Piezoelectric Patents (Class 252/62.9R)
  • Patent number: 9005466
    Abstract: In accordance with the present invention, there is provided a method for producing a single LTGA crystal from a polycrystalline starting material prepared from a mixture of La2O3, Ta2O5, Ga2O3, and Al2O3, wherein a mixture having a composition represented by y(La2O3)+(1?x?y?z)(Ta2O5)+z(Ga2O3)+x(Al2O3) (in the formula, 0<x?0.40/9, 3.00/9<y?3.23/9, and 5.00/9?z<5.50/9) is used as the polycrystalline starting material, and a single LTGA crystal is grown using the Z-axis as a crystal growth axis. The grown LTGA single crystal is preferably subjected to a vacuum heat treatment. The single LTGA crystal grown by the method according to the present invention, which is highly insulative and highly stable, can be utilized in such applications as a piezoelectric element of a highly reliable combustion pressure sensor useful in measurement of a combustion pressure in a combustion chamber of an internal combustion engine.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 14, 2015
    Assignee: Citizen Finetech Miyota Co., Ltd.
    Inventors: Takayuki Hayashi, Toshimitsu Aruga, Makoto Matsukura, Yutaka Anzai, Akio Miyamoto, Sadao Matsumura, Yasunori Furukawa
  • Patent number: 8980117
    Abstract: Provided is a piezoelectric material having a high Curie temperature and satisfactory piezoelectric characteristics, the piezoelectric material being represented by the following general formula (1): A(ZnxTi(1-x))yM(1-y)O3??(1) where A represents a Bi element, M represents at least one element selected from Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value of 0.4?x?0.6; and y represents a numerical value of 0.17?y?0.60.
    Type: Grant
    Filed: January 1, 2010
    Date of Patent: March 17, 2015
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Sophia University, National Institute of Advanced Industrial Science and Technology
    Inventors: Makoto Kubota, Toshihiro Ifuku, Hiroshi Funakubo, Keisuke Yazawa, Hiroshi Uchida, Takashi Iijima, Bong-yeon Lee
  • Patent number: 8974687
    Abstract: A piezoelectric ceramic is expressed by the composition formula 100[(Sr2?xCax)1+y/4Na1?yNb5?2/5zMnzO15]+?SiO2 (in the formula, 0?x<0.3, 0.1<y<0.6, 0<z<0.1 and 1<?<8) and constituted by polycrystal of tungsten bronze structure, wherein the degree of orientation of axis c of the polycrystal is 60% or more in Lotgering factor. The piezoelectric ceramic offers excellent temperature characteristics and supporting high-power driving.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: March 10, 2015
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hiroyuki Shimizu, Yutaka Doshida
  • Patent number: 8968591
    Abstract: Disclosed is an organic piezoelectric material which has excellent piezoelectric characteristics and excellent handling properties. Also disclosed are an ultrasound transducer using the organic piezoelectric material, an ultrasound probe, and an ultrasound medical diagnostic imaging system. Specifically disclosed is an organic piezoelectric material which contains a base material that is formed from a resin, and a specific compound (1) that has at least one linking group selected from among specific linking groups. The organic piezoelectric material is characterized in that the relation shown below is satisfied when the CLogP values of the specific compound (1) and the base material are respectively represented by CLogP(1) and CLogP(base material). Relation: |CLogP(1)?CLogP(base material)|?3.0.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 3, 2015
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Yuichi Nishikubo, Rie Fujisawa
  • Patent number: 8936731
    Abstract: A process for the preparation of a niobium compound of formula (I): D?Nb?E?O3-???(I) wherein D is an alkali metal (e.g. Li, Na, K, Rb, Cs and/or Fr), alkaline earth metal (such as Ba, Ca, Mg and/or Sr), La and/or Bi and may be present as a mixture of two or more metals; E is Ta, Sb and/or Fe and may be present as a mixture of two or more metals; ? is a positive number ? is a positive number ? is zero or a positive number ? is a number 0???0.5; and wherein the formula (I) has the perovskite or tungsten bronze structure; comprising spray pyrolising a solution, for example an aqueous solution, comprising metal (D) ions, Nb ions and if present, metal (E) ions.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 20, 2015
    Assignee: Cerpotech AS
    Inventors: Francesco Madaro, Tor Grande, MariAnn Einarsrud, Kjell Wiik
  • Patent number: 8932477
    Abstract: A compound having a tungsten bronze structure exhibiting a high Curie temperature, good insulating resistance and mechanical quality factor, and excellent piezoelectric properties is provided. The compound contains a tungsten bronze structure oxide represented by general formula (1): x(BaB2O6)-y(CaB2O6)-z{(Bi1/2C1/2)B2O6}??(1) where B represents at least one of Nb and Ta; C represents at least one of Na and K; x+y+z=1; x satisfies 0.2?x?0.85; y satisfies 0?y?0.5; and z satisfies 0<z?0.8.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 13, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takayuki Watanabe, Jumpei Hayashi
  • Publication number: 20140367605
    Abstract: A piezoceramic composition comprises, as the main phase, a crystalline phase of a perovskite structure signified as formula ABO3, with Element A consisting of one or more elements selected from among K (potassium), Na (sodium) and Li (lithium) and with Element B consisting of one or more elements selected from among Nb (niobium), Ta (tantalum) and Sb (antimony), with Elements A and B comprising other elements as additives. An X-ray diffraction profile of crushed particles of the piezoceramic composition that are 10 ?m or less in diameter has a diffraction peak indicating the presence of the main (single) phase as well as a heterogeneous phase of a crystalline structure signified as formula AsBtOu (s<t<u) but not belonging to the perovskite structure.
    Type: Application
    Filed: March 2, 2012
    Publication date: December 18, 2014
    Applicant: HONDA ELECTRONICS CO., LTD.
    Inventors: Kenji Nagareda, Dunzhuo Dong
  • Patent number: 8877085
    Abstract: A piezoelectric and/or pyroelectric composite solid hybrid material, includes: a solid dielectric matrix, a filler of at least one inorganic piezoelectric and/or pyroelectric material, wherein the filler includes filiform nanoparticles distributed throughout the volume of the solid dielectric matrix with an amount by volume of less than 50%, and in that the main directions of elongation of the filiform nanoparticles of the inorganic filler distributed in the dielectric matrix have a substantially isotropic distribution in the solid dielectric matrix.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: November 4, 2014
    Assignee: Universite Paul Sabatier Toulouse III
    Inventors: Jean-Fabien Capsal, Charlotte David, Eric Dantras, Colette Lacabanne
  • Publication number: 20140291569
    Abstract: A nanorod and a method of manufacturing the same are disclosed, and a nanorod including a ZnO nanorod; and a coating layer disposed on a ZnO surface and including RuO2 nanoparticles are disclosed concretely.
    Type: Application
    Filed: May 10, 2013
    Publication date: October 2, 2014
    Applicant: Intellectual Discovery Co., Ltd.
    Inventors: Hyeong tag JEON, Hagyoung CHOI, Seokyoon SHIN, Giyul HAM
  • Patent number: 8771541
    Abstract: A polymer composite piezoelectric body is obtained by conducting polarization treatment on a composite having piezoelectric particles uniformly mixed by dispersion in a polymer matrix containing cyanoethylated polyvinyl alcohol.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: July 8, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Tetsu Miyoshi, Tsutomu Sasaki, Yukio Sakashita
  • Patent number: 8721915
    Abstract: This invention relates to partially ordered and ordered oxynitride perovskites of the general formula ABO2N that are polar insulators. A comprises one or more cations or set of cations that sit in sites derived from the A-site in the perovskite structure. B comprises one or more cations or set of cations that sit in sites derived from the B-site in the perovskite structure. C comprises oxygen, O, with optionally some nitrogen, N, and D comprises N, with optionally some O. The total valence of the cations A+B is equal to the total valence of the anions 2 C+D. Also disclosed are methods of producing such oxynitride perovskites and uses of such oxynitride perovskites.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 13, 2014
    Assignee: Carnegie Institution of Washington
    Inventors: Ronald Cohen, Razvan Caracas
  • Publication number: 20140117272
    Abstract: Piezoelectric compositions are provided wherein mechanical and piezoelectric properties can be separately modulated. Preferred compositions include resin blends that comprise: (a) a piezoelectrically active polymer and (b) a matrix polymer, methods of making, and use of such resin blends. Advantages of preferred resin blends of the invention can include high piezoelectricity, mechanical strength and flexibility, convenient fabrication process, and high sensitivity at high temperatures.
    Type: Application
    Filed: January 2, 2014
    Publication date: May 1, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Michael Yu, James E. West, Ilene J. Busch-Vishniac, Dawnielle Farrar
  • Publication number: 20140110622
    Abstract: The present invention relates to a polymer material comprising a polymer and an organically modified layered silicate dispersed in the polymer. The total content of alkali and/or alkaline earth metal cations in the polymer material is ?1 ppm. It relates further to the use of the polymer material as an electret material, and to an electromechanical converter comprising such a polymer material.
    Type: Application
    Filed: July 11, 2011
    Publication date: April 24, 2014
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Joachim Wagner, Berit Krauter, Stefanie Eiden, Deliani Lovera-Prieto, Holger Egger
  • Publication number: 20140103246
    Abstract: Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of particles of the fine particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. Specifically disclosed are a method of producing particulate sodium-potassium niobate represented by the formula (1): NaxK(1-x)NbO3 (1), the method including four specific steps, wherein a high-concentration alkaline solution containing Na+ ion and K+ ion is used as an alkaline solution; and particulate sodium-potassium niobate having a controlled shape and size.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicants: Sakai Chemical Industry Co., Ltd., Fuji Ceramics Corporation, TOHOKU University
    Inventors: Atsushi MURAMATSU, Kiyoshi KANIE, Atsuki TERABE, Yasuhiro OKAMOTO, Hideto MIZUTANI, Satoru SUEDA, Hirofumi TAKAHASHI
  • Publication number: 20140091249
    Abstract: Provided is an electret having high piezoelectric properties. An electret sheet of the invention is characterized in that it comprises a synthetic resin sheet is electrified by injecting electric charges thereinto, that the synthetic resin sheet comprises two types of synthetic resins incompatible with each other, and that these synthetic resins form a phase separated structure and are cross-linked through a polyfunctional monomer. Therefore, positive and negative charges in an apparently polarized state are present in the interfacial portions between the two types of synthetic resins incompatible with each other. By applying an external force to the electret sheet to deform it, the relative positions of these positive and negative charges are changed, and these changes cause a favorable electrical response. Therefore, the electret sheet has high piezoelectric properties.
    Type: Application
    Filed: April 12, 2012
    Publication date: April 3, 2014
    Inventors: Kazuho Uchida, Takazumi Okabayashi, Yoshiro Tajitsu
  • Publication number: 20140084204
    Abstract: The present invention provides a polymeric piezoelectric material comprising an aliphatic polyester (A) with a weight-average molecular weight of from 50,000 to 1,000,000 and having optical activity, and a stabilizing agent (B) with a weight-average molecular weight of from 200 to 60,000 having at least one kind of functional group selected from the group consisting of a carbodiimide group, an epoxy group and an isocyanate group, wherein the crystallinity of the material obtained by a DSC method is from 20% to 80%, and a content of the stabilizing agent (B) is from 0.01 part by mass to 10 parts by mass with respect to 100 parts by mass of the aliphatic polyester (A), as well as a process for producing the same.
    Type: Application
    Filed: October 12, 2012
    Publication date: March 27, 2014
    Applicant: Mitsui Chemicals, inc.
    Inventors: Kazuhiro Tanimoto, Mitsunobu Yoshida, Shigeo Nishikawa, Masaki Shimizu
  • Patent number: 8663493
    Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1?x).Ca1.4Ba3.6Nb10O30?x.Ba4Bi0.67Nb10O30 (0.30?x?0.95).
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: March 4, 2014
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi
    Inventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
  • Patent number: 8641919
    Abstract: Piezoelectric compositions are provided wherein mechanical and piezoelectric properties can be separately modulated. Preferred compositions include resin blends that comprise: (a) a piezoelectrically active polymer and (b) a matrix polymer, methods of making, and use of such resin blends. Advantages of preferred resin blends of the invention can include high piezoelectricity, mechanical strength and flexibility, convenient fabrication process, and high sensitivity at high temperatures.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: February 4, 2014
    Assignee: The Johns Hopkins University
    Inventors: Michael Yu, James E. West, Ilene J. Busch-Vishniac, Dawnielle Farrar
  • Publication number: 20140027666
    Abstract: There is provided a piezoelectric ceramics, including a perovskite compound of a non-stoichiometric composition represented by a composition formula (KxNa1-x)y(Nb1-zTaz)O3 (0<x<1?1, 0<y<1, 0?z?0.5); and a sintering aid which includes an oxide containing K, Co, and Ta.
    Type: Application
    Filed: June 25, 2013
    Publication date: January 30, 2014
    Applicants: BROTHER KOGYO KABUSHIKI KAISHA, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Koichi Kikuta, Jun Isono, Kaiji Kura, Yoshitsugu Morita
  • Patent number: 8597537
    Abstract: A perovskite oxide, which includes a first component represented by General Formula (P1) given below and a second component represented by General Formula (P2) given below. (Bix1, Xx2) (Fez1, Mnz2)O3 ??(P1) (Ay1, Yy2)BO3 ??(P2) (where, Bi is an A-site element and X is an A-site element with an average ion valence of not less than four. A is one kind or a plurality of kinds of A site elements other than Pb with an average ion valence of two, Y is a one kind or a plurality of kinds of A-site elements with an average valence of not less than three. Fe and Mn are B-site elements, and B is one kind or plurality of kinds of B-site elements with an average ion valence of four.) 0.6?x1<1.0, 0?x2?0.4, 0.65?y1<1.0, 0?y2?0.4, x2+y2>0, 0.6?z1<1.0, 0?z2?0.4.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Tsutomu Sasaki, Yukio Sakashita
  • Patent number: 8597536
    Abstract: Disclosed is a non-lead perovskite oxide having a low Curie temperature and high ferroelectricity represented by General Formula (P) given below. (Bix1,Bax2,Xx3)(Fey1,Tiy2,Mny3)O3??(P) (where, Bi and Ba are A-site elements, X is one kind or a plurality of kinds of A-site elements, other than Pb and Ba, with an average ion valence of 2. Fe, Ti, and Mn are B-site elements. O is oxygen. 0<x1+X2<1.0, 0<x3<1.0, 0<y1+y2<1.0, 0?y3<1.0, 0<x1, 0<x2, 0<y1, 0<y2. The standard molar ratios among A-site elements, B-site elements, and oxygen are 1:1:3, but the molar ratios among them may deviate from the standard ratios within a range in which a perovskite structure may be formed.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Tsutomu Sasaki, Yukio Sakashita
  • Publication number: 20130313467
    Abstract: Provided is a Sr2-xCaxNaNb5O15 type piezoelectric ceramic composition wherein the inhibition of cracking and an improvement in the piezoelectric characteristics are attained by improving the composition uniformity and the microstructure uniformity. In the basic Sr2-xCaxNaNb5O15 composition, the (Sr, Ca)/Na ratio is changed, whereby the occupancies of Sr, Ca and Na in lattices which constitute the tungsten-bronze type structure and into which Sr, Ca, and Na can enter are reduced to facilitate the entrance of Sr into the lattices and thus inhibit the formation of a secondary phase. Further, a predetermined amount of Al and/or Si is added to lower the sintering temperature and to make the microstructure uniform. Additionally, a predetermined amount of Mn is added to make the polarization easy.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 28, 2013
    Applicant: TAIYO YUDEN CO., LTD.
    Inventor: Yutaka Doshida
  • Publication number: 20130306902
    Abstract: A process for producing a homogenous multi compound system which is hydroxide- and/or oxide-based includes a first alternative process comprising providing a first and a second refractory metal in respective hydrofluoric solutions, and mixing the first and second hydrofluoric solutions to provide a mixed hydrofluoric solution comprising a dissolved first and second refractory metal. A second alternative process comprises dissolving the first and the second refractory metal in an alternative mixed hydrofluoric solution. The mixed hydrofluoric solution or the alternative mixed hydrofluoric solution is precipitated with a precipitant to provide a solids mixture in a suspension. The first and second refractory metal is from the group consisting of Mo, W, Nb, Re, Zr, Hf, V, Sb, Si, Al, and Ta. The first and second refractory metal are different. At least one of the first and second refractory metal is provided as a fluoro and/or as an oxyfluoro complex.
    Type: Application
    Filed: February 3, 2012
    Publication date: November 21, 2013
    Applicant: H.C. STARCK GMBH
    Inventors: Karsten Beck, Sven Albrecht, Christoph Schnitter, Timo Langetepe, Ralph Otterstedt
  • Publication number: 20130306901
    Abstract: A piezoelectric ceramic is expressed by the composition formula 100[(Sr2?xCax)1+y/4Na1?yNb5?2/5zMnzO15]+?SiO2 (in the formula, 0?x<0.3, 0.1<y<0.6, 0<z<0.1 and 1<?<8) and constituted by polycrystal of tungsten bronze structure, wherein the degree of orientation of axis c of the polycrystal is 60% or more in Lotgering factor. The piezoelectric ceramic offers excellent temperature characteristics and supporting high-power driving.
    Type: Application
    Filed: March 29, 2013
    Publication date: November 21, 2013
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Hiroyuki SHIMIZU, Yutaka Doshida
  • Publication number: 20130277599
    Abstract: The present invention concerns polymers obtained by anionic initiation and bearing functions that can be activated by cationic initiations that are not reactive in the presence of anionic polymerization initiators. The presence of such cationic initiation functions allow an efficient cross-linking of the polymer after moulding, particularly in the form of a thin film. It is thus possible to obtain polymers with well-defined properties in terms of molecular weight and cross-linking density. The polymers of the present invention are capable of dissolving ionic compounds inducing a conductivity for the preparation of solid electrolytes.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 24, 2013
    Inventors: CHRISTOPHE MICHOT, ALAIN VALLEE, PAUL-ETIENNE HARVEY, MICHEL GAUTHIER, MICHEL ARMAND
  • Publication number: 20130240776
    Abstract: An oxide material having a langasite-type structure having a desired surface condition and a desired outer shape is obtained stably. By adding at least one selected from the group consisting of Ir, Pt, Au, and Rh to a raw material which is a composition used for producing a desired oxide material as an additive element, it is possible to control the wettability between a die portion at a bottom end of a crucible and a melt of the raw material, thereby implementing stable production of the oxide material while controlling the wetting and spread of the melt of the raw material leaked out through a hole of the crucible.
    Type: Application
    Filed: October 12, 2011
    Publication date: September 19, 2013
    Applicant: TDK CORPORATION
    Inventors: Ko Onodera, Kazushige Tohta, Masato Sato, Akira Yoshikawa, Yuui Yokota
  • Patent number: 8518290
    Abstract: Provided is a piezoelectric material which includes a compound free of lead and alkali metal and has a good piezoelectric property. The piezoelectric material where tungsten bronze structure oxides being free of lead and alkali metal and represented by AxB10O30 and A?x?B?10O30 are combined to form a morphotropic phase boundary has good piezoelectric property. The AxB10O30 is b(Ba5?5?Bi10?/3Nb10O30)+(1?b)(Ba4Ag2Nb10O30) (0?b?1 and 0<??0.4), and the A?x?B?10O30 is c(Sr5Nb10O30)+d(Ca5Nb10O30)+e(Ba5Nb10O30) (0?c?0.8, 0?d?0.4, 0.1?e?0.9, and c+d+e=1).
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: August 27, 2013
    Assignees: Canon Kabushiki Kaisha, University of Yamanashi, Tokyo Institute of Technology, National Institute of Advanced Industrial Science and Technology
    Inventors: Takayuki Watanabe, Takanori Matsuda, Hiroshi Saito, Hiroshi Funakubo, Nobuhiro Kumada, Takashi Iijima, Bong-Yeon Lee
  • Patent number: 8501031
    Abstract: Piezoelectric compounds of the formula xNamBinTiO3-yKmBinTiO3-zLimBinTiO3-pBaTiO3 where (0<x?1), (0?y?1), (0?z?1), (0.3?m?0.7), (0.3?n?0.7), (0<p?1) (0.9?m/n?1.1) as well as to doped variations thereof are disclosed. The material is suitable for high power applications.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: August 6, 2013
    Assignee: The Penn State Research Foundation
    Inventors: Shujun Zhang, Hyeong Jae Lee, Thomas R Shrout
  • Patent number: 8480918
    Abstract: The present invention provides a piezoelectric material which can be applied even to the MEMS technique, exhibits satisfactory piezoelectricity even at high ambient temperatures and is environmentally clean, namely, a piezoelectric material including an oxide obtained by forming a solid solution composed of two perovskite oxides A(1)B(1)O3 and A(2)B(2)O3 different from each other in crystalline phase, the oxide being represented by the following general formula (1): X{A(1)B(1)O3}?(1?X){A(2)B(2)O3}??(1) wherein “A(1)” and “A(2)” are each an element including an alkali earth metal and may be the same or different from each other; “B(1)” and “B(2)” each include two or more metal elements, and either one of “B(1)” and “B(2)” contains Cu in a content of 3 atm % or more; and “X” satisfies the relation 0<X<1.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: July 9, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kaoru Miura, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo
  • Publication number: 20130153813
    Abstract: The plasma poling device includes: a holding electrode 4 being disposed in a poling chamber 1 and holding a substrate to be subjected to poling 2 thereon; an opposite electrode 7 being disposed in the poling chamber and being disposed opposite to the substrate to be subjected to poling held on the holding electrode; a power source 6 being electrically connected to either the holding electrode or the opposite electrode; a gas supply mechanism supplying a gas for forming plasma to a space between the opposite electrode and the holding electrode; and a control unit controlling the power source and the gas supply mechanism, wherein the control unit controls the power source and the gas supply mechanism, so as to form a plasma at a position opposite to the substrate to be subjected to poling to thereby perform poling treatment on the substrate to be subjected to poling.
    Type: Application
    Filed: July 27, 2010
    Publication date: June 20, 2013
    Applicant: Youtec Co. Ltd.
    Inventors: Yuuji Honda, Takeshi Kijima, Koji Abe
  • Publication number: 20130153814
    Abstract: The invention relates to a method for producing a homogenous solution of a fluoropolymer, selected from fluoropolymers and fluoro-copolymers and mixtures of various fluoro-homopolymers and/or fluoro-copolymers in a high boiling solvent, whereby (a) the fluoropolymer to be dissolved is dissolved in a mixture of at least two solvents, the first comprising a boiling point of less than 150° C., and/or a vapor pressure of over 5 hPa (at 20° C.), and the second being a high boiling solvent comprising a boiling point at least 50 K higher than the first solvent and/or the boiling point thereof being selected so that the solvent mixture comprises a separation factor ? of ?1, and subsequently (b) the first solvent is substantially or completely removed from the mixture. The invention further relates to a method for producing suspensions of inorganic particles of a piezoelectrically and pyroelectrically active or activatable oxide in such fluoropolymer solutions and to the product of said method.
    Type: Application
    Filed: August 12, 2011
    Publication date: June 20, 2013
    Applicants: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT MBH
    Inventors: Siegfried Bauer, Gerhard Domann, Uta Helbig, Markus Krause, Barbara Stadlober, Martin Zirkl
  • Publication number: 20130126774
    Abstract: Disclosed is a piezoelectric foam formed of elastically anisotropic materials. The piezoelectric foam is defined with a unit cell having a relative density and volume fraction, and deformation specified by subjecting the unit cell to controlled mechanical and electrical loading conditions. Resultant stress and electric displacements field components are measured by capturing a homogeneous coupled response of the unit cell and by computing piezoelectric material constants using the captured homogeneous coupled response, to identify asymmetric and symmetric F1, F2 and F3 type piezoelectric foam structures.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 23, 2013
    Applicant: The Research Foundation of State University of New York
    Inventor: The Research Foundation of State University of New York
  • Patent number: 8419967
    Abstract: A perovskite oxide represented by a general expression, (Aa, Bb)(Cc, Dd, Xx)O3. (where, A: an A-site element, A=Bi, 0<a, B: one or more types of A-site elements, 0?b<1.0, C: an B-site element, C=Fe, 0 <c<1.0, D: one or more types of B-site elements, 0?d<1.0, 0<b+d, X: one or more types of B-site elements, the average valence of which is greater than the average valence of C and D in chemical formula, 0<x<1.0, (average valence of A-site in chemical formula) +(average valence of B-site in chemical formula)>6.0, O: oxygen, and standard molar ratio among A-site elements, B-site elements, and oxygen is 1:1:3, but it may deviate from the standard within a range in which a perovskite structure is possible.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: April 16, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Tsutomu Sasaki, Yukio Sakashita, Hiroyuki Kobayashi
  • Patent number: 8414791
    Abstract: A piezoelectric/electrostrictive ceramic sintered body has a microstructure in which a matrix phase and an additional material phase having different compositions coexist and the additional material phase is dispersed in the matrix phase. A residual strain ratio of the additional material phase alone is larger than a residual strain ratio of the matrix phase alone. The matrix phase and the additional material phase have a composition in which a Mn compound containing Mn atoms of 0 parts by mole or more and 3 parts by mole or less and a Ba compound containing Ba atoms of 0 parts by mole or more and 1 part by mole or less are contained in a composite of 100 parts by mole represented by a general formula {Liy(Na1-xKx)1-y}a(Nb1-z-wTazSbw)O3, where a, x, y, z and w satisfy 0.9?a?1.2, 0.2?x?0.8, 0.0?y?0.2, 0?z?0.5 and 0?w?0.1, respectively.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: April 9, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Kazuyuki Kaigawa, Ritsu Tanaka
  • Publication number: 20130026410
    Abstract: An electrostrictive composite includes a flexible polymer matrix, a plurality of carbon nanotubes and a plurality of reinforcing particles dispersed in the flexible polymer matrix. The carbon nanotubes cooperatively form an electrically conductive network in the flexible polymer matrix.
    Type: Application
    Filed: June 10, 2009
    Publication date: January 31, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LU-ZHUO CHEN, CHANG-HONG LIU, SHOU-SHAN FAN
  • Publication number: 20130026411
    Abstract: The present invention relates to a piezoelectric polymer film element, in particular a polymer foil, comprising a polymer matrix, wherein hollow particles are arranged in the polymer matrix, and a process for the production of such a piezoelectric polymer film element, comprising the steps: A) provision of hollow particles and B) introduction of the hollow particles into a polymer matrix and C) shaping of the polymer matrix as a polymer film. The invention furthermore relates to an electromechanical converter comprising at least one first polymer film which comprises hollow particles as fillers.
    Type: Application
    Filed: November 29, 2010
    Publication date: January 31, 2013
    Applicant: BAYER INTELLECTUAL PROPERTY GmbH
    Inventors: Joachim Wagner, Reimund Gerhard, Ing Werner Wirges, Ludwig Jenninger, Maria Jenninger
  • Publication number: 20130015393
    Abstract: In accordance with the present invention, there is provided a method for producing a single LTGA crystal from a polycrystalline starting material prepared from a mixture of La2O3, Ta2O5, Ga2O3, and Al2O3, wherein a mixture having a composition represented by y(La2O3)+(1-x-y-z)(Ta2O5)+z(Ga2O3)+x(Al2O3) (in the formula, 0<x?0.40/9, 3.00/9<y?3.23/9, and 5.00/9?z<5.50/9) is used as the polycrystalline starting material, and a single LTGA crystal is grown using the Z-axis as a crystal growth axis. The grown LTGA single crystal is preferably subjected to a vacuum heat treatment. The single LTGA crystal grown by the method according to the present invention, which is highly insulative and highly stable, can be utilized in such applications as a piezoelectric element of a highly reliable combustion pressure sensor useful in measurement of a combustion pressure in a combustion chamber of an internal combustion engine.
    Type: Application
    Filed: March 9, 2011
    Publication date: January 17, 2013
    Inventors: Takayuki Hayashi, Toshimitsu Aruga, Makoto Matsukura, Yutaka Anzai, Akio Miyamoto, Sadao Matsumura, Yasunori Furukawa
  • Publication number: 20120267563
    Abstract: A piezoelectric and/or pyroelectric composite solid hybrid material, includes: a solid dielectric matrix, a filler of at least one inorganic piezoelectric and/or pyroelectric material, wherein the filler includes filiform nanoparticles distributed throughout the volume of the solid dielectric matrix with an amount by volume of less than 50%, and in that the main directions of elongation of the filiform nanoparticles of the inorganic filler distributed in the dielectric matrix have a substantially isotropic distribution in the solid dielectric matrix.
    Type: Application
    Filed: December 3, 2010
    Publication date: October 25, 2012
    Applicant: UNIVERSITE PAUL SABATIER TOULOUSE III
    Inventors: Jean-Fabien Capsal, Charlotte David, Eric Dantras, Colette Lacabanne
  • Patent number: 8282854
    Abstract: A (Li, Na, K)(Nb, Ta, Sb)O3 based piezoelectric material is a sintered body having a surface microstructure that comprises microscopic grains having a grain diameter of less than 5 ?m, intermediate grains having a grain diameter of 5 ?m or more and less than 15 ?m, and coarse grains having a grain diameter of 15 ?m or more and 50 ?m or less. The amount of coarse grains is 3% or more in a share of grains in terms of area. The piezoelectric material can be manufactured by mixing metal-containing compounds so as to give the above-mentioned formulation, calcining the mixture and then crushing the resultant to obtain a calcined/crushed powder, then keeping temperature constantly at a temperature within a range from 800 to 950° C. for a predetermined period of time in a constant temperature keeping process, and raising temperature to firing temperature for sintering.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: October 9, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Kazuyuki Kaigawa, Hirofumi Yamaguchi
  • Patent number: 8277680
    Abstract: A (Li, Na, K)(Nb, Ta)O3-based piezoelectric/electrostrictive ceramic composition having large electric field-induced distortion at the time of application of a high electric field is provided. A perovskite oxide is synthesized which contains Li (lithium), Na (sodium) and K (potassium) as A-site elements and contains at least Nb (niobium) and Sb (antimony) out of Nb, Ta (tantalum) and Sb as B-site elements, the ratio of the total number of atoms of the A-site elements to the total number of atoms of the B-site elements being larger than 1, and then a Bi (bismuth) compound is added and reacted. The amount of addition of the Bi compound with respect to 100 molar parts of the perovskite oxide is preferably not less than 0.02 molar part nor more than 0.1 molar part in terms of Bi atoms.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: October 2, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Ritsu Tanaka, Hirofumi Yamaguchi
  • Publication number: 20120193568
    Abstract: An electrostrictive composite includes a flexible polymer matrix and a plurality of carbon nanotubes dispersed in the flexible polymer matrix. The carbon nanotubes cooperatively form an electrically conductive network in the flexible polymer matrix. A plurality of bubbles are defined by the flexible polymer matrix.
    Type: Application
    Filed: June 10, 2009
    Publication date: August 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHANG-HONG LIU, LU-ZHUO CHEN, SHOU-SHAN FAN
  • Patent number: 8211328
    Abstract: A crystallographically-oriented ceramic containing Pb and in which piezoelectric/electrostrictive properties can be enhanced. Using a raw material having Pb(Zr1-xTiX)O3 as a main component, a ceramic sheet was formed with a thickness of 15 ?m or less. In this material, grains were allowed to grow into an anisotropic shape, and crystal grains with specific crystal planes being aligned were produced. A non-oriented raw material having Pb(Zr1-xTiX)O3 as a main component and the crystal grains were mixed, and shaping was performed so that crystal grains were oriented in a predetermined direction. The shaped body was fired. In the resulting ceramic, the degree of orientation was high at 50% or more. It is possible to enhance the degree of orientation using, as crystal nuclei, a ceramic sheet which can have the same composition as that of the crystallographically-oriented ceramic. Therefore, production can be performed without adding an unnecessary element, for example, for orienting crystals.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: July 3, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukinobu Yura, Nobuyuki Kobayashi, Tsutomu Nanataki
  • Publication number: 20120132846
    Abstract: The invention provides a piezoelectric polymer material comprising a helical chiral polymer having a weight average molecular weight of from 50,000 to 1,000,000 and optical activity, the piezoelectric polymer material having: crystallinity as obtained by a DSC method of from 20% to 80%; a transmission haze with respect to visible light of 50% or less; and a product of the crystallinity and a standardized molecular orientation MORc, which is measured with a microwave transmission-type molecular orientation meter at a reference thickness of 50 ?m, of from 40 to 700.
    Type: Application
    Filed: February 9, 2012
    Publication date: May 31, 2012
    Applicants: A school Corporation Kansai University, Mitsui Chemicals, Inc.
    Inventors: Mitsunobu YOSHIDA, Shunsuke Fujii, Hitoshi Onishi, Yoshiro Tajitsu, Taizo Nishimoto, Kazuhiro Tanimoto, Kenichi Goto
  • Patent number: 8187488
    Abstract: An electret composite comprising a polymer matrix material that contains particles of a piezoelectric material with deep trapping centers on the interphase boundaries between the matrix and particles of a piezoelectric material. The piezoelectric material may have a tetragonal or a rhombohedral structure, and the polymer matrix material may be selected from high-density polyethylene, polyvinylidene fluoride, and a copolymer of vinylidenechloride and tetrafluoroethylene. The composite has a potential difference>500V, lifespan>10 years, dielectric permeability?20, specific electric resistance?1014 Ohm·m; provision of deep trapping centers on the interphase boundaries with activation energy in the range of 1 to 1.25 eV, and stable electret charge.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 29, 2012
    Assignee: Malaxit Co.
    Inventors: Mirza Abdul oglu Kurbanov, Azad Agalar Oglu Bayramov, Nuru Arab Oglu Safarov, Irada Sultanaxmed Gizi Sultanaxmedova, Sevinj Nadir Gizi Musaeva
  • Patent number: 8177995
    Abstract: A process for producing a piezoelectric oxide having a composition (Ba, Bi, A)(Ti, Fe, M)O3, where each of A and M represents one or more metal elements. The composition is determined so as to satisfy the conditions (1) and (2), 0.98?TF(P)?1.02,??(1) TF(BiFeO3)<TF(AMO3)<TF(BaTiO3),??(2) where TF(P) is the tolerance factor of the perovskite oxide, and TF(BaTiO3), TF(BiFeO3), and TF(AMO3) are respectively the tolerance factors of the oxides BaTiO3, BiFeO3, and AMO3.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: May 15, 2012
    Assignee: Fujifilm Corporation
    Inventors: Hiroyuki Kobayashi, Yukio Sakashita
  • Publication number: 20120091389
    Abstract: A process for the preparation of a niobium compound of formula (I): D?Nb?E?O3-???(I) wherein D is an alkali metal (e.g. Li, Na, K, Rb, Cs and/or Fr), alkaline earth metal (such as Ba, Ca, Mg and/or Sr), La and/or Bi and may be present as a mixture of two or more metals; E is Ta, Sb and/or Fe and may be present as a mixture of two or more metals; ? is a positive number ? is a positive number ? is zero or a positive number ? is a number 0???0.5; and wherein the formula (I) has the perovskite or tungsten bronze structure; comprising spray pyrolising a solution, for example an aqueous solution, comprising metal (D) ions, Nb ions and if present, metal (E) ions.
    Type: Application
    Filed: March 4, 2010
    Publication date: April 19, 2012
    Applicant: CERPOTECH AS
    Inventors: Francesco Madaro, Tor Grande, MariAnn Einarsrud, Kjell Wiik
  • Patent number: 8128834
    Abstract: A (Li, Na, K)(Nb, Ta)O3 based piezoelectric/electrostrictive porcelain composition obtained by adding a slight amount of a Mn compound to a perovskite type oxide containing Li, Na and K as A-site elements and contains at least Nb out of Nb and Ta as B-site elements, where a ratio of a total number of atoms of the A-site elements to a total number of atoms of the B-site elements is not smaller than 1. A composition of the perovskite type oxide as a principal component is represented by a general formula: {Liy(Na1-xKx)1-y}a(Nb1-zTaz)O3. The A/B ratio “a” preferably satisfies 1<a?1.05. The Mn compound as an accessory component is desirably added such that the added amount is not more than 3 parts by mol in terms of Mn atom with respect to 100 parts by mol of said perovskite type oxide.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 6, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukinobu Yura, Hirofumi Yamaguchi, Ritsu Tanaka
  • Patent number: 8119022
    Abstract: A piezoelectric single crystal and piezoelectric and dielectric application parts using the same are provided, which have all of high dielectric constant K3T, high piezoelectric constants (d33 and k33), high phase transition temperatures (Tc and TRT), high coercive electric field Ec and improved mechanical properties and thus can be used in high temperature ranges and high voltage conditions. Furthermore, the piezoelectric single crystals are produced by the solid-state single crystal growth adequate for mass production of single crystals and the single crystal composition is developed not to contain expensive raw materials so that the piezoelectric single crystals can be easily commercialized. With the piezoelectric single crystals and piezoelectric single crystal application parts, the piezoelectric and dielectric application parts using the piezoelectric single crystals of excellent properties can be produced and used in the wide temperature range.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: February 21, 2012
    Assignee: Ceracomp Co., Ltd.
    Inventors: Ho-Yong Lee, Sung-Min Lee, Dong-Ho Kim
  • Patent number: 8119023
    Abstract: A (Li, Na, K)(Nb, Ta)O3-based piezoelectric/electrostrictive ceramic composition having a large field-induced distortion during application of a high electric field is provided. After synthesizing a perovskite oxide containing Li (lithium), Na (sodium) and K (potassium) as A-site elements and containing at least Nb (niobium) out of the Nb and Ta (tantalum) as B-site elements, a ratio of total number of atoms of the A-site elements to total number of atoms of the B-site elements being higher than 1, a Bi (bismuth) compound is added to the perovskite oxide and the perovskite oxide is reacted with the Bi compound. An addition amount of the Bi compound with respect to 100 molar parts of the perovskite oxide is preferably equal to or greater than 0.01 molar part and equal to or smaller than 0.1 molar part in terms of Bi atoms.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: February 21, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Ritsu Tanaka, Hirofumi Yamaguchi, Yukinobu Yura
  • Patent number: 8114307
    Abstract: The present invention provides a piezoelectric element and having a piezoelectric body and a pair of electrodes being contact with the piezoelectric body, wherein the piezoelectric body consists of an ABO3 perovskite oxide in which an A-site atom consists of Bi and a B-site atom is composed of an atom of at least two types of elements.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: February 14, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumi Aoki, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo, Shintaro Yasui, Ken Nishida