magnetic powder particles to be oriented according to the effect of the magnetic field. The bitumen film is sufficiently cooled after magnetization in order to preserve the magnetization, whereby the orientation of the magnetic powder particles, which is adjusted during magnetization, is maintained.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 18, 2008
    Assignee: CWW-Gerko Akustik GmbH
    Inventors: Josef Polak, Christoph Freist, Gerd Mannebach, Ernst Hotz, Joachim Oster
  • Patent number: 7288210
    Abstract: A method for manufacturing magnetic paint or non-magnetic paint, which can produce a magnetic recording medium having excellent surface smoothness by appropriately setting the condition of a dispersion process for improving the dispersibility of the paint, and a magnetic recording medium are provided. The magnetic paint or the non-magnetic paint is produced by performing a dispersion process of a mixed solution, in which a magnetic powder or a non-magnetic powder is mixed into a binder solution containing a binder and a solvent, with a medium dispersion device. The method includes the steps of adjusting the viscosity of the mixed solution to 1,500 cP or less on a BL type viscometer at 20 rpm basis, and performing a dispersion process with the medium dispersion device using dispersion media having an average particle diameter of 0.5 mm or less at a dispersion circumferential speed of 8 to 15 m/s.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 30, 2007
    Assignee: TDK Corporation
    Inventors: Katsuhiko Yamazaki, Tsutomu Ide
  • Patent number: 7261834
    Abstract: Novel magnetorheological elastomer compositions are provided. The magnetorheological elastomers (MREs) may have aligned or randomly arranged magnetizable particles in a thermoset or thermoplastic matrix. The magnetizable particles may be coated to reduce corrosion and/or improve bonding between the particle and the matrix. The magnetizable particles may be flake-shaped. The MREs may have matrices selected from the group consisting of hydrogenated nitrile rubbers, butyl rubbers, ethylene-propylene copolymers and terpolymers, ethylene-acrylic copolymers, fluorinated elastomers, silphenylene-siloxanes, silarylene-siloxanes, poly(carborane-siloxane-acetylene)s and blends thereof.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: August 28, 2007
    Assignee: The Board of Regents of The University and Community College System of Nevada on behalf of the University of Nevada, Reno
    Inventors: Alan Fuchs, Faramarz Gordaninejad, Gregory H. Hitchcock, Jacob Elkins, Qi Zhang
  • Patent number: 7210526
    Abstract: The present invention is a material and method that enables creation of an in situ pumping action within a matrix or otherwise porous media. This pumping action may be used to move materials, namely fluids, through the matrix or porous media to a gathering point. This pumping action may also be used as a vibrational source, using the movement of the matrix itself as the radiator of vibrational, typically acoustic, energy. This vibrational energy may be used for a variety of purposes.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: May 1, 2007
    Inventor: Charles Saron Knobloch
  • Patent number: 7208097
    Abstract: An iron-based rare earth alloy nanocomposite magnet has a composition represented by (Fe1-mTm)100-x-y-zQxRyTiz, where T is Co and/or Ni, Q is B and/or C and R is rare earth element(s) including substantially no La or Ce. x, y, z and m satisfy 10 at %<x?17 at %, 7 at %?y<10 at %, 0.5 at %?z?6 at % and 0?m?0.5, respectively. The magnet includes crystal grains of an R2T14Q type compound having an average grain size of 20 nm to 200 nm and a ferromagnetic iron-based boride that exists in a grain boundary between the crystal grains of the R2T14Q type compound. The boride is dispersed in, or present in the form of a film over, the grain boundary to cover at least partially the surface of the crystal grains of the R2T14Q type compound.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: April 24, 2007
    Assignee: Neomax Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa
  • Patent number: 7160481
    Abstract: A method for manufacturing magnetic paint is provided, wherein a dispersion condition is appropriately controlled to excellently disperse a magnetic powder composed of fine particles adaptable for a higher recording density, so that magnetic paint having excellent dispersibility can be prepared, and a magnetic recording medium having excellent surface roughness is provided. The magnetic paint is prepared by the step of subjecting a mixed solution containing at least a binder, a solvent, and a magnetic powder to a dispersion treatment with a dispersion device by the use of dispersion media through at least dispersion step, wherein the dispersion in the main dispersion step is carried out by the use of dispersion media having an average particle diameter y (mm) satisfying the relationship, which is represented by formula y?0.01x, with the average maximum diameter x (nm) of the magnetic powder.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: January 9, 2007
    Assignee: TDK Corporation
    Inventors: Katsuhiko Yamazaki, Tsutomu Ide, Hiroyuki Tanaka
  • Patent number: 6992155
    Abstract: A method for producing a magnetic particle forming a magnetic material for absorbing electromagnetic waves comprises the steps of mixing an organometallic complex or a metal salt with a chain polymer and dissolving the mixture in a solvent (step S1); raising the temperature of the mixture to reaction temperature (step S2), carrying out a reaction at the reaction temperature (step S3); and forming the magnetic particle having a structure that the periphery of each fine particle formed from the organometallic complex or the metal salt is surrounded by the chain polymer and recovering the formed magnetic particle after the reaction (step S4). The magnetic particle has a nanogranular structure to become a magnetic material for absorbing electromagnetic waves. Such a magnetic particle is produced by a wet reaction. Thus, a larger amount of magnetic particle can be produced by one reaction.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: January 31, 2006
    Assignees: Sony Corporation
    Inventors: Katsumi Okayama, Kaoru Kobayashi, Koichiro Inomata, Satoshi Sugimoto, Yoshihiro Kato
  • Patent number: 6972095
    Abstract: A decontamination system uses magnetic molecules having ferritin cores to selectively remove target contaminant ions from a solution. The magnetic molecules are based upon a ferritin protein structure and have a very small magnetic ferritin core and a selective ion exchange function attached to its surface. Various types of ion exchange functions can be attached to the magnetic molecules, each of which is designed to remove a specific contaminant such as radioactive ions. The ion exchange functions allow the magnetic molecules to selectively absorb the contaminant ions from a solution while being inert to other non-target ions. The magnetic properties of the magnetic molecule allow the magnetic molecules and the absorbed contaminant ions to be removed from solution by magnetic filtration.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: December 6, 2005
    Assignee: Electric Power Research Institute
    Inventors: Sean P. Bushart, David Bradbury, George Richard Elder
  • Patent number: 6893489
    Abstract: A coating, such as ink or paint, is used, where particles in the coating are selected based on electric, magnetic, or light/photo properties, and are dispersed in the coating to provide a desired physical color. In one approach, the application of the coating to the substrate such as paper is controlled using an electric or magnetic field. In another approach, a pattern is formed in a coating on a substrate by targeting an electric, magnetic or photo field to specific locations on the coating. In yet another approach, the color of a coating that is applied to an object is shifted to match a background color so that the coating appears to be erased. In this approach, the coating may be in the form of a label, such as a bar code, that can be read by a scanner at a point of sale location. In another approach a pattern or code is scrambled or removed by applying an electric, magnetic, or photo field to specific locations on the coating or substrate.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: May 17, 2005
    Assignee: Honeywell International Inc.
    Inventors: Kwok-Wai Lem, Ronald P. Rohrbach
  • Patent number: 6878306
    Abstract: A magnetic dispersion medium is used in a magnetic writing screen toy. The dispersion medium is attracted to the underside of the screen when a magnetic tipped pen is passed over the upper surface of the screen. A user can create drawings and figures. The dispersion medium is non-toxic, creates lines having good contrast and can be easily erased without permanently forming black marks on the screen. The dispersion medium works well in temperature ranges between ?20° C. to 45° C.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: April 12, 2005
    Assignee: Tsuen Lee Metals & Plastic Toys Co., Ltd.
    Inventor: Tao Shi Gao
  • Patent number: 6790378
    Abstract: The present invention includes coating composition having magnetic properties for application to a substrate. The coating composition includes a plurality of strontium and or barium hexaferrite particles having a random magnetic pole alignment. The coating composition also includes a binder adhesive capable of suspending the strontium hexaferrite particles. The binder adhesive is a natural rubber capable of adhering in a substantially thin film to the substrate. The strontium hexaferrite particles are normally present between 50% to 98% of the coating composition's total weight when dried on the substrate. The thickness of the film of the coating composition ranges from 0.5 mils to 20 mils, and has 6 to 24 magnetic pole changes per linear inch. The binder adhesive allows for manipulation of the strontium hexaferrite particles to a non-random magnetic pole alignment after the ferromagnetic particles have dried in the binder adhesive on the substrate.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 14, 2004
    Inventors: R. William Graham, Daniel F. Peters, Charles E. Adams, Ricky L. Helton
  • Publication number: 20040146855
    Abstract: The present invention features a method for preparing superparamagnetic iron particles by the in situ formation of these particles in a cross-linked starch matrix or by the formation of a superparamagnetic chitosan material. The superparamagnetic materials are formed by mild oxidation of ferrous ion, either entrapped into a cross-linked starch matrix or as a chitosan-Fe(II) complex, with the mild oxidizing agent, nitrate, under alkaline conditions. The present invention further features superparamagnetic iron compositions prepared by the method of the invention. The compositions of the invention are useful for the separation, isolation, identification, or purification of biological materials.
    Type: Application
    Filed: January 27, 2003
    Publication date: July 29, 2004
    Inventors: Robert H. Marchessault, Kirill Shingel, Robert K. Vinson, Didier G. Coquoz
  • Publication number: 20040101564
    Abstract: A particle includes a ferromagnetic material, a radiopaque material, and/or an MRI-visible material.
    Type: Application
    Filed: August 29, 2003
    Publication date: May 27, 2004
    Inventors: Robert F. Rioux, Thomas V. Casey, Janel Lanphere
  • Patent number: 6679999
    Abstract: A magnetorheological fluid formulation exhibiting consistently high yield stress during use. The MR fluid comprises martensitic or ferritic stainless steel particles prepared by a controlled water or inert gas atomization process. The stainless steel particles are resistant to corrosion and oxidation, are generally smooth and spherical, and maintain their shape and size distribution throughout their use under an applied magnetic field.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: January 20, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Vardarajan R. Iyengar, Robert T. Foister, James C. Johnson
  • Patent number: 6641919
    Abstract: A resin-bonded type magnet molded from a composition comprising a magnetic powder and a resin powder in which a resin binder comprises at least one unsaturated polyester resin cured product as the main ingredient. The resin binder contains a peroxide or a reaction product thereof capable of curing at a temperature of 150° C. or lower, and an anisotropic magnetic field of the magnetic powder is 50 kOe or more, and 50% by weight or more of the particles of magnetic powder has a grain size of 100 &mgr;m or less. The resin-bonded type magnet is obtained by molding by an injection molding process, an injection molding, a compression process, an injection compression molding process, an injection pressing molding process, or a transfer molding process.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: November 4, 2003
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Shinichi Hayashi, Shoichi Yoshizawa
  • Publication number: 20030155548
    Abstract: An object of the present invention is to provide a hydraulic-composition bonded magnet having moldability, heat resistance, corrosion resistance and high strength.
    Type: Application
    Filed: March 4, 2003
    Publication date: August 21, 2003
    Inventors: Satoshi Ozawa, Eishi Fukuda, Shuuji Matsumura
  • Publication number: 20030154865
    Abstract: A molecular sieve apparatus and magnetic/adsorbent material composition that facilitate molecular absorption and separation using a magnetic field to hold, move, cool, and/or heat a magnetoadsorbent composed of an adsorbent (1) that is bonded to a magnetic material (3) by a binder (2). The ability to move the magnetoadsorbent using a magnetic field increases the efficiency of the absorption cycle, because the magnetoadsorbent can be moved to a location in the cycle having the most optimized conditions.
    Type: Application
    Filed: October 16, 2002
    Publication date: August 21, 2003
    Inventor: David A. Zornes
  • Publication number: 20030098436
    Abstract: The present invention includes coating composition having magnetic properties for application to a substrate. The coating composition includes a plurality of strontium and or barium hexaferrite particles having a random magnetic pole alignment. The coating composition also includes a binder adhesive capable of suspending the strontium hexaferrite particles. The binder adhesive is a natural rubber capable of adhering in a substantially thin film to the substrate. The strontium hexaferrite particles are normally present between 50% to 98% of the coating composition's total weight when dried on the substrate. The thickness of the film of the coating composition ranges from 0.5 mils to 20 mils, and has 6 to 24 magnetic pole changes per linear inch. The binder adhesive allows for manipulation of the strontium hexaferrite particles to a non-random magnetic pole alignment after the ferromagnetic particles have dried in the binder adhesive on the substrate.
    Type: Application
    Filed: October 5, 2001
    Publication date: May 29, 2003
    Inventors: R. William Graham, Daniel F. Peters, Charles E. Adams, Ricky L. Helton
  • Publication number: 20030066983
    Abstract: Magnetorheological materials are provided comprising magnetic particles, a polymeric gel and a carrier material. The polymerization of the gel is preferentially accomplished in the presence of the magnetic particles and the carrier material. Magnetorheological materials are provided having a selected off-state viscosity and a selected on-state apparent viscosity. The method of preparing these magnetorheological materials is also provided. The carrier material, the polymeric gel and the magnetic particles are selected so that the resulting magnetorheological material has the desired off-state viscosity and on-state apparent viscosity. These materials have good dispersion characteristics, reduced settling, superior off-state viscosity and superior apparent viscosity in the presence of a magnetic field.
    Type: Application
    Filed: February 20, 2001
    Publication date: April 10, 2003
    Inventors: Alan Fuchs , Faramarz Gordaninejad , Daniel Blattman , Gustav Hamann
  • Publication number: 20030062098
    Abstract: An alloy powder for bonded rare earth magnets is prepared by melting an alloy consisting essentially of 20-30 wt % of Sm or a mixture of rare earth elements (inclusive of Y) containing at least 50 wt % of Sm, 10-45 wt % of Fe, 1-10 wt % of Cu, 0.5-5 wt % of Zr, and the balance of Co, quenching the melt by a strip casting technique, to form a rare earth alloy strip containing at least 20% by volume of equiaxed crystals with a grain size of 1-200 &mgr;m and having a gage of 0.05-3 mm, and heat treating the strip in a non-oxidizing atmosphere at 1000-1300° C. for 0.5-20 hours, followed by aging treatment and grinding.
    Type: Application
    Filed: May 21, 2002
    Publication date: April 3, 2003
    Inventors: Kazuaki Sakaki, Koji Sato, Takahiro Hashimoto, Takehisa Minowa
  • Patent number: 6527972
    Abstract: Magnetorheological materials are provided comprising magnetic particles, a polymeric gel and a carrier material. The polymerization of the gel is preferentially accomplished in the presence of the magnetic particles and the carrier material. Magnetorheological materials are provided having a selected off-state viscosity and a selected on-state apparent viscosity. The method of preparing these magnetorheological materials is also provided. The carrier material, the polymeric gel and the magnetic particles are selected so that the resulting magnetorheological material has the desired off-state viscosity and on-state apparent viscosity. These materials have good dispersion characteristics, reduced settling, superior off-state viscosity and superior apparent viscosity in the presence of a magnetic field.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: March 4, 2003
    Assignee: The Board of Regents of the University and Community College System of Nevada
    Inventors: Alan Fuchs, Faramarz Gordaninejad, Daniel Blattman, Gustav H. Hamann
  • Patent number: 6528166
    Abstract: Nickel composite particles having a layer of a nickel-containing spinel on at least a part of the surface of nickel particles, or nickel composite particles having an oxide layer of metals other than nickel on at least a part of the surface of nickel particles and a layer of a nickel-containing spinel at an interface between the nickel particles and the metal oxide layer. The nickel composite particles are produced by forming fine liquid droplets from a solution containing (a) at least one thermally decomposable nickel compound and (b) at least one thermally decomposable metal compound capable of forming a spinel together with nickel; and heating the liquid droplets at a temperature higher than the decomposition temperatures of the compound (a) and (b) to nickel particles and simultaneously deposit a nickel-containing spinel layer, or further a metal oxide layer on the spinel layer.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: March 4, 2003
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hiroshi Yoshida, Yiyi Ma
  • Publication number: 20030030027
    Abstract: The present invention includes magnetizable coating composition for application to a substrate. The coating composition includes a plurality of strontium and or barium hexaferrite particles having a random magnetic pole alignment. The coating composition also includes a binder adhesive capable of suspending the strontium hexaferrite particles. The binder adhesive is a latex capable of adhering in a substantially thin film to the substrate. The strontium hexaferrite particles are normally present between 50% to 98% of the coating composition's total weight when dried on the substrate. The thickness of the film of the coating composition is at least about 0.5 mils thick, and has 6 to 24 magnetic pole changes per linear inch. The binder adhesive allows for manipulation of the strontium hexaferrite particles to a non-random magnetic pole alignment after the ferromagnetic particles have dried in the binder adhesive on the substrate.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 13, 2003
    Inventors: R. William Graham, Daniel F. Peters, Charles E. Adams, Ricky L. Helton
  • Publication number: 20020166991
    Abstract: A magnetic dispersion medium is used in a magnetic writing screen toy. The dispersion medium is attracted to the underside of the screen when a magnetic tipped pen is passed over the upper surface of the screen. A user can create drawings and figures. The dispersion medium is non-toxic, creates lines having good contrast and can be easily erased without permanently forming black marks on the screen. The dispersion medium works well in temperature ranges between −20° C. to 45° C.
    Type: Application
    Filed: August 24, 2001
    Publication date: November 14, 2002
    Inventor: Tao Shi Gao
  • Patent number: 6475404
    Abstract: Magnetorheological fluid concentrates are provided which contain a substantially dry mixture of magnetic-responsive powder and a thixotropic agent. The concentrates may be mixed with an aqueous or an organic carrier fluid to form magnetorheological fluids.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: November 5, 2002
    Assignee: Lord Corporation
    Inventor: J. David Carlson