Inversion Layer Capacitor Patents (Class 257/313)
  • Patent number: 10903199
    Abstract: The present invention relates to a method for designing a die-based vehicle controller-only semiconductor and a vehicle controller-only semiconductor manufactured by the same, and breaks the conventional semiconductor process to design and manufacture a novel conceptual vehicle controller-only semiconductor, EIP (ECU in Package), through a fusion of a new semiconductor process technique with a controller system technique, thereby obtaining an effect of capable of implementing a high performance/high quality semiconductor in micro-miniature size/ultra-light weight in a short time period.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: January 26, 2021
    Assignee: Hyundai Autron Co., Ltd.
    Inventors: Jae-Ho Chang, Eun-Jung Kim, Jae-Woo Joung
  • Patent number: 10141426
    Abstract: According to an embodiment of the present invention, a method for forming a semiconductor device includes pattering a first fin in a semiconductor substrate, and forming a liner layer over the first fin. The method further includes removing a first portion of the liner layer, and removing a portion of the exposed semiconductor substrate to form a first cavity. The method also includes performing an isotropic etching process to remove portions of the semiconductor substrate in the first cavity and form a first undercut region below the liner layer, growing a first epitaxial semiconductor material in the first undercut region and the first cavity, and performing a first annealing process to drive dopants from the first epitaxial semiconductor material into the first fin to form a first source/drain layer under the first fin and in portions of the semiconductor substrate.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: November 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACAHINES CORPORATION
    Inventors: Brent A. Anderson, Huiming Bu, Fee Li Lie, Shogo Mochizuki, Junli Wang
  • Patent number: 10134917
    Abstract: A memory device including a first conductivity type vertically orientated semiconductor device in a first region of a substrate and a second conductivity type vertically orientated semiconductor device in a second region of the substrate. A common floating gate structure in simultaneous electrical communication with a first fin structure of the first conductivity type vertically orientated semiconductor device and a second fin structure of the second conductivity type vertically orientated semiconductor device.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: November 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Pouya Hashemi, Tak H. Ning, Alexander Reznicek
  • Patent number: 9768184
    Abstract: A manufacturing method of a semiconductor memory device is provided. The semiconductor memory device can suppress current leakage generated during a programming action so that the programming action can be executed with high reliability. A flash memory of this invention has a memory array in which NAND type strings are formed. Gates of memory cells in row direction of strings are commonly connected to a word line. Gates of bit line select transistors are commonly connected to a select gate line (SGD). Gates of source line select transistors are commonly connected to a select gate line (SGS). An interval (S4) of the select gate line (SGS) and a gate of a word line (WL0) adjacent to the select gate line (SGS) is larger than an interval (S1) of the select gate line (SGD) and a gate of a word line (WL7) adjacent to the select gate line (SGD).
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: September 19, 2017
    Assignee: Winbond Electronics Corp.
    Inventors: Masaru Yano, Pin-Yao Wang
  • Patent number: 9764950
    Abstract: A semiconductor arrangement includes a substrate region and a first semiconductor column projecting from the substrate region. The semiconductor arrangement includes a second semiconductor column projecting from the substrate region and adjacent the first semiconductor column. The second semiconductor column is separated a first distance from the first semiconductor column along a first axis. The semiconductor arrangement includes a third semiconductor column projecting from the substrate region and adjacent the first semiconductor column. The third semiconductor column is separated a second distance from the first semiconductor column along a second axis that is substantially perpendicular to the first axis. The second distance is different than the first distance.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: September 19, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Jean-Pierre Colinge, Ta-Pen Guo, Chih-Hao Wang, Carlos H. Diaz
  • Patent number: 9419606
    Abstract: Among other things, one or more stacked semiconductor arrangements or techniques for applying voltage schemes to such stacked semiconductor arrangements is provided. A stacked semiconductor arrangement comprises one or more tiers, such as a first tier comprising a first semiconductor structure, a second tier comprising a second semiconductor structure, or other tiers. A first voltage domain is applied to the first tier, such as a first substrate voltage of 0v and a first power voltage of 1.6v. A second voltage domain is applied to the second tier, such as a second substrate voltage of 1.6v and a second power voltage of 3.3v. In this way, semiconductor structures having different operational voltages are separated into different tiers, such as to mitigate damage to a lower voltage integrated circuit from a relatively higher voltage for a higher voltage integrated circuit.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: August 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Chen-Ting Ko
  • Patent number: 9397234
    Abstract: A pumping capacitor is provided. The pumping capacitor includes a substrate, a P-type gate layer on the substrate, and a gate dielectric layer between the substrate and the P-type gate layer. The substrate includes an N-type well region and an N-type doping region in the N-type well region.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: July 19, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-min Choi, Ju-youn Kim, Hyun-jo Kim, Mu-kyeng Jung
  • Patent number: 9384815
    Abstract: Memory cells and operation methods thereof are provided. A memory device includes a number of memory cells. Each of the memory cells includes a first transistor, a switch and a capacitor. The first transistor has a drain connected to a corresponding bit-line. The switch has a first terminal connected to a source of the first transistor and a second terminal coupled to a reference voltage. The capacitor has a first plate and a second plate, and the first plate of the capacitor is electrically connected to a gate of the first transistor. The second plate of the capacitor is connected to a corresponding word line. The switch is turned off when the memory cell is not selected to perform a write operation or a read operation.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: July 5, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Hsien Chen, Hau-Yan Lu, Liang-Tai Kuo, Chun-Yao Ko, Felix Ying-Kit Tsui
  • Patent number: 9136060
    Abstract: A method of fabricating a capacitor in a semiconductor substrate. The semiconductor substrate is doped to have a low resistivity. A second electrode, insulated from a first electrode, is formed over a front side surface and connected by a metal-filled via to the back side surface. The via may be omitted and the second electrode may be in electrical contact with the substrate or may be formed on top of the dielectric layer, yielding a pair of series-connected capacitors. ESD protection for the capacitor is provided by a pair of oppositely-directed diodes formed in the substrate connected in parallel with the capacitor. Capacitance is increased while maintaining a low effective series resistance. Electrodes include a plurality of fingers, which are interdigitated with the fingers of other electrode. The capacitor is fabricated in a wafer-scale process with other capacitors, where capacitors are separated from each other by a dicing technique.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 15, 2015
    Assignee: VISHAY-SILICONIX
    Inventors: Haim Goldberger, Sik Lui, Jacek Korec, Y. Mohammed Kasem, Harianto Wong, Jack Van Den Heuvel
  • Patent number: 8952442
    Abstract: A method includes forming Shallow Trench Isolation (STI) regions to separate a first active region and a second active region of a semiconductor substrate from each other, etching a portion of the STI regions that contacts a sidewall of the second active region to form a recess, and implanting a top surface layer and a side surface layer of the second active region to form an implantation region. The side surface layer of the second active region extends from the sidewall of the second active region into the second active region. An upper portion of the top surface layer and an upper portion of the side surface layer are oxidized to form a capacitor insulator. A floating gate is formed to extend over the first active region and the second active region. The floating gate includes a portion extending into the recess.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Hung Fu, Chun-Yao Ko, Tuo-Hsin Chien, Ting-Chen Hsu
  • Patent number: 8928013
    Abstract: An organic electroluminescence device includes a first electrode, a second electrode located on a light extraction side and having a metal film, and an organic compound layer provided between the first electrode and the second electrode and including an emission layer. In addition, a first inorganic protective layer is in direct contact with the second electrode and has a specified thickness.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 6, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yojiro Matsuda
  • Patent number: 8890223
    Abstract: An integrated circuit includes isolation capacitors which include a silicon dioxide dielectric layer and a polymer dielectric layer over the layer of silicon dioxide. The silicon dioxide dielectric layer and the polymer dielectric layer extend across the integrated circuit. Top plates of the isolation capacitors have bond pads for wire bonds or bump bonds. Bottom plates of the isolation capacitors are connected to components of the integrated circuit. Other bond pads are connected to components in the integrated circuit through vias through the silicon dioxide dielectric layer and the polymer dielectric layer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: November 18, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas Dyer Bonifield, Byron Williams, Shrinivasan Jaganathan
  • Patent number: 8785998
    Abstract: A semiconductor memory device includes a first pair of pillars extending from a substrate to form vertical channel regions, the first pair of pillars having a first pillar and a second pillar adjacent to each other, the first pillar and the second pillar arranged in a first direction, a first bit line disposed on a bottom surface of a first trench formed between the first pair of pillars, the first bit line extending in a second direction that is substantially perpendicular to the first direction, a first contact gate disposed on a first surface of the first pillar with a first gate insulating layer therebetween, a second contact gate disposed on a first surface of the second pillar with a second gate insulating layer therebetween, the first surface of the first pillar and the first surface of the second pillar face opposite directions, and a first word line disposed on the first contact gate and a second word line disposed on the second contact gate, the word lines extending in the first direction.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-woo Chung, Yong-chul Oh, Yoo-sang Hwang, Gyo-young Jin, Hyeong-sun Hong, Dae-ik Kim
  • Patent number: 8742485
    Abstract: In one exemplary embodiment of the invention, a method includes: providing an inversion mode varactor having a substrate, a backgate layer overlying the substrate, an insulating layer overlying the backgate layer, a semiconductor layer overlying the insulating layer and at least one metal-oxide semiconductor field effect transistor (MOSFET) device disposed upon the semiconductor layer, where the semiconductor layer includes a source region and a drain region, where the at least one MOSFET device includes a gate stack defining a channel between the source region and the drain region, where the gate stack has a gate dielectric layer overlying the semiconductor layer and a conductive layer overlying the gate dielectric layer; and applying a bias voltage to the backgate layer to form an inversion region in the semiconductor layer at an interface between the semiconductor layer and the insulating layer.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
  • Patent number: 8637366
    Abstract: A memory cell according to the present invention comprises a bottom conductor, a doped semiconductor pillar, and a top conductor. The memory cell does not include a dielectric rupture antifuse separating the doped semiconductor pillar from either conductor, or within the semiconductor pillar. The memory cell is formed in a high-impedance state, in which little or no current flows between the conductors on application of a read voltage. Application of a programming voltage programs the cell, converting the memory cell from its initial high-impedance state to a low-impedance state. A monolithic three dimensional memory array of such cells can be formed, comprising multiple memory levels, the levels monolithically formed above one another.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: January 28, 2014
    Assignee: Sandisk 3D LLC
    Inventors: S. Brad Herner, Andrew J. Walker
  • Patent number: 8564040
    Abstract: In one exemplary embodiment of the invention, a method includes: providing an inversion mode varactor having a substrate, a backgate layer overlying the substrate, an insulating layer overlying the backgate layer, a semiconductor layer overlying the insulating layer and at least one metal-oxide semiconductor field effect transistor (MOSFET) device disposed upon the semiconductor layer, where the semiconductor layer includes a source region and a drain region, where the at least one MOSFET device includes a gate stack defining a channel between the source region and the drain region, where the gate stack has a gate dielectric layer overlying the semiconductor layer and a conductive layer overlying the gate dielectric layer; and applying a bias voltage to the backgate layer to form an inversion region in the semiconductor layer at an interface between the semiconductor layer and the insulating layer.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
  • Patent number: 8357618
    Abstract: A method for doubling the frequency of a lithographic process using a photo-resist template mask is described. A device layer having a photo-resist layer formed thereon is first provided. The photo-resist layer is patterned to form a photo-resist template mask. A spacer-forming material layer is deposited over the photo-resist template mask. The spacer-forming material layer is etched to form a spacer mask and to expose the photo-resist template mask. The photo-resist template mask is then removed and an image of the spacer mask is finally transferred to the device layer.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Dennis Bencher, Huixiong Dai, Li Yan Miao, Hao Chen
  • Patent number: 8227846
    Abstract: A decoupling capacitor includes a pair of MOS capacitors formed in wells of opposite plurality. Each MOS capacitor has a set of well-ties and a high-dose implant, allowing high frequency performance under accumulation or depletion biasing. The top conductor of each MOS capacitor is electrically coupled to the well-ties of the other MOS capacitor and biased consistently with logic transistor wells. The well-ties and/or the high-dose implants of the MOS capacitors exhibit asymmetry with respect to their dopant polarities.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 24, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Andrew E. Carlson
  • Patent number: 8188516
    Abstract: Techniques for using gate arrays to create capacitive structures within an integrated circuit are disclosed. Embodiments comprise placing a gate array of P-type field effect transistors (P-fets) and N-type field effect transistors (N-fets) in an integrated circuit design, coupling drains and sources for one or more P-fets and gates for one or more N-fets to a power supply ground, and coupling gates for the one or more P-fets and the drains and sources for one or more N-fets to a positive voltage of the power supply. In some embodiments, source-to-drain leakage current for capacitive apparatuses of P-fets and N-fets are minimized by biasing one or more P-fets and one or more N-fets to the positive voltage and the ground, respectively. In other embodiments, the capacitive structures may be implemented using fusible elements to isolate the capacitive structures in case of shorts.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: May 29, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anthony Correale, Jr., Benjamin J. Bowers, Douglass T. Lamb, Nishith Rohatgi
  • Patent number: 8154083
    Abstract: The present invention relates to a semiconductor device and a method of manufacturing the same. A high-resistance silicon wafer is manufactured in such a manner that a large-sized silicon wafer manufactured by the Czochralski method is irradiated with neutrons, and high-resistance and low-resistance elements are simultaneously formed on the high-resistance silicon wafer. Thus, the manufacturing cost can be remarkably saved, and the reliability of products can be enhanced.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 10, 2012
    Assignee: Petari Incorporation
    Inventor: Young Jin Park
  • Patent number: 8101987
    Abstract: A semiconductor device is disclosed. The semiconductor device includes: a first electrode, disposed over a first region of a substrate; and a conductive layer, disposed over the substrate, including a second electrode disposed above the first electrode, wherein the second electrode comprises a mesh main part having a plurality of openings, and a plurality of extending parts, wherein the extending parts are connected to the mesh main part at periphery of the openings and extend toward a surface of the first electrode.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 24, 2012
    Assignee: United Microelectronics Corp.
    Inventor: Hui-Shen Shih
  • Patent number: 8018025
    Abstract: A nonvolatile memory cell includes: a rail-shaped first conductor formed at a first height above a substrate; a rail-shaped second conductor formed above the first conductor; and a vertically oriented first pillar comprising a p-i-n first diode; wherein the first pillar is disposed between the second conductor and the first conductor; wherein the first diode comprises an intrinsic or lightly doped region; and wherein the intrinsic or lightly doped region has a first thickness of about 300 angstroms or greater. Numerous additional aspects are provided.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: September 13, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Steven J. Radigan
  • Patent number: 7982255
    Abstract: A flash memory device wherein the floating gate of the flash memory is defined by a recessed access device. The use of a recessed access device results in a longer channel length with less loss of device density. The floating gate can also be elevated above the substrate a selected amount so as to achieve a desirable coupling between the substrate, the floating gate and the control gate comprising the flash cell.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: July 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Todd Abbott
  • Patent number: 7803669
    Abstract: An organic thin film transistor substrate includes a gate line formed on a substrate, a data line intersecting the gate line and defining a subpixel area, an organic thin film transistor including a gate electrode connected to the gate line, a source electrode connected to the data line, a drain electrode facing the source electrode, and an organic semiconductor layer forming a channel between the source and drain electrodes, a passivation layer parallel with the gate line, for covering the organic semiconductor layer and peripheral regions of the organic semiconductor layer, and a bank insulating layer for determining the position of the organic semiconductor layer and the passivation layer.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Hwan Cho, Bo Sung Kim, Keun Kyu Song
  • Patent number: 7754564
    Abstract: A capacitor for a single-poly floating gate device is fabricated on a semiconductor substrate along with low and high voltage transistors. Each transistor has a gate width greater than or equal to a minimum gate width of the associated process. A dielectric layer is formed over the substrate, and a patterned polysilicon structure is formed over the dielectric layer. The patterned polysilicon structure includes one or more narrow polysilicon lines, each having a width less than the minimum gate width. The LDD implants for low and high voltage transistors of the same conductivity type are allowed to enter the substrate, using the patterned polysilicon structure as a mask. A thermal drive-in cycle results in a continuous diffusion region that merges under the narrow polysilicon lines. Contacts formed adjacent to the narrow polysilicon lines and a metal-1 trace connected to the contacts may increase the resulting capacitance.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 13, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Amos Fenigstein, Zohar Kuritsky, Assaf Lahav, Ira Naot, Yakov Roizin
  • Patent number: 7728362
    Abstract: Using gate arrays to create capacitive structures within an integrated circuit are disclosed. Embodiments comprise having a gate array of P-type field effect transistors (P-fets) and N-type field effect transistors (N-fets) in an integrated circuit design, coupling drains and sources for one or more P-fets and gates for one or more N-fets to a power supply ground, and coupling gates for the one or more P-fets and the drains and sources for one or more N-fets to a positive voltage of the power supply. In some embodiments, source-to-drain leakage current for capacitive apparatuses of P-fets and N-fets are minimized by biasing one or more P-fets and one or more N-fets to the positive voltage and the ground, respectively. In other embodiments, the capacitive structures may be implemented using fusible elements to isolate the capacitive structures in case of shorts.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anthony Correale, Jr., Benjamin J. Bowers, Douglass T. Lamb, Nishith Rohatgi
  • Patent number: 7700984
    Abstract: It is an object of the present invention to provide a semiconductor device capable of additionally recording data at a time other than during manufacturing and preventing forgery due to rewriting and the like. Moreover, another object of the present invention is to provide an inexpensive, nonvolatile, and highly-reliable semiconductor device. A semiconductor device includes a first conductive layer, a second conductive layer, and an organic compound layer between the first conductive layer and the second conductive layer, wherein the organic compound layer can have the first conductive layer and the second conductive layer come into contact with each other when Coulomb force generated by applying potential to one or both of the first conductive layer and the second conductive layer is at or over a certain level.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 20, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventor: Mikio Yukawa
  • Patent number: 7700993
    Abstract: A CMOS EPROM, EEPROM or inverter device includes an nFET device with a thin gate dielectric layer and a pFET device juxtaposed with the nFET device with a thick gate dielectric layer and a floating gate electrode. The thick gate dielectric layer is substantially thicker than the thin gate dielectric layer. A common drain node connected both FET devices has no external connection in the case of a memory device and has an external connection in the case of an inverter. There are external circuit connections to the source regions of both FET devices and to the gate electrode of the nFET device. The pFET and nFET devices can be planar, vertical or FinFET devices.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak H. Ning, John M. Safran
  • Patent number: 7671396
    Abstract: A capacitor for a single-poly floating gate device is fabricated on a semiconductor substrate along with low and high voltage transistors. Each transistor has a gate width greater than or equal to a minimum gate width of the associated process. A dielectric layer is formed over the substrate, and a patterned polysilicon structure is formed over the dielectric layer. The patterned polysilicon structure includes one or more narrow polysilicon lines, each having a width less than the minimum gate width. The LDD implants for low and high voltage transistors of the same conductivity type are allowed to enter the substrate, using the patterned polysilicon structure as a mask. A thermal drive-in cycle results in a continuous diffusion region that merges under the narrow polysilicon lines. Contacts formed adjacent to the narrow polysilicon lines and a metal-1 trace connected to the contacts may increase the resulting capacitance.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: March 2, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Amos Fenigstein, Zohar Kuritsky, Asaf Lahav, Ira Naot, Yakov Roizin
  • Patent number: 7642589
    Abstract: A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: January 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Si-Young Choi, Byeong-Chan Lee, Deok-Hyung Lee, In-Soo Jung
  • Patent number: 7554146
    Abstract: In a metal-insulator-metal (MIM) capacitor and a method of fabricating the MIM capacitor, a metal-insulator-metal (MIM) capacitor comprises: a lower electrode pattern which is formed on a substrate and includes a conductive layer having a portion as a lower interconnect; a dielectric layer on the lower electrode pattern; a first upper electrode pattern on the dielectric layer; an interlayer insulating layer which covers the first upper electrode pattern, the dielectric layer, and the lower electrode pattern and has a planarized upper surface; a second upper electrode opening pattern formed in the interlayer insulating layer to expose the first upper electrode pattern; a second upper electrode which fills the opening pattern and has an upper surface that is substantially level with an upper surface of the interlayer insulating layer; and an upper interconnect on the interlayer insulating layer and contacts the second upper electrode.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: June 30, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-jun Won, Dae-jin Kwon
  • Patent number: 7528468
    Abstract: A capacitor assembly (82) is formed on a substrate (20). The capacitor assembly a first conductive plate (38) and a second conductive plate (60) formed over the substrate such that the second conductive plate is separated from the first conductive plate by a distance. A conductive trace (40) is formed over the substrate that is connected to the first conductive plate and extends away from the capacitor assembly. A conductive shield (62) is formed over at least a portion of the conductive trace that is separated from the first and second conductive plates to control a fringe capacitance between the second conductive plate and the conductive trace.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: May 5, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Andrew C. McNeil, Dubravka Bilic, Stephen R. Hooper
  • Patent number: 7485915
    Abstract: A semiconductor device includes a capacitor which includes a capacitor insulating film at least including a first insulating film and a ferroelectric film formed in contact with the first insulating film, containing a compound of a preset metal element and a constituent element of the first insulating film as a main component and having a dielectric constant larger than that of the first insulating film, a first capacitor electrode formed of one of Cu and a material containing Cu as a main component, and a second capacitor electrode formed to sandwich the capacitor insulating film in cooperation with the first capacitor electrode.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: February 3, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hayato Nasu, Takamasa Usui, Hideki Shibata
  • Patent number: 7459741
    Abstract: A semiconductor memory device excellent in data holding characteristics even when a cell area is reduced is disclosed. According to one aspect of the present invention, a semiconductor memory device comprises a transistor including a source, a drain and a channel region disposed in a semiconductor substrate, and including a gate electrode disposed through a gate insulator on a surface of the semiconductor substrate of the channel region, a capacitor connected to the channel region, a first wiring line electrically connected to the gate electrode, and a second wiring line electrically connected to the drain.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: December 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kidoh, Hideaki Aochi, Ryota Katsumata, Masaru Kito
  • Patent number: 7456459
    Abstract: The present invention discloses capacitors having via connections and electrodes designed such that they provide a low inductance path, thus reducing needed capacitance, while enabling the use of embedded capacitors for power delivery and other uses. One embodiment of the present invention discloses a capacitor comprising the following: a top capacitor electrode and a bottom capacitor electrode, wherein the top electrode is smaller than the bottom electrode, comprising, on all sides of the capacitor; in an array, a multiplicity of vias located on all sides of the top and bottom capacitor electrodes, wherein the top electrode and the vias connecting to the top electrode act as an inner conductor, and the bottom electrode and the vias connecting to the bottom electrode act as an outer conductor.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: November 25, 2008
    Assignee: Georgia Tech Research Corporation
    Inventor: Lixi Wan
  • Publication number: 20080237678
    Abstract: An on-chip memory cell comprises a tri-gate access transistor (145) and a tri-gate capacitor (155). The on-chip memory cell may be an embedded DRAM on a three-dimensional tri-gate transistor and capacitor structures which is fully compatible with existing tri-gate logic transistor fabrication process. Embodiments of the invention use the high fin aspect ratio and inherently superior surface area of the tri-gate transistors to replace the “trench” capacitor in a commodity DRAM with an inversion mode tri-gate capacitor. The tall sidewalls of the tri-gate transistor provide large enough surface area to provide storage capacitance in a small cell area.
    Type: Application
    Filed: March 27, 2007
    Publication date: October 2, 2008
    Inventors: Suman Datta, Jack T. Kavalieros, Brian S. Doyle, Dinesh Somasekhar, Ali Keshavarzi
  • Patent number: 7382014
    Abstract: A semiconductor device with a capacitor includes a lower electrode, a dielectric and an upper electrode on the dielectric layer. The dielectric layer including more than one polycrystalline tantalum oxide layer and more than one separation layer, wherein the polycrystalline tantalum oxide layers and the separation layers are alternately stacked, while one of the polycrystalline tantalum oxide layers is a lowermost layer among the stacked layers.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: June 3, 2008
    Assignee: Elpida Memory, Inc.
    Inventor: Shinpei Iijima
  • Patent number: 7375376
    Abstract: A semiconductor display device with an interlayer insulating film in which surface levelness is ensured with a limited film formation time, heat treatment for removing moisture does not take long, and moisture in the interlayer insulating film is prevented from escaping into a film or electrode adjacent to the interlayer insulating film. A TFT is formed and then a nitrogen-containing inorganic insulating film that transmits less moisture compared to organic resin film is formed so as to cover the TFT. Next, organic resin including photosensitive acrylic resin is applied and an opening is formed by partially exposing the organic resin film to light. The organic resin film where the opening is formed, is then covered with a nitrogen-containing inorganic insulating film which transmits less moisture than organic resin film does.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: May 20, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Murakami, Masahiko Hayakawa, Kiyoshi Kato, Mitsuaki Osame, Takashi Hirosue, Saishi Fujikawa
  • Patent number: 7365403
    Abstract: A semiconductor topography is provided which includes a silicon dioxide layer with a thickness equal to or less than approximately 10 angstroms and a silicon nitride layer arranged upon the silicon dioxide layer. In addition, a method is provided which includes growing an oxide film upon a semiconductor topography in the presence of an ozonated substance and depositing a silicon nitride film upon the oxide film. In some embodiments, the method may include growing the oxide film in a first chamber at a first temperature and transferring the semiconductor topography from the first chamber to a second chamber while the semiconductor topography is exposed to a substantially similar temperature as the first temperature. In either embodiment, the method may be used to form a semiconductor device including an oxide-nitride gate dielectric having an electrical equivalent oxide gate dielectric thickness of less than approximately 20 angstroms.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: April 29, 2008
    Assignee: Cypress Semiconductor Corp.
    Inventor: Krishnaswamy Ramkumar
  • Patent number: 7342276
    Abstract: A semiconductor device, including: a semiconductor material; a conductive element; and a substantially monocrystalline insulator disposed between the semiconductor material and the conductive element and substantially lattice matched to the semiconductor material.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: March 11, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William J. Ooms, Jerald A. Hallmark
  • Patent number: 7342314
    Abstract: The present invention provides a device having a useful structure which is arranged on a substrate and has a useful structure side edge. In addition, an auxiliary structure is arranged on the substrate adjacent to the useful structure, the auxiliary structure having an auxiliary structure side edge, wherein the useful structure side edge is opposite to the auxiliary structure side edge separated by a distance, and wherein the auxiliary structure useful structure distance is dimensioned such that a form of the useful structure side edge or a form of the substrate next to the useful structure side edge differs from a form in a device where there is no auxiliary structure.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: March 11, 2008
    Assignee: Infineon Technologies AG
    Inventors: Jens Bachmann, Klaus Goller, Dirk Grueneberg, Reiner Schwab
  • Patent number: 7326990
    Abstract: A semiconductor device includes a first hydrogen barrier film, a capacitor device formed on the first hydrogen barrier film, and a second hydrogen barrier film formed to cover the capacitor device. The first and second hydrogen barrier films each contain at least one common type of atoms for allowing the first and second hydrogen barrier films to adhere to each other.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: February 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takumi Mikawa, Yuji Judai, Toshie Kutsunai
  • Patent number: 7323708
    Abstract: A phase change memory device includes a lower electrode and a porous dielectric layer having fine pores on the lower electrode. A phase change layer is provided in the fine pores of the porous dielectric layer. An upper electrode is provided on the phase change layer. Related manufacturing methods are also described.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: January 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Ho Lee, Young-Nam Hwang
  • Patent number: 7271052
    Abstract: A single transistor vertical memory gain cell with long data retention times. The memory cell is formed from a silicon carbide substrate to take advantage of the higher band gap energy of silicon carbide as compared to silicon. The silicon carbide provides much lower thermally dependent leakage currents which enables significantly longer refresh intervals. In certain applications, the cell is effectively non-volatile provided appropriate gate bias is maintained. N-type source and drain regions are provided along with a pillar vertically extending from a substrate, which are both p-type doped. A floating body region is defined in the pillar which serves as the body of an access transistor as well as a body storage capacitor. The cell provides high volumetric efficiency with corresponding high cell density as well as relatively fast read times.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7271436
    Abstract: Flash memory integrated circuit devices include an integrated circuit substrate. A cell array on the integrated circuit substrate includes a plurality of cell transistors. A bit line is coupled to ones of the plurality of cell transistors and a first pass transistor is coupled to the bit line. The first pass transistor has a first diffusion structure configured to provide a breakdown voltage higher than that of a second diffusion structure. One or more second pass transistor(s) are coupled to the first pass transistor. The second pass transistor(s) have the second diffusion structure. The second diffusion structure may have a resistance smaller than a resistance of the first diffusion structure.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: September 18, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Sang-Pil Sim, Seung-Keun Lee
  • Patent number: 7265406
    Abstract: The present invention discloses a method including providing a substrate; forming a lower conductor over the substrate; forming a conducting nanostructure over the lower conductor; forming a thin dielectric over the conducting nanostructure; and forming an upper conductor over the thin dielectric. The present invention further discloses a device including a substrate; a lower conductor located over the substrate; a conducting nanostructure located over the lower conductor; a thin dielectric located over the conducting nanostructure; and an upper conductor located over the thin dielectric.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: September 4, 2007
    Assignee: Intel Corporation
    Inventors: Scot A. Kellar, Sarah E. Kim
  • Patent number: 7256438
    Abstract: A capacitor including a first active layer capacitively coupled to a second active layer, the second active layer being capacitively coupled to a third layer, the third layer being capacitively coupled to a fourth layer, wherein an anode of the capacitor is connected to one of the first and second active layers, and a cathode of the capacitor is connected to the other one of the first and second active layers, and wherein the third layer is left floating. The fourth layer may be connected to a supply voltage, such as but not limited to, ground.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: August 14, 2007
    Assignee: Saifun Semiconductors Ltd
    Inventors: Joseph S. Shor, Eduardo Maayan, Yoram Betser
  • Patent number: 7244982
    Abstract: A semiconductor device has a capacitive element including a first conductive film formed on the bottom and wall surfaces of an opening formed in an insulating film on a substrate, a dielectric film formed on the first conductive film, and a second conductive film formed on the dielectric film. The dielectric film of the capacitive element is crystallized. The first and second conductive films are made of a polycrystal of an oxide, a nitride or an oxynitride of a noble metal.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: July 17, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinya Natsume, Shinichiro Hayashi
  • Patent number: 7211875
    Abstract: An N well is disposed in the upper surface of a P type substrate, a gate insulating film and a gate electrode are disposed thereon, and the gate electrode is connected to a gate terminal. Two p+ diffusion regions are placed in two areas in the surface of the N well sandwiching the gate electrode, and the p+ diffusion regions are connected to a ground potential wiring. Further, an n+ diffusion region is disposed in the surface of the N well, and is connected to a well terminal. Accordingly, capacitance is generated between the gate electrode and the N well of a varactor element. When the potential of the gate terminal is decreased, the two p+ diffusion regions absorb positive holes serving as minority carriers from a channel region.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: May 1, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Susumu Kurosawa, Yuki Fujimoto, Yasutaka Nakashiba
  • Patent number: 7199415
    Abstract: Container structures for use in integrated circuits and methods of their manufacture. The container structures have a dielectric cap on the top of a conductive container to reduce the risk of container-to-container shorting by insulating against bridging of conductive debris across the tops of adjacent container structures. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: April 3, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Alan R. Reinberg