Multiple Polysilicon Layers Patents (Class 257/385)
  • Patent number: 6147384
    Abstract: A method of forming a field effect transistor with source and drain on an insulator includes forming a first void region (11) in the outer surface of a semiconductor body (10) and forming a second void region (11) in the outer surface of a semiconductor body. The first void region is separated from the second void region by a portion of the semiconductor body (10). The method further includes depositing a dielectric material in the first void region to form a first insulating region (16) and depositing a dielectric material in the second void region to form a second insulating region (16). The method further includes planarizing the first and second insulating regions to define a planar surface (17).
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: November 14, 2000
    Assignee: Texas Instruments Incorporated
    Inventor: Ih-Chin Chen
  • Patent number: 6147385
    Abstract: A full CMOS SRAM cell having the capability of having a reduced aspect ratio is described. The SRAM cell includes first and second transfer transistors of n-channel types, first and second driving transistors of the n-channel types and first and second load transistors of p-channel types. Each of the transistors has source and drain regions on opposite sides of a channel region formed in a semiconductor substrate and a gate over the channel region. The cell includes a first common region defined by the drain regions of the first transfer transistor and the first driving transistor connected in series therethrough. A second common region is defined by the drain regions of the second transfer transistor and the second driving transistor connected in series therethrough. The drain region of the first load transistor is disposed adjacent to the first common region between the first and second common regions.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: November 14, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Bong Kim, Ki-Joon Kim, Jong-Mil Youn
  • Patent number: 6137145
    Abstract: A semiconductor topography including integrated circuit gate conductors incorporating dual polysilicon layers is provided. The semiconductor topography includes a semiconductor substrate. A first gate conductor is arranged upon a first gate dielectric and above the semiconductor substrate, and a second gate conductor is arranged upon a second gate dielectric and above the semiconductor substrate. The semiconductor substrate may contain a first active region laterally separated from a second active region by a field region. The first gate conductor may be arranged within the first active region, and the second gate conductor may be arranged within the second active region. Each gate conductor preferably includes a second polysilicon layer portion arranged upon a first polysilicon layer portion. The thicknesses of the first gate conductor and the second gate conductor are preferably equal.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: October 24, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jon D. Cheek, Daniel Kadosh, Mark W. Michael
  • Patent number: 6127706
    Abstract: A buried contact structure on a semiconductor substrate in the present invention is as follows. A gate insulator is on a portion of the substrate and a gate electrode is located over the gate insulator. A gate sidewall structure is on the sidewall of the gate electrode. A lightly doped junction region in the substrate is under the gate sidewall structure. A doped junction region is in the substrate abutting the lightly doped junction region and is located aside from the gate insulator. A doped buried contact region is in the substrate next to the doped junction region. An interconnect is located over a first portion of the doped buried contact region.The buried contact structure can further include a shielding layer over a second portion of the doped buried contact region. For forming more connections, the buried contact structure can further have a dielectric layer over the interconnect, the substrate, the gate sidewall structure, and the gate electrode.
    Type: Grant
    Filed: April 23, 1998
    Date of Patent: October 3, 2000
    Assignee: Texas Instruments - Acer Incorporated
    Inventor: Shye-Lin Wu
  • Patent number: 6100592
    Abstract: Integrated circuitry and a method of forming a contact landing pad are described. The method includes, in one embodiment, providing a substrate having a plurality of components which are disposed in spaced relation to one another; forming a silicon plug spanning between two adjacent components; forming a refractory metal layer over the silicon plug and at least one of the components; reacting the silicon plug and the refractory metal layer to form a silicide layer on the silicon plug; and after forming the silicide layer removing unreacted refractory metal layer material from the substrate.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: August 8, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Pai-Hung Pan
  • Patent number: 6066894
    Abstract: A low-concentration impurity region and a high-concentration impurity region are formed respectively near the lower surface and the upper surface of an undoped polysilicon film by a first and second ion-implanations. A refractory metal film of tungsten or the like is formed on the polysilicon film. The impurities are thermally diffused to form shallow-junctions of source/drain having low-concentration impurities. Lead-out electrodes having a high-impurity concentration can be formed without impeding formation of the source and drain. The refractory metal film is converted into a silicide with the resistance at the interface between the polysilicon film and the silicide kept lowered.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: May 23, 2000
    Assignee: United Microelectronics Corporation
    Inventor: Wataru Yokozeki
  • Patent number: 6040589
    Abstract: There is disclosed an active matrix liquid crystal display comprising pixels having an improved aperture ratio. A metallization layer makes contact with an active layer through openings. Inside the openings, the active layer is patterned into the same geometry as the metallization layer. That is, the active layer is patterned in a self-aligned manner according to the pattern of the metallization layer. This can enlarge the contact area. Also, the metallization layer does not required to be specially patterned for making contacts. A high aperture ratio can be obtained.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: March 21, 2000
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Jun Koyama, Satoshi Teramoto
  • Patent number: 6038164
    Abstract: The SRAM cell configuration has at least six transistors in each memory cell. Four of the transistors form a flip-flop and they are arranged at the corners of a quadrilateral. The flip-flop is driven by two of the transistors, which are disposed so as to adjoin diagonally opposite corners of the quadrilateral and outside the quadrilateral. Adjacent memory cells along a word line can be arranged in such a way that a first bit line and a second bit line of the adjacent memory cells coincide. The transistors are preferably vertical and are arranged at semiconductor structures (St1, St2, St3, St4, St5, St6) produced from a layer sequence. Two of the transistors having n-doped channel regions are preferably formed in each case on two semiconductor structures.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: March 14, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Schulz, Thomas Aeugle, Wolfgang Rosner, Lothar Risch
  • Patent number: 6001681
    Abstract: A method of forming buried contacts in MOSFET and CMOS devices which substantially reduces the depth of the buried contact trench. A split polysilicon process is used to form the gate electrode and contact electrode. The first polysilicon layer is very thin layer of undoped polysilicon, having a thickness of less than 100 Angstroms. The second polysilicon layer is a layer of doped polysilicon having a thickness of between about 950 and 1150 Angstroms. The buried contact can be formed either using ion implantation or diffusion of impurities from the layer of doped second polysilicon into the contact region. When the metal layers are etched to form the gate electrode and contact electrode the resulting buried contact trench is less than 500 Angstroms deep.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: December 14, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang Liu, Jing-Chuan Hsieh
  • Patent number: 5990530
    Abstract: A semiconductor device including a semiconductor substrate having thereon an element region having a surface, an element separating insulating film having an upper surface adjacent to opposing lateral sides of the element region, a silicon epitaxial layer having an upper surface formed on the surface of the element region, a polysilicon layer having an upper surface formed on the element separating film and connected to the silicon epitaxial layer, a gate insulating film and a gate electrode formed on the silicon epitaxial layer, and impurity doped source and drain regions formed in the silicon epitaxial layer. Furthermore, the upper surface of the silicon epitaxial layer is higher than or at the same level as the upper surface of the polysilicon layer. This is done by forming the polysilicon layer on a recessed portion of the element separating insulating film adjacent to the element region.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: November 23, 1999
    Assignee: NEC Corporation
    Inventor: Hisamitsu Suzuki
  • Patent number: 5949092
    Abstract: A multi-dimensional transistor structure is fabricated which includes a base transistor substrate upon which transistors are formed. An elevated substrate is formed overlying the base transistor and having an oxide isolation formed in localized regions beneath the elevated substrate but overlying the base transistor substrate. A plurality of transistors are formed on a substrate wafer to form a base-level transistor formation. An intralevel dielectric (ILD) layer is deposited overlying the base-level transistor formation. Overlying the ILD layer, a "sandwich" structure is formed with the deposition of a first polysilicon layer, deposition of an oxide isolation layer, and deposition of a second polysilicon layer.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: September 7, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Daniel Kadosh, Mark I. Gardner, Michael Duane
  • Patent number: 5945698
    Abstract: A field effect transistor relative to a semiconductor substrate, where the transistor has a gate which defines a resultant lateral expanse of semiconductive material therebeneath for provision of a transistor channel region, includes a) providing a conductive gate layer over a semiconductor substrate; b) patterning the conductive gate layer into a first gate block, the first gate block having a first lateral expanse which is greater than the resultant lateral expanse; c) providing an insulating dielectric layer over the first gate block; d) providing a patterned layer of photoresist over the first gate block and the insulating dielectric layer, the patterned photoresist comprising a photoresist block positioned over and within the first lateral expanse of the first gate block; e) with the patterned photoresist in place, etching the insulating dielectric layer selectively relative to the first gate block; f) after etching the insulating dielectric layer and with the patterned photoresist in place, etching the
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: August 31, 1999
    Assignee: Micron Technology, Inc.
    Inventor: Kirk Prall
  • Patent number: 5945738
    Abstract: A method is provided for forming an improved landing pad of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A first opening is formed through a first dielectric layer to expose a portion of a diffused region. A dual polysilicon landing pad is formed in the first opening and on a portion of the first dielectric layer adjacent the first opening. The dual landing pad is preferably formed from two polysilicon landing pads with an oxide formed in between a portion of the two polysilicon layers and over the first polysilicon layer. This landing pad will enhance the planarization of the wafer at this stage of the manufacturing and tolerate misalignment of subsequently formed metal contacts without invading design rules.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: August 31, 1999
    Assignee: STMicroelectronics, Inc.
    Inventors: Loi N. Nguyen, Frank R. Bryant, Artur P. Balasinski
  • Patent number: 5942785
    Abstract: An integrated circuit device having a reduced buried contact resistance is achieved. A gate electrode lies on the surface of a semiconductor substrate. Source/drain regions within the semiconductor substrate surround the gate electrode. A polysilicon contact lies on the surface of the semiconductor substrate. A buried contact junction underlies the polysilicon contact and adjoins one of the source/drain regions. A doped polysilicon layer partially fills a trench in the semiconductor substrate at the junction between the buried contact junction and one of the source/drain regions wherein the doped polysilicon layer provides a conduction channel between the source/drain region and the adjoining buried contact junction.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: August 24, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chan Yuan Chen, Shih Bin Peng
  • Patent number: 5903035
    Abstract: An FET semiconductor substrate includes source/drain regions with an outer buried contact region overlapping the drain region, a gate oxide layer, and a polysilicon layer over the gate oxide layer. An inner buried contact opening through the polysilicon and the gate oxide layer reaches down to the substrate over the outer buried contact region. An inner buried contact region, within the outer buried contact region, is self-aligned with the buried contact opening. A second polysilicon layer formed over the gate oxide layer reaches down through the buried contact opening into contact with the inner buried contact region. An interconnect and a gate electrode are formed from the polysilicon layers. Source/drain regions are self-aligned with the gate electrode and whereas the drain region is spaced from the inner buried contact region, the outer buried contact region interconnects the drain region with the inner buried contact region.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: May 11, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huang Wu, Der-Chen Chen
  • Patent number: 5894160
    Abstract: A method is provided for forming an improved landing pad of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A first opening is formed through a first dielectric layer to expose a portion of a diffused region. A first polysilicon landing pad is formed over the first dielectric layer and in the opening. This landing pad will provide for smaller geometries and meet stringent design rules such as that for contact space to gate. A dielectric pocket is formed over the polysilicon landing pad over the active region. A second conductive landing pad is formed over the polysilicon landing pad and the dielectric pocket. A second dielectric layer is formed over the landing pad having a second opening therethrough exposing a portion of the landing pad. A conductive contact, such as aluminum, is formed in the second contact opening. The conductive contact will electrically connect with the diffused region through the landing pad.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: April 13, 1999
    Assignee: STMicroelectronics, Inc.
    Inventors: Tsiu C. Chan, Frank R. Bryant, Loi N. Nguyen
  • Patent number: 5864163
    Abstract: The channel doping profile of a PMOS field effect transistor consists of a shallow distribution of a P-type dopant as a threshold adjust implant, a deeper distribution of an N-type dopant as an buried channel stop implant and a still deeper implantation of an N-type dopant as an antipunchthrough implant. A junction is formed between the P-type threshold adjust implant and the N-type buried channel stop implant at a relatively shallow depth so that the depth of the buried channel region is limited by the buried channel stop implant, reducing the short channel effect. The channel doping profile is formed so that diffusion of impurities from the channel region to the gate oxide is prevented. The buried channel stop implant is made first through a sacrificial oxide layer. The sacrificial oxide is etched and a gate oxide layer and a thin film of polysilicon are deposited on the surface of the gate oxide.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: January 26, 1999
    Assignee: United Microelectrics Corp.
    Inventors: Jih-Wen Chou, Shih-Wei Sun
  • Patent number: 5847434
    Abstract: A semiconductor integrated circuit device is provided which includes a memory cell M, in which a capacitance element C is added to the storage node portion of an inverter circuit composed of a drive MOSFET and a load TFT Qf. The device also includes and a bipolar transistor Tr provided as a peripheral element. A reference power supply line to be connected with the source region of the drive MOSFET Qd and an emitter electrode to be connected with the emitter region of the bipolar transistor Tr are formed of an uppermost thick polycrystal silicon film. Moreover, an intermediate thin polycrystal silicon film between the uppermost polycrystal silicon film and a first polycrystal silicon film (or polycide film) is covered in a memory cell forming region with the uppermost polycrystal silicon film. Still moreover, the uppermost polycrystal silicon film is partially silicified.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: December 8, 1998
    Assignee: Hitachi, Ltd.
    Inventor: Kazunori Onozawa
  • Patent number: 5838068
    Abstract: A semiconductor processing method includes: a) providing a substrate having a base region to which electrical connection is to be made; b) providing a first layer of a conductive first material; c) providing an etch stop layer over the first layer; d) etching a contact opening through the etch stop and first layers to the base region; e) providing a second layer of first material outwardly of the etch stop layer and within the contact opening to a thickness greater than the first layer thickness and extending outwardly beyond the contact opening upper edge; f) removing first material of the second layer and defining a second layer plug within the contact, the second layer plug having an outermost surface extending outwardly beyond the contact opening upper edge and thereby providing the second layer plug to be of greater thickness than the first layer; g) masking outwardly of the first layer and the second layer plug to define a mask pattern for definition of a circuit component from the first layer which con
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: November 17, 1998
    Assignee: Micron Technology, Inc.
    Inventor: Sanh Tang
  • Patent number: 5828097
    Abstract: A semiconductor memory device including memory cells with the stacked-capacitor structure that makes it possible to prevent a contact pad from being damaged. This device includes a memory cell area and a peripheral circuit area formed on a semiconductor substrate. An interlayer insulating layer having first and second penetrating holes is formed to cover the entire substrate. A capacitor has lower and upper electrode and a dielectric located between these electrodes. The lower electrode is electrically connected to the first element through the first penetrating hole. Each of the peripheral circuits has a second element, a contact pad electrically connected to the second element, a pad insulating layer formed to cover the contact pad, a pad protection layer formed on the pad insulating layer, and an interconnection conductor electrically connected to the contact pad through a contact hole penetrating the pad protection and pad insulating layers.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: October 27, 1998
    Assignee: NEC Corporation
    Inventor: Takaho Tanigawa
  • Patent number: 5825059
    Abstract: A connection hole of a semiconductor device having a structure of preventing the connection hole from being short-circuited or degraded in dielectric strength even if there occurs misalignment when an opening portion is formed in an interlayer insulating film at a position over a conductive layer for forming the opening portion. The connection hole includes an inner wall on which an insulating film protected by a side wall made from non-crystal silicon is formed.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: October 20, 1998
    Assignee: Sony Corporation
    Inventor: Hideaki Kuroda
  • Patent number: 5811853
    Abstract: A method of forming a memory cell structure in a semiconductor substrate that does not have a shorting problem between a floating gate and a source/drain region of the substrate by depositing a thick spacer oxide layer on top of the floating gate and the source/drain region to a sufficient thickness such that electrical insulation is provided thereinbetween to prevent the occurrence of a short or the formation of a silicide bridge. The invention is also directed to a semiconductor device fabricated by the method.
    Type: Grant
    Filed: August 13, 1996
    Date of Patent: September 22, 1998
    Assignee: Winbond Electronics Corp.
    Inventor: Jung-Chun Wang
  • Patent number: 5801425
    Abstract: A gate electrode is made up of a polycrystalline silicon film containing phosphorous as a dopant for determining its conductivity type, a titanium silicide film of the C54 structure, and a tungsten silicide film all of which films are laid one on another in said order.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: September 1, 1998
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takashi Kuroi, Hidekazu Oda
  • Patent number: 5721445
    Abstract: An apparatus and method for providing improved latch-up immunity in a semiconductor device such as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. An exemplary apparatus includes a first region of semiconductor material of a first conductivity type, a well of semiconductor material formed in the first region and having a second conductivity type opposite to the first conductivity type, a first MOS transistor formed in the well and including a source region and a drain region formed of semiconductor material of the first conductivity type, and a second MOS transistor formed in the first region and having a source region and a drain region formed of semiconductor material of the second conductivity type. A conductive material or other suitable routing means is connected between the source region of one of the first or second MOS transistors and a corresponding voltage supply input of the device.
    Type: Grant
    Filed: March 2, 1995
    Date of Patent: February 24, 1998
    Assignee: Lucent Technologies Inc.
    Inventors: Ranbir Singh, Morgan Jones Thoma
  • Patent number: 5717238
    Abstract: A process and resulting product are described for controlling the channeling and/or diffusion of a boron dopant in a P- region forming the lightly doped drain (LDD) region of a PMOS device in a single crystal semiconductor substrate, such as a silicon substrate. The channeling and/or diffusion of the boron dopant is controlled by implanting the region, prior to implantation with a boron dopant, with noble gas ions, such as argon ions, at a dosage at least equal to the subsequent dosage of the implanted boron dopant, but not exceeding an amount equivalent to the implantation of about 3.times.10.sup.14 argon ions/cm.sup.2 into a silicon substrate, whereby channeling and diffusion of the subsequently implanted boron dopant is inhibited without, however, amorphizing the semiconductor substrate.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: February 10, 1998
    Assignee: LSI Logic Corporation
    Inventors: Sheldon Aronowitz, James Kimball, Yu-Lam Ho, Gobi Padmanabhan, Douglas T. Grider, Chi-Yi Kao
  • Patent number: 5710450
    Abstract: A novel transistor with a low resistance ultra shallow tip region and its method of fabrication. The novel transistor of the present invention has a source/drain extension or tip region comprising an ultra shallow region which extends beneath the gate electrode and a raised region.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: January 20, 1998
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Chan-Hong Chern, Chia-Hong Jan, Kevin R. Weldon, Paul A. Packan, Leopoldo D. Yau
  • Patent number: 5710461
    Abstract: A 4-T SRAM cell in which two layers of permanent SOG (with an intermediate oxide layer) are used to provide planarization between the first and topmost poly layers.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: January 20, 1998
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Loi Nguyen, Ravishankar Sundaresan
  • Patent number: 5705845
    Abstract: In a metal silicide film, excessive silicon is contained and precipitated in silicide grain boundaries thereof. The thus precipitated excessive silicon makes a diffusion path of impurities, which extends along WSi.sub.2 grain interfaces, discontinuous in the metal silicide film. As a result, the impurities do not diffuse laterally in the metal silicide film even after a heat treatment is performed.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: January 6, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Toyokazu Fujii
  • Patent number: 5701036
    Abstract: A semiconductor processing method includes: a) providing a substrate having a base region to which electrical connection is to be made; b) providing a first layer of a conductive first material; c) providing an etch stop layer over the first layer; d) etching a contact opening through the etch stop and first layers to the base region; e) providing a second layer of first material outwardly of the etch stop layer and within the contact opening to a thickness greater than the first layer thickness and extending outwardly beyond the contact opening upper edge; f) removing first material of the second layer and defining a second layer plug within the contact, the second layer plug having an outermost surface extending outwardly beyond the contact opening upper edge and thereby providing the second layer plug to be of greater thickness than the first layer; g) masking outwardly of the first layer and the second layer plug to define a mask pattern for definition of a circuit component from the first layer which con
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: December 23, 1997
    Assignee: Micron Technology, Inc.
    Inventor: Sanh Tang
  • Patent number: 5701029
    Abstract: In a semiconductor device including a semiconductor substrate, an impurity doped region formed in the semiconductor substrate, an insulating layer formed on the semiconductor substrate and having an opening leading to the impurity doped region, a polycrystalline silicon layer formed on the insulating layer and the impurity doped region, and a metal silicide layer formed on the polycrystalline silicon layer, a transverse thickness of the polycrystalline silicon layer at a sidewall of the insulating layer is larger than a longitudinal thickness of the polycrystalline silicon layer at a bottom of the opening and at a surface of the insulating layer.
    Type: Grant
    Filed: September 28, 1995
    Date of Patent: December 23, 1997
    Assignee: NEC Corporation
    Inventor: Masakazu Sasaki
  • Patent number: 5696399
    Abstract: A process for producing integrated circuits including the steps of: selectively growing field insulating regions of insulating material extending partly inside a substrate having a given type of conductivity; depositing a polycrystalline silicon layer on the substrate; shaping the polycrystalline silicon layer through a mask; and selectively implanting ions of the same conductivity type as the substrate, using the shaping mask, through the field insulating regions. The implanted ions penetrate the substrate and form channel stopper regions beneath the field insulating regions.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 9, 1997
    Assignee: SGS-Thomson Microelectronics S.r.l.
    Inventors: Manlio Sergio Cereda, Giancarlo Ginami
  • Patent number: 5689120
    Abstract: The present invention provides a field effect transistor comprising the following elements. An insulation film is provided on a semiconductor substrate. The insulation film has an opening positioned on a predetermined region of the semiconductor substrate. A first polysilicon film is provided over the insulation film. A second polysilicon film is provided in contact with the first polysilicon film. The second polysilicon film extends on inside walls of the opening of the insulation film and over a peripheral portion of the predetermined region of the semiconductor substrate so that the first polysilicon film is connected through the second polysilicon film to the peripheral portion in the predetermined region of the semiconductor substrate.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: November 18, 1997
    Assignee: NEC Corporation
    Inventor: Kaoru Narita
  • Patent number: 5677557
    Abstract: A method for fabricating buried metal plug structures for multi-polysilicon layer interconnects and for concurrently making metal plugs on semiconductor integrated circuits, such as DRAM and SRAM, was achieved. The method involved forming contact opening in an insulating layer over opening in a patterned polysilicon layer. The opening in the polysilicon layer aligned over source/drain contact areas on the substrate and providing a means for forming self-aligned contact openings. Buried metal plugs in the contact openings form interconnects between the polysilicon layer and the source/drains. And, by merging the process steps, concurrently forming metal plug interconnects for contacts to semiconductor devices and first level metal. The process is applicable to the formation of bit line contacts on DRAM and SRAM circuits and simultaneously form the peripheral contact on the chip.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: October 14, 1997
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventors: Shou-Gwo Wuu, Chen-Jong Wang, Mong-Song Liang, Chung-Hui Su
  • Patent number: 5670424
    Abstract: An interconnect structure, and method for forming same, is suitable for use in integrated circuits such as SRAM devices. The structure uses masking of a polycrystalline silicon interconnect level to move a P-N junction to a region within a polycrystalline silicon interconnect line, rather than at the substrate. This P-N junction can then be shorted out using a refractory metal silicide formed on the polycrystalline silicon interconnect structure.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: September 23, 1997
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Tsiu Chiu Chan, Frank Randolph Bryant, John Leonard Walters
  • Patent number: 5666002
    Abstract: A transistor element is formed on the surface of a silicon substrate. A tunnel is formed in the silicon substrate at a position right under the transistor element. A contact hole is formed to extend from the surface of the silicon substrate to the contact hole. Silicon oxide films are respectively formed on the inner surfaces of the tunnel and the contact hole. A wiring layer is buried in the tunnel and the contact hole. The wiring layer is connected to a diffusion layer of the transistor element.
    Type: Grant
    Filed: August 30, 1995
    Date of Patent: September 9, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadashi Yamamoto, Souichi Sugiura
  • Patent number: 5663579
    Abstract: A semiconductor film deposited on a substrate has regions of different thermal conductivity. A pulsed laser radiation is applied to the semiconductor film to melt the semiconductor film. When the melted semiconductor film is cooled and solidified, localized low-temperature regions are developed in the respective regions of different thermal conductivity. Crystal nuclei are produced in the respective localized low-temperature regions and grown into a single semiconductor crystal. The regions of different thermal conductivity are formed in the semiconductor film by high-thermal-conductivity members deposited on the semiconductor film in thermally coupled relationship thereto. A semiconductor device is fabricated using the semiconductor film and has channels disposed in the vicinity of the crystal nuclei.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: September 2, 1997
    Assignee: Sony Corporation
    Inventor: Takashi Noguchi
  • Patent number: 5656836
    Abstract: Herein disclosed is a semiconductor integrated circuit device comprising a SRAM having its memory cell composed of transfer MISFETs to be controlled through word lines and drive MISFETs. The gate electrodes of the drive MISFETs and the gate electrodes of the transfer MISFETs of the memory cell, and the word lines are individually formed of different conductive layers. The drive MISFETs and the transfer MISFETs are individually arranged to cross each other in the gate length direction. The word lines are extended in the gate length direction of the gate electrodes of the drive MISFETs and caused to cross the gate electrodes of the drive MISFETs partially.The two transfer MISFETs of the memory cell have their individual gate electrodes connected-with two respective word lines spaced from each other and extended in an identical direction. The region defined by the two word lines is arranged therein with the two drive MISFETs and the source lines.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: August 12, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Shuji Ikeda, Satoshi Meguro, Soichiro Hashiba, Isamu Kuramoto, Atsuyoshi Koike, Katsuro Sasaki, Koichiro Ishibashi, Toshiaki Yamanaka, Naotaka Hashimoto, Nobuyuki Moriwaki, Shigeru Takahashi, Atsushi Hiraishi, Yutaka Kobayashi, Seigou Yukutake
  • Patent number: 5641991
    Abstract: A lower-level conductor layer is formed in a surface of, on or over a semiconductor substrate. An interlayer insulator film is formed on the lower-level conductor layer. An upper-level conductor layer such as an interconnection layer of the semiconductor device is formed on the interlayer insulator film. A conductor plug is formed in a contact hole of the interlayer insulator film. The lower-level conductor layer and the upper-level conductor layer are electrically connected with each other through the conductor plug. A top part of the conductor plug protrudes from the interlayer insulator film. The upper-level conductor layer is contacted with a top face and a side face of the top part of the conductor plug. Both the contact resistance between the conductor contact and the upper-level conductor layer and the resistance of the upper-level conductor layer itself can be reduced without using a special equipment and a special process.
    Type: Grant
    Filed: August 31, 1995
    Date of Patent: June 24, 1997
    Assignee: NEC Corporation
    Inventor: Takashi Sakoh
  • Patent number: 5604382
    Abstract: A semiconductor device comprises a first conductive layer, an insulating layer formed on the first conductive layer, a plurality of contact holes formed through the insulating layer, a second conductive layer consisting of a plurality of pillar-shaped contacts each respectively formed in a corresponding one of the contact holes, the pillar-shaped contacts each respectively having a projecting portion projecting above the insulating layer, and a third conductive layer consisting of a plurality of conductive portions each respectively formed on the projecting portion of a corresponding one of the pillar-shaped contacts in a selectively growing manner.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: February 18, 1997
    Assignee: NEC Corporation
    Inventor: Kuniaki Koyama
  • Patent number: 5574302
    Abstract: This invention describes a diving channel device structure and a method of forming the diving channel device structure using deep vertical trenches formed in a silicon substrate crossing shallow vertical trenches formed in the same silicon substrate. The deep vertical trenches are filled with a first heavily doped polysilicon to form the sources and drains of field effect transistors. The shallow vertical trenches are filled with a second highly doped polysilicon to form the gates of the transistors. The device structure provides reduced drain and source resistance which remains nearly constant when the device is scaled to smaller dimensions. The device structure also provides reduced leakage currents and a plane topography. The device structure forms a large effective channel width when the device is scaled to smaller dimensions.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: November 12, 1996
    Assignee: United Microelectronics Corporation
    Inventors: Jemmy Wen, Water Lur, Joe Ko
  • Patent number: 5572461
    Abstract: The present invention is a three-transistor (3-T) SRAM cell that is made up of a half latch in combination with a dynamic random access memory (DRAM) cell. In a DRAM cell, the "0" bit state is represented by a discharged cell capacitor--a stable state. The "1" bit state, on the other hand, is represented by a charged cell capacitor--an unstable state, since the capacitor leaks rapidly toward the discharged "0" bit state. The new 3-T SRAM cell incorporates a latch which maintains the charge on the cell capacitor when the cell is in a "1" bit state. The cell circuitry includes a cell access transistor coupled to a capacitor, a pull-down transistor, and a P-channel thin film transistor (TFT) which acts as the capacitor pull-up device, the gate of the P-channel TFT also being the drain of the pull-down transistor. A separate polycrystalline silicon layer functions as the substrate of the TFT pull-up device. The 3-T SRAM cell is one half the size of a 4-T SRAM cell and about twice the size of a DRAM cell.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: November 5, 1996
    Assignee: Micron Technology, Inc.
    Inventor: Fernando Gonzalez
  • Patent number: 5497022
    Abstract: A semiconductor device includes a polycrystalline silicon layer formed on a silicon layer with an oxide film therebetween, an interlayer insulating layer formed to cover the surface of the silicon layer and the surface of the polycrystalline silicon layer, and a silicon plug layer formed in an embedded manner in a contact hole in the interlayer insulating layer to be directly connected to the surface of an end portion of the polycrystalline silicon layer and the surface of the silicon layer in the proximity of the end portion of the polycrystalline silicon layer. The polycrystalline silicon layer and the silicon plug layer have the same type of conductivity. By this interconnection structure, the semiconductor device is improved in the patterning accuracy of the contact portion of a multilayer stacked interconnection. Furthermore, an ohmic contact between conductive interconnection layers can be realized with relatively simple manufacturing steps without occurrence of a voltage drop caused by a pn junction.
    Type: Grant
    Filed: January 24, 1994
    Date of Patent: March 5, 1996
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Osamu Sakamoto
  • Patent number: 5489797
    Abstract: An interconnect structure, and method for forming same, is suitable for use in integrated circuits such as SRAM devices. The structure uses masking of a polycrystalline silicon interconnect level to move a P-N junction to a region within a polycrystalline silicon interconnect line, rather than at the substrate. This P-N junction can then be shorted out using a refractory metal silicide formed on the polycrystalline silicon interconnect structure.
    Type: Grant
    Filed: April 11, 1995
    Date of Patent: February 6, 1996
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Tsiu C. Chan, Frank R. Bryant, John L. Walters
  • Patent number: 5486717
    Abstract: A memory cell region is provided with a pair of driver transistors as well as a pair of access transistors. Each of the access transistors is formed of a field effect transistor having a gate electrode layer. An insulating layer is formed over the driver transistors and access transistors, and is provided with contact holes located within the memory cell region and reaching the gate electrode layers. Conductive layers are formed on the insulating layer, and are in contact with the gate electrode layers through the contact holes. Thereby, a memory cell structure of an SRAM has a small planar layout area and thus is suitable to high integration.
    Type: Grant
    Filed: September 21, 1994
    Date of Patent: January 23, 1996
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Nobuyuki Kokubo, Kazuya Ikeda
  • Patent number: 5478771
    Abstract: An interconnect structure, and method for forming same, is suitable for use in integrated circuits such as SRAM devices. The structure uses masking of a polycrystalline silicon interconnect level to move a P-N junction to a region within a polycrystalline silicon interconnect line, rather than at the substrate. This P-N junction can then be shorted out using a refractory metal silicide formed on the polycrystalline silicon interconnect structure.
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: December 26, 1995
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Tsiu C. Chan, Frank R. Bryant, John L. Walters
  • Patent number: 5477074
    Abstract: A CMOS integrated circuit uses self-aligned transistors combined with local planarization in the vicinity of the transistors so as allow local interconnects which are free of bridging, have good continuity over the planarized topography and are compatible with the self-alignment schemes, hence conserving chip real estate. After formation of self-aligned insulated transistor gates and active transistor regions, the integrated circuit structure is planarized by formation of an oxide layer and a reflowed overlying glass layer. The glass layer and underlying oxide layer are removed only in the area of the buried contact, while an overlying metal or polysilicon conductive layer contacts the upper surface of certain of the transistor gate structures, the topside insulating layer of which has been removed for this purpose.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: December 19, 1995
    Assignee: Paradigm Technology, Inc.
    Inventor: Ting-Pwu Yen
  • Patent number: 5468985
    Abstract: There is provided a semiconductor device having a wiring configuration which can suppress an increase in the delay time of a wiring extending over the memory cell area even if the cell size is reduced. Wirings of preset wiring length are formed over a semiconductor substrate. A wiring of wiring length larger than that of the former wirings is formed over the former wirings with an inter-level insulation film disposed therebetween and the width of the latter wiring is made large. Thus, the wiring resistance is reduced and the wiring delay time can be effectively reduced. The semiconductor device is applied to a semiconductor memory or the like in which cell selection is made by use of the hierarchical structure such as a duplex word line system.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: November 21, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takayuki Harima
  • Patent number: 5452247
    Abstract: A gate electrode layer constituting a gate of a P-channel type MOS transistor formed on an upper layer is made of P-type polycrystal silicon and is connected to a diffusion region of an N-channel type MOS transistor formed on a lower layer by extending an end of the gate electrode layer into a contact hole above the diffusion region. Therefore, an aspect ratio of the contact hole becomes small and a coverage of a wiring for connecting the gate of the P-channel type MOS transistor and the diffusion region of the N-channel type MOS transistor is improved, so that the wiring is not snapped.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: September 19, 1995
    Assignee: Fujitsu Limited
    Inventor: Yoshihiro Takao
  • Patent number: 5428235
    Abstract: A memory cell of a DRAM comprises one MOS transistor and one capacitor. The MOS transistor includes a pair of source/drain regions and a gate electrode formed on the channel region. A bit line is formed so as to be connected to the source/drain region. A conductive layer is formed so as to be connected to the source/drain region. The gate electrode includes a first part formed on the channel region with an oxide film interposedand second and third parts extending from the first part, respectively, and formed on the bit line and the conductive layer with an interlayer oxide film interposed. The capacitor includes a lower electrode formed so as to be connected to the conductive layer and an upper electrode formed so as to be opposed to the surface of the lower electrode with a dielectric film interposed. The upper electrode is placed above the bit line. A word line is placed above the upper electrode and connected to the gate electrode.
    Type: Grant
    Filed: September 6, 1994
    Date of Patent: June 27, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Masahiro Shimizu, Takehisa Yamaguchi, Natsuo Ajika
  • Patent number: RE36777
    Abstract: An apparatus and method for integrating a submicron CMOS device and a non-volatile memory, wherein a thermal oxide layer is formed over a semiconductor substrate and a two layered polysilicon non-volatile memory device formed thereon. A portion of the thermal oxide is removed by etching, a thin gate oxide and a third layer of polysilicon having a submicron depth is deposited onto the etched region. The layer of polysilicon is used as the gate for the submicron CMOS device. In so doing a submicron CMOS device may be formed without subjecting the device to the significant re-oxidation required in formation processes for dual poly non-volatile memory devices such as EPROMs and EEPROMs, and separate device optimization is achieved.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: July 11, 2000
    Assignee: Atmel Corporation
    Inventors: Bradley J. Larsen, Todd A. Randazzo, Donald A. Erickson