Vertical Charge Transfer Patents (Class 257/242)
  • Patent number: 10439075
    Abstract: A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: October 8, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Mohammed Tanvir Quddus, Mihir Mudholkar
  • Patent number: 9029940
    Abstract: A tunneling field-effect transistor (TFET) device is disclosed. The TFET device includes a source contact on the source region, a plurality of gate contacts at a planar portion of a gate stack and a plurality of drain contacts disposed on a drain region. The source contact of the TFET device aligns with other two adjacent source contacts of other two TFET devices such that each source contact locates in one of three angles of an equilateral triangle.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Cheng-Cheng Kuo, Ming Zhu
  • Patent number: 9012961
    Abstract: The disclosure relates to a method of manufacturing vertical gate transistors in a semiconductor substrate, comprising implanting, in the depth of the substrate, a doped isolation layer, to form a source region of the transistors; forming, in the substrate, parallel trench isolations and second trenches perpendicular to the trench isolations, reaching the isolation layer, and isolated from the substrate by a first dielectric layer; depositing a first conductive layer on the surface of the substrate and in the second trenches; etching the first conductive layer to form the vertical gates of the transistors, and vertical gate connection pads between the extremity of the vertical gates and an edge of the substrate, while keeping a continuity zone in the first conductive layer between each connection pad and a vertical gate; and implanting doped regions on each side of the second trenches, to form drain regions of the transistors.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Francesco La Rosa, Stephan Niel, Arnaud Regnier, Hélène Dalle-Houilliez
  • Patent number: 8969949
    Abstract: The present disclosure provides one embodiment of a SRAM cell that includes first and second inverters cross-coupled for data storage, each inverter including at least one pull-up device and at least one pull-down devices; and at least two pass-gate devices configured with the two cross-coupled inverters. The pull-up devices, the pull-down devices and the pass-gate devices include a tunnel field effect transistor (TFET) that further includes a semiconductor mesa formed on a semiconductor substrate and having a bottom portion, a middle portion and a top portion; a drain of a first conductivity type formed in the bottom portion and extended into the semiconductor substrate; a source of a second conductivity type formed in the top portion, the second conductivity type being opposite to the first conductivity type; a channel in a middle portion and interposed between the source and drain; and a gate formed on sidewall of the semiconductor mesa and contacting the channel.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Bao-Ru Young, Wei Cheng Wu, Yi-Ren Chen, Ming Zhu
  • Patent number: 8957471
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a conductive member, a semiconductor pillar, and a charge storage layer. The stacked body is provided above the substrate. The stacked body includes a plurality of insulating films stacked alternately with a plurality of electrode films. A plurality of terraces are formed in a stairstep configuration along only a first direction in an end portion of the stacked body on the first-direction side. The first direction is parallel to an upper face of the substrate. The plurality of terraces are configured with upper faces of the electrode films respectively. The conductive member is electrically connected to the terrace to connect electrically the electrode film to the substrate by leading out the electrode film in a second direction parallel to the upper face of the substrate and orthogonal to the first direction.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiaki Fukuzumi
  • Patent number: 8927347
    Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: January 6, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Toshio Nakajima, Syoji Higashida
  • Patent number: 8921899
    Abstract: A semiconductor device is provided that includes a fin having a first gate and a second gate formed on a first sidewall of the fin in a first trench, wherein the first gate is formed above the second gate. The device includes a third gate and a fourth gate formed on a second sidewall of the fin in a second trench, wherein the third gate is formed above the fourth gate. Methods of manufacturing and operating the device are also included. A method of operation may include biasing the first gate and the fourth gate to create a current path across the fin.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 30, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Werner Juengling, Howard C. Kirsch
  • Patent number: 8895370
    Abstract: A vertical conduction power device includes respective gate, source and drain areas formed in an epitaxial layer on a semiconductor substrate. The respective gate, source and drain metallizations are formed by a first metallization level. The gate, source and drain terminals are formed by a second metallization level. The device is configured as a set of modular areas extending parallel to each other. Each modular area has a rectangular elongate source area perimetrically surrounded by a gate area, and a drain area defined by first and second regions. The first regions of the drain extend parallel to one another and separate adjacent modular areas. The second regions of the drain area extend parallel to one another and contact ends of the first regions of the drain area.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 25, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magri′
  • Patent number: 8878255
    Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Shen Wang
  • Patent number: 8878256
    Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Shen Wang
  • Patent number: 8872264
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 28, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Patent number: 8791510
    Abstract: A semiconductor device includes a gate structure on a semiconductor substrate, an impurity region at a side of the gate structure and the impurity region is within the semiconductor substrate, an interlayer insulating layer covering the gate structure and the impurity region, a contact structure extending through the interlayer insulating layer and connected to the impurity region, and an insulating region. The contact structure includes a first contact structure that has a side surface surrounded by the interlayer insulating layer and a second contact structure that has a side surface surrounded by the impurity region. The insulating region is under the second contact structure.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-Kyu Lee
  • Publication number: 20140191291
    Abstract: The disclosure relates to a method of manufacturing vertical gate transistors in a semiconductor substrate, comprising implanting, in the depth of the substrate, a doped isolation layer, to form a source region of the transistors; forming, in the substrate, parallel trench isolations and second trenches perpendicular to the trench isolations, reaching the isolation layer, and isolated from the substrate by a first dielectric layer; depositing a first conductive layer on the surface of the substrate and in the second trenches; etching the first conductive layer to form the vertical gates of the transistors, and vertical gate connection pads between the extremity of the vertical gates and an edge of the substrate, while keeping a continuity zone in the first conductive layer between each connection pad and a vertical gate; and implanting doped regions on each side of the second trenches, to form drain regions of the transistors.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 10, 2014
    Inventors: Francesco La Rosa, Stephan Niel, Arnaud Regnier, Hélène Dalle-Houilliez
  • Patent number: 8766325
    Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: July 1, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Toshio Nakajima, Syoji Higashida
  • Patent number: 8766317
    Abstract: Provided is a semiconductor device in which on-resistance is largely reduced based on a new principle of operation. In the semiconductor device, if an embedded electrode is at negative potential, a depletion layer is formed from a trench to a neighboring trench so that a channel is turned off. If the embedded electrode is at a positive potential, the depletion layer is not formed in every region between the neighboring trenches so that the channel is turned on.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: July 1, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Masaru Takaishi
  • Patent number: 8754470
    Abstract: A tunneling field-effect transistor (TFET) device is disclosed. A frustoconical protrusion structure is disposed over the substrate and protrudes out of the plane of substrate. Isolation features are formed on the substrate. A drain region is disposed over the substrate adjacent to the frustoconical protrusion structure and extends to a bottom portion of the frustoconical protrusion structure as a raised drain region. A source region is formed as a top portion of the frustoconical protrusion structure. A series connection and a parallel connection are made among TFET devices units.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Cheng-Cheng Kuo, Ming Zhu
  • Patent number: 8749686
    Abstract: In various embodiments, image sensors include photosensitive pixels, associated vertical CCDs, sense nodes each accepting charge from one or more of the vertical CCDs, and readout circuitry accepting signals from the sense nodes.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Truesense Imaging, Inc.
    Inventor: Edward T. Nelson
  • Patent number: 8710548
    Abstract: A semiconductor device includes a first semiconductor layer which is formed above a substrate, a Schottky electrode and an ohmic electrode which are formed on the first semiconductor layer to be spaced from each other and a second semiconductor layer which is formed to cover the first semiconductor layer with the Schottky electrode and the ohmic electrode exposed. The second semiconductor layer has a larger band gap than that of the first semiconductor layer.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Manabu Yanagihara, Kazushi Nakazawa, Tsuyoshi Tanaka
  • Patent number: 8679903
    Abstract: A method is provided for fabricating a vertical insulated gate transistor. A horizontal isolation region is formed in a substrate to separate and electrically isolate upper and lower portions of the substrate. A vertical semiconductor pillar with one or more flanks and a cavity is formed so as to rest on the upper portion, and a dielectrically isolated gate is formed so as to include an internal portion within the cavity and an external portion resting on the flanks and on the upper portion. One or more internal walls of the cavity are coated with an isolating layer and the cavity is filled with a gate material so as to form the internal portion of the gate within the cavity and the external portion of the gate that rests on the flanks, and to form two connecting semiconductor regions extending between source and drain regions of the transistor.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics, Inc.
    Inventor: Richard A. Blanchard
  • Patent number: 8624332
    Abstract: A vertical conduction electronic power device includes respective gate, source and drain areas in an epitaxial layer arranged on a semiconductor substrate. The respective gate, source and drain metallizations may be formed by a first metallization level. Corresponding gate, source and drain terminals or pads may be formed by a second metallization level. The power device is configured as a set of modular areas extending parallel to each other, each having a rectangular elongate source area perimetrically surrounded by a narrow gate area. The modular areas are separated from each other by regions with the drain area extending parallel and connected at the opposite ends thereof to a second closed region with the drain area forming a device outer peripheral edge.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: January 7, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magrì
  • Patent number: 8552472
    Abstract: An integrated circuit device includes a plurality of pillars protruding from a substrate in a first direction. Each of the pillars includes source/drain regions in opposite ends thereof and a channel region extending between the source/drain regions. A plurality of conductive bit lines extends on the substrate adjacent the pillars in a second direction substantially perpendicular to the first direction. A plurality of conductive shield lines extends on the substrate in the second direction such that each of the shield lines extends between adjacent ones of the bit lines. Related fabrication methods are also discussed.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: October 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hui-jung Kim, Yong-chul Oh, Yoo-sang Hwang, Hyun-woo Chung
  • Patent number: 8530884
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 10, 2013
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin
  • Patent number: 8531226
    Abstract: In one general aspect, an apparatus can include a polarity insensitive input coupled to a gate of a metal-oxide-semiconductor field effect transistor (MOSFET) device. The MOSFET device can have a gate dielectric rating greater than twenty-five volts. The apparatus can also include a fixed polarity output coupled to a source of the MOSFET device.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: September 10, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph D. Montalbo, Steven Sapp
  • Patent number: 8482062
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: July 9, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Patent number: 8436419
    Abstract: A semiconductor device includes a high-breakdown-voltage transistor having a semiconductor layer. The semiconductor layer has an element portion and a wiring portion. The element portion has a first wiring on a front side of the semiconductor layer and a backside electrode on a back side of the semiconductor layer. The element portion is configured as a vertical transistor that causes an electric current to flow in a thickness direction of the semiconductor layer between the first wiring and the backside electrode. The backside electrode is elongated to the wiring portion. The wiring portion has a second wiring on the front side of the semiconductor layer. The wiring portion and the backside electrode provide a pulling wire that allows the electric current to flow to the second wiring.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 7, 2013
    Assignee: DENSO CORPORATION
    Inventors: Akira Yamada, Nozomu Akagi
  • Patent number: 8421147
    Abstract: A MOS transistor having an increased gate-drain capacitance is described. One embodiment provides a drift zone of a first conduction type. At least one transistor cell has a body zone, a source zone separated from the drift zone by the body zone, and a gate electrode, which is arranged adjacent to the body zone and which is dielectrically insulated from the body zone by a gate dielectric. At least one compensation zone of the first conduction type is arranged in the drift zone. At least one feedback electrode is arranged at a distance from the body zone, which is dielectrically insulated from the drift zone by a feedback dielectric and which is electrically conductively connected to the gate electrode.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 16, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Michael Treu
  • Patent number: 8378417
    Abstract: A semiconductor device includes a semiconductor substrate; a well of a first conductivity type in the semiconductor substrate; a first element; and a first vertical transistor. The first element supplies potential to the well, the first element being in the well. The first element may include, but is not limited to, a first pillar body of the first conductivity type. The first pillar body has an upper portion that includes a first diffusion layer of the first conductivity type. The first diffusion layer is greater in impurity concentration than the well. The first vertical transistor is in the well. The first vertical transistor may include a second pillar body of the first conductivity type. The second pillar body has an upper portion that includes a second diffusion layer of a second conductivity type.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: February 19, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Kazuo Ogawa, Yoshihiro Takaishi
  • Patent number: 8310003
    Abstract: A charge accumulation region of a first conductivity type is buried in a semiconductor substrate. A charge transfer destination diffusion layer of the first conductivity type is formed on a surface of the semiconductor substrate. A transfer gate electrode is formed on the charge accumulation region, and charge is transferred from the charge accumulation region to the charge transfer destination diffusion layer.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: November 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yusuke Kohyama
  • Patent number: 8264033
    Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: September 11, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
  • Patent number: 8247847
    Abstract: A solid-state imaging device including a first transfer electrode portion and a second transfer electrode portion having a pattern area ratio higher than that of the first transfer electrode portion. The first transfer electrode portion includes a plurality of first transfer electrodes having a single-layer structure of metal material. The second transfer electrode portion includes a plurality of second transfer electrodes having a single-layer structure of polycrystalline silicon or amorphous silicon.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: August 21, 2012
    Assignee: Sony Corporation
    Inventors: Kaori Takimoto, Masayuki Okada, Takeshi Takeda
  • Patent number: 7956387
    Abstract: A transistor, which is formed in a semiconductor substrate having a top surface, includes first and second source/drain regions, a channel connecting the first and second source/drain regions, and a gate electrode for controlling an electrical current flowing in the channel. The gate electrode is disposed in a lower portion of a gate groove defined in the top surface of the semiconductor substrate. The upper portion of the groove is filled with an insulating material. The channel includes a fin-like portion in the shape of a ridge having a top side and two lateral sides in a cross-section perpendicular to a direction defined by a line connecting the first and second source/drain regions. The gate electrode encloses the channel at the top side and the two lateral sides thereof.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: June 7, 2011
    Assignee: Qimonda AG
    Inventor: Till Schloesser
  • Patent number: 7923717
    Abstract: A switching device has an S (Superconductor)-N (Normal Metal)-S superlattice to control the stream of electrons without any dielectric materials. Each layer of said Superconductor has own terminal. The superlattice spacing is selected based on “Dimensional Crossover Effect”. This device can operate at a high frequency without such energy losses as devices breaking the superconducting state. The limit of the operation frequency in the case of the Nb/Cu superlattice is expected to be in the order of 1018 Hz concerning plasmon loss energy of the normal metals (Cu; in the order of 103 eV).
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: April 12, 2011
    Inventor: Katsuyuki Tsukui
  • Patent number: 7920198
    Abstract: A method of transferring charge from a photosensitive array using a plurality of vertical shift registers, each having a plurality of vertical elements including first and last vertical element is disclosed The vertical shift registers are capable of transferring charge in a first direction from the first to the last vertical element The method also includes using at least one horizontal shift register having a plurality of horizontal elements. Each of the horizontal elements is arranged to receive charge transferred from the last vertical element of a respective one of the plurality of vertical shift registers, and shift the charge in a horizontal direction. The method includes operating the horizontal shift register during a plurality of horizontal operating intervals and operating the plurality of vertical shift registers during at least a portion of the plurality of horizontal operating intervals.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: April 5, 2011
    Assignee: Analog Devices, Inc.
    Inventors: David P. Foley, Eitake Ibaragi
  • Patent number: 7888712
    Abstract: A semiconductor device includes a first conductive type SiC semiconductor substrate; a second conductive type well formed on the SiC semiconductor substrate; a first impurity diffusion layer formed by introducing a first conductive type impurity so as to be partly overlapped with the well in a region surrounding the well; a second impurity diffusion layer formed by introducing the first conductive type impurity in a region spaced apart for a predetermined distance from the impurity diffusion layer in the well; and a gate electrode opposed to a channel region between the first and the second impurity diffusion layers with gate insulating film sandwiched therebetween.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: February 15, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Mineo Miura
  • Patent number: 7858481
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: December 28, 2010
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Patent number: 7732843
    Abstract: Forming an impurity region 6 and an impurity region 5 having a lower concentration than the impurity region 6 in a lower layer region of a gate electrode close to the boundary with a signal electron-voltage conversion section of a horizontal CCD outlet makes it possible to smooth a potential distribution at the time of transfer, improve the transfer efficiency, increase the number of saturated electrons and reduce variations in the transfer efficiency and variations in saturation.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: June 8, 2010
    Assignee: Panasonic Corporation
    Inventor: Keishi Tachikawa
  • Patent number: 7704836
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 27, 2010
    Assignee: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 7648878
    Abstract: A pad oxide layer is formed on a substrate. A pad nitride layer is formed on the pad oxide layer. The pad nitride layer and the pad oxide layer are patterned. Predetermined portions of the substrate are etched using the pad nitride layer as an etch barrier to thereby form trenches used as device isolation regions. The trenches are filled with an insulation layer to thereby form device isolation regions. The pad nitride layer is removed. Recesses are formed by etching predetermined portions of the pad oxide layer and the substrate. The pad oxide layer is removed. A gate oxide layer is formed on the recesses and on the substrate. Gate structures of which bottom portions are buried in the recesses on the gate oxide layer are formed.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: January 19, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Tae-Woo Jung
  • Patent number: 7586130
    Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: September 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi
  • Patent number: 7557390
    Abstract: A solid image capturing element comprising a plurality of vertical shift registers arranged to each correspond to a column of a plurality of light receiving pixels in a matrix arrangement, a horizontal shift register provided on an output side of the plurality of vertical shift registers, and an output section provided on an output side of the horizontal shift register. In this solid image capturing element, a reverse conductive semiconductor region is formed over one major surface of one conductive semiconductor substrate, the plurality of light receiving pixels, the plurality of vertical shift registers, the horizontal shift register, and the output section are formed in the semiconductor region, and a portion of the semiconductor region where the output section is formed has a higher dopant concentration than the portion of the semiconductor region where the horizontal shift register is formed.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: July 7, 2009
    Assignee: Sanyo Electric co., Ltd.
    Inventors: Yoshihiro Okada, Yuzo Otsuru
  • Patent number: 7538366
    Abstract: A nitride semiconductor device includes: a conductive substrate; a first semiconductor layer provided on the substrate; a second semiconductor layer provided on the first semiconductor layer; a third semiconductor layer on the second semiconductor layer; a first main electrode connected to the third semiconductor layer; a second main electrode connected to the third semiconductor layer; and a control electrode provided on the third semiconductor layer. The first semiconductor layer is made of AlXGa1?XN (0?X?1) of a first conductivity type. The second semiconductor layer is made of a first nitride semiconductor. The third semiconductor layer is made of a second nitride semiconductor which is undoped or of n-type and has a wider bandgap than the first nitride semiconductor.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: May 26, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Akira Yoshioka, Hidetoshi Fujimoto, Yasunobu Saito, Takao Noda, Tomohiro Nitta, Yorito Kakiuchi
  • Patent number: 7510955
    Abstract: A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region is provided. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 31, 2009
    Assignee: ProMOS Technologies Inc.
    Inventor: Hsiao-Che Wu
  • Patent number: 7479669
    Abstract: Transistors and/or methods of fabricating transistors that include a source contact, drain contact and gate contact are provided. In some embodiments, a channel region is provided between the source and drain contacts and at least a portion of the channel regions includes a hybrid layer comprising semiconductor material. In particular embodiments of the present invention, the transistor is a current aperture transistor. The channel region may include pendeo-epitaxial layers or epitaxial laterally overgrown layers. Transistors and methods of fabricating current aperture transistors that include a trench that extends through the channel and barrier layers and includes semiconductor material therein are also provided.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: January 20, 2009
    Assignee: Cree, Inc.
    Inventor: Adam William Saxler
  • Patent number: 7459744
    Abstract: A programmable storage device includes a first diffusion region underlying a portion of a first trench defined in a semiconductor substrate and a second diffusion region occupying an upper portion of the substrate adjacent to the first trench. The device includes a charge storage stack lining sidewalls and a portion of a floor of the first trench. The charge storage stack includes a layer of discontinuous storage elements (DSEs). Electrically conductive spacers formed on opposing sidewalls of the first trench adjacent to respective charge storage stacks serve as control gates for the device. The DSEs may be silicon, polysilicon, metal, silicon nitride, or metal nitride nanocrystals or nanoclusters. The storage stack includes a top dielectric of CVD silicon oxide overlying the nanocrystals overlying a bottom dielectric of thermally formed silicon dioxide. The device includes first and second injection regions in the layer of DSEs proximal to the first and second diffusion regions.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: December 2, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong M. Hong, Chi-Nan Li
  • Patent number: 7425735
    Abstract: A phase-changeable memory device includes a phase-changeable material pattern and first and second electrodes electrically connected to the phase-changeable material pattern. The first and second electrodes are configured to provide an electrical signal to the phase-changeable material pattern. The phase-changeable material pattern includes a first phase-changeable material layer and a second phase-changeable material layer. The first and second phase-changeable material patterns have different chemical, physical, and/or electrical characteristics. For example, the second phase-changeable material layer may have a greater resistivity than the first phase-changeable material layer. For instance, the first phase-changeable material layer may include nitrogen at a first concentration, and the second phase-changeable material layer may include nitrogen at a second concentration that is greater than the first concentration. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: September 16, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Hee Park, Ju-Chul Park, Jun-Soo Bae, Bong-Jin Kuh, Yong-Ho Ha
  • Patent number: 7420235
    Abstract: In the solid-state imaging device of the present invention having a photoelectric conversion section and a charge transfer section equipped with a charge transfer electrode for transferring an electric charge generated in the photoelectric conversion section, the charge transfer electrode has an alternate arrangement of a first layer electrode including a first layer electrically conducting film and a second layer electrode including a second layer electrically conducting film, which are formed on a gate oxide film including a laminate film consisting of a silicon oxide film and a metal oxide thin film, and the first layer electrode and the second layer electrode are separated by insulation with an interelectrode insulating film including a sidewall insulating film formed by a CVD process to cover the lateral wall of the first layer electrode.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 2, 2008
    Assignee: Fujifilm Corporation
    Inventor: Maki Saito
  • Patent number: 7314765
    Abstract: A switching device has an S (Superconductor)-N (Normal Metal)-S superlattice to control the stream of electrons without any dielectric materials. Each layer of said Superconductor has own terminal. The superlattice spacing is selected based on “Dimensional Crossover Effect”. This device can operate at a high frequency without such energy losses as devices breaking the superconducting state. The limit of the operation frequency in the case of the Nb/Cu superlattice is expected to be in the order of 1018 Hz concerning plasmon loss energy of the normal metals (Cu; in the order of 103 eV).
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: January 1, 2008
    Inventor: Katsuyuki Tsukui
  • Patent number: 7276772
    Abstract: A semiconductor device, including: a semiconductor substrate of a first conduction type; an active region used as a function-element-forming region on the semiconductor substrate; a low-resistance region of a second conduction type formed on an outermost periphery of the active region to surround the active region and having contact with the semiconductor substrate, the second conduction type being different from the first conduction type; and an electrode connected to the function element and the low-resistance region. A diode is formed by the semiconductor substrate and the low-resistance region. The function element and the diode are electrically connected in parallel between the semiconductor substrate and the electrode, and, between the semiconductor substrate and the electrode, resistance of the low-resistance region is lower than resistance of an electrical conduction path via the function element.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: October 2, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Kenichi Yoshimochi
  • Patent number: 7242058
    Abstract: A semiconductor device has a semiconductor substrate and a trench region having at least one trench disposed on a surface of the semiconductor substrate and having a trench length, a trench width and a trench depth. A well region is disposed in the substrate and surrounds the trench region. A source region and a drain region are disposed above the well region and around respective inner walls of the trench. The source region and the drain region are disposed in confronting relation relative one another and have a conductivity type different from a conductivity type of the well region. A gate insulating film is disposed on the surface of the semiconductor substrate and on an inner base and the inner walls of the trench. A gate electrode is disposed on the gate insulating film. A length of the gate electrode is shorter than the trench length and equal to a distance between the source region and the drain region.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: July 10, 2007
    Assignee: Seiko Instruments Inc.
    Inventor: Tomomitsu Risaki
  • Patent number: 7205628
    Abstract: A semiconductor device, including: a semiconductor substrate of a first conduction type; an active region used as a function-element-forming region on the semiconductor substrate; a low-resistance region of a second conduction type formed on an outermost periphery of the active region to surround the active region and having contact with the semiconductor substrate, the second conduction type being different from the first conduction type; and an electrode connected to the function element and the low-resistance region. A diode is formed by the semiconductor substrate and the low-resistance region. The function element and the diode are electrically connected in parallel between the semiconductor substrate and the electrode, and, between the semiconductor substrate and the electrode, resistance of the low-resistance region is lower than resistance of an electrical conduction path via the function element.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: April 17, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Kenichi Yoshimochi