Means To Reduce Sensitivity To Physical Deformation Patents (Class 257/420)
  • Patent number: 7298017
    Abstract: In one embodiment, a solid state actuator is provided having a solid state lithium storage material and a solid state volume changing material having a metal capable of changing volume in response to lithium insertion and removal. A solid state lithium ion transport material is located between the lithium storage material and the volume changing material. A pair of electrodes are connected so as to be capable of providing an actuation voltage across the lithium storage material and the volume changing material. In some embodiments, the volume changing material has active material particles comprised of metal contained in an inactive matrix. The active material particles may be aligned so that when the active material particles expand the volume changing material expands substantially in one direction. In some embodiments the volume changing material is a metal alloy and the lithium transport material is a high stiffness material. In some embodiments, multiple actuators are stacked, interleaved, or pillared.
    Type: Grant
    Filed: August 28, 2004
    Date of Patent: November 20, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: Ping Liu, Cameron Massey, Leslie Momoda, Geoffrey McKnight, William Barvosa-Carter, Alan Jacobsen
  • Patent number: 7289357
    Abstract: Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. Under another embodiment of the invention, the control electrode is arranged in relation to the nanotube channel element to form said conductive channel by causing electromechanical deflection of said nanotube channel element.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: October 30, 2007
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7256467
    Abstract: A micro-electromechanical device is formed on a substrate. The device has sliding, abrading or impacting surfaces. At least one of these surfaces is covered with an anti-stiction material. The anti-stiction material is provided from a slicon compound precursor (e.g. silane, silanol) or multiple silicon compound precursors. Preferably the precursor(s) is fluorinated—more preferably perfluorinated, and is deposited with a solvent as a low molecular weight oligomer or in monomeric form. Examples include silanes (fluorinated or not) with aromatic or polycyclic ring sturctures, and/or silanes (fluorinated or not) having alkenyl, alkynyl, epoxy or acrylate groups. Mixtures either or both of these groups with alkyl chain silanes (preferably fluorinated) are also contemplated.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: August 14, 2007
    Assignee: Silecs Oy
    Inventors: Jason S. Reid, Nungavram S. Viswanathan
  • Patent number: 7230308
    Abstract: A magnetic random access memory according to an example of the present invention includes a magnetoresistive element, a write line for use in generation of a magnetic field for data writing with respect to the magnetoresistive element, and a strained layer which is disposed so as to correspond to the magnetoresistive element, and which has a function of being physically deformed at the time of data writing, and of controlling a magnitude of a switching magnetic field of the magnetoresistive element.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: June 12, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshihisa Iwata
  • Patent number: 7214995
    Abstract: According to one embodiment a microelectromechanical (MEMS) switch is disclosed. The MEMS switch includes a top movable electrode, and an actutaion electrode with an undoped polysilicon stopper region to contact the top movable electrode when an actuation current is applied. The undoped polysilicon stopper region prevents actuation charging that accumulates over time in a unipolar actuation condition.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: May 8, 2007
    Assignee: Intel Corporation
    Inventors: Tsung-Kuan Allen Chou, Quan A. Tran
  • Patent number: 7199448
    Abstract: An integrated circuit is formed on a non-planar substrate. The integrated circuit is formed over a plurality of layers. Chemical or physical changes in the microstructure of the substrate cause the bending of the substrate, in one or more propagation directions.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: April 3, 2007
    Assignee: Infineon Technologies AG
    Inventors: Marcus Janke, Peter Laackmann
  • Patent number: 7148549
    Abstract: A micro-electro-mechanical device includes a moveable mass supported within a frame. To support the mass within the frame, a first flexure extends between the mass and the frame. An angle softening element is positioned between a first end of the first flexure and the frame to allow angular movement of the first flexure.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: December 12, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Thomas Wayne Ives, Donald J. Fasen
  • Patent number: 7122396
    Abstract: The present invention provides a semiconductor acceleration sensor wherein a semiconductor element is prevented from being damaged even when at least part of a weight is disposed in an internal space of a semiconductor sensor element and the mass of a weight is accordingly increased. An inner peripheral surface of a support portion 9 is constituted by four trapezoidal inclined surfaces 13 of a substantially identical shape which are annularly combined so as to define an outer peripheral surface of a frust-pyramidal space. A weight 3 is so constructed as to have an abutting portion including a linear portion 3d which abuts against the inclined surfaces 13 constituting the inner peripheral surface of the support portion 9 when the weight 3 makes a maximum displacement in a direction where a diaphragm portion 11 is located. The abutting portion 3d has a circular outline shape as seen from a side where a weight fixing portion 7 is located.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: October 17, 2006
    Assignee: Hokuriku Electric Industry Co., Ltd.
    Inventors: Yoshiyuki Nakamizo, Tsutomu Sawai, Masato Ando
  • Patent number: 7115960
    Abstract: Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. Under another embodiment of the invention, the control electrode is arranged in relation to the nanotube channel element to form said conductive channel by causing electromechanical deflection of said nanotube channel element.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: October 3, 2006
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7109561
    Abstract: The present invention relates to a method of manufacturing a semiconductor substrate including the back grind step, the dicing step, the pick up step, and the die bonding step of the wafer; and to a semiconductor substrate jig used in such method. The object of the present invention is to mitigate the effect and to prevent damage caused by the lack of strength in thinned semiconductor substrates. A jig with an outer frame 21, and a rubber film 22 arranged within the outer frame 21 and having increasing and decreasing body size while deforming its shape by supplying air therein are provided. As the volume of the rubber film 22 increases, the wafer-fixing jig 20 deforms the rubber film and allows the tapes 2 and 6 arranged between the wafer 1 and the rubber film 22A to be pushed toward the wafer 1 gradually from the center outward. The attachment step, the back grind step, the tape reapplication step, the pick up step and the die bonding step are conducted using such wafer-fixing jig.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: September 19, 2006
    Assignee: Fujitsu Limited
    Inventors: Kazuo Teshirogi, Yuzo Shimobeppu, Kazuhiro Yoshimoto, Mitsuhisa Watanabe, Yoshiaki Shinjo, Eiji Yoshida, Noboru Hayasaka
  • Patent number: 7075162
    Abstract: A valve structure includes an elastomeric block formed with first and second microfabricated recesses separated by a membrane portion of the elastomeric block. The valve is actuated by positioning a compliant electrode on a first side of the first recess proximate to and in physical communication with the membrane. Where the valve is to be electrostatically actuated, a second electrode is positioned on a second side of the first recess opposite the first side. Application of a potential difference across the electrodes causes the compliant electrode and the membrane to be attracted into the flow channel. Where the valve is to be electrostrictively actuated, a second electrode is positioned on the same side of the recess as the compliant electrode. Application of a potential difference across the electrodes causes the electrodes to be attracted such that elastomer membrane portion material between them is compressed and bows into the flow channel.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: July 11, 2006
    Assignee: Fluidigm Corporation
    Inventor: Marc Unger
  • Patent number: 7053456
    Abstract: An electronic component includes a semiconductor substrate having a first surface and a second surface opposite to the first surface, a cavity that penetrates from the first surface to the second surface of the semiconductor substrate, and an electrical mechanical element that has a movable portion formed above the first surface of the semiconductor substrate so that the movable portion is arranged above the cavity. The electronic component further includes an electric conduction plug, which penetrates from the first surface to the second surface of the semiconductor substrate, and which is electrically connected to the electrical mechanical element.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: May 30, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mie Matsuo
  • Patent number: 7042056
    Abstract: A surface acoustic wave device includes a SAW having an IDT disposed on a piezoelectric substrate, a conductive pad connected to the IDT, and a bonding substrate, wherein the SAW is bonded to the bonding substrate such that a protective space of the IDT is provided. The bonding substrate includes a through-hole in which an external terminal connection member connected to the conductive pad and an external terminal are disposed. The SAW is bonded to the bonding substrate by an adhesive layer including a solder layer.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: May 9, 2006
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoshihiro Koshido
  • Patent number: 7038285
    Abstract: A magnetic sensor includes a thin deformable membrane made of a conductive material forming a first plate of a capacitor which conducts an electric current therethrough. A second capacitor plate of the capacitor includes a doped region of a semiconductor substrate. A layer of a gaseous dielectric separates the two plates. The membrane deforms due to the effect of the Lorentz force generated by a magnetic field lying in the plane of the membrane and perpendicular to the lines of current being conducted therethrough. In addition, a process for fabricating this magnetic sensor is also provided as well as a device for measuring a magnetic field using the magnetic sensor.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: May 2, 2006
    Assignee: STMicroelectronics SA
    Inventors: Hervé Jaouen, Thomas Skotnicki, Malgorzata Jurczak
  • Patent number: 7034370
    Abstract: In one embodiment of the invention, a MEMS structure includes a first electrode, a second electrode, and a mobile element. The first electrode is coupled to a first voltage source. The second electrode is coupled to a second voltage source. The mobile element includes a third electrode coupled to a third voltage source. A steady voltage difference between the first electrode and the third electrode is used to tune the natural frequency of the structure to a scanning frequency of an application. An oscillating voltage difference between the second electrode and the third electrode at the scanning frequency of the application is used to oscillate the mobile element. In one embodiment, the mobile unit is a mirror.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: April 25, 2006
    Assignee: Advanced Nano Systems, Inc.
    Inventor: Ting-Tung Kuo
  • Patent number: 6960814
    Abstract: Reflecting layers in first, second and third regions are separated from a reflecting layer in the surrounding region by a separating groove. The first region is folded in a valley shape from a substrate at a groove, the first region and the second region are folded in a valley shape at a groove, the third region is folded in a valley shape from the substrate at a groove, and the second region and the third region are folded in a mountain shape by a line.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: November 1, 2005
    Assignee: ATR Advanced Telecommunications Research Institute International
    Inventors: Kazuyoshi Kubota, Pablo O. Vaccaro, Tahito Aida
  • Patent number: 6956268
    Abstract: The present invention relates to micro electro-mechanical systems (MEMS) and production methods thereof, and more particularly to vertically integrated MEMS systems. Manufacturing of MEMS and vertically integrated MEMS is facilitated by forming, preferably on a wafer level, plural MEMS on a MEMS layer selectively bonded to a substrate, and removing the MEMS layer intact.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: October 18, 2005
    Assignee: Reveo, Inc.
    Inventor: Sadeg M. Faris
  • Patent number: 6946695
    Abstract: The present invention provides a solid-state rotational rate sensor device formed by a thin-film for generating an electrical voltage output proportional to the rate of rotational motion. The precision thin-film piezoelectric elements are configured and arranged on a semi-rigid structure to detect rotation (such as pitch, roll, and yaw) while rejecting spurious noise created by vibration, thermal gradients, and electro-magnetic interference.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: September 20, 2005
    Assignee: Triad Sensors, Inc.
    Inventor: Peter J. Schiller
  • Patent number: 6936902
    Abstract: A sensor has a foundation wafer having a sensor chamber, at least one silicon-based micromechanical structure integrated with the sensor chamber of the foundation wafer, at least one covering that covers the foundation wafer in a region of the sensor chamber, the covering including a first layer which is a deposition layer and is permeable to an etching medium and reaction products, and a hermetically sealing second layer which is a sealing layer and located above the first layer, the deposition layer which is the first layer being permeable in a region of the sensor chamber to the etching medium and a reaction product, the deposition layer for being permeable having structures selected from the group consisting of etching openings, porous regions, and both.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 30, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Frank Reichenbach, Stefan Pinter, Frank Henning, Hans Artmann, Helmut Baumann, Franz Laemer, Michael Offenberg, Georg Bischopink
  • Patent number: 6855996
    Abstract: An electronic device substrate structure including a substrate 2, a metal thin film 4 as a (111)-oriented film of a face-centered cubic structure or as a (0001)-oriented film of a hexagonal closest packed structure formed on the substrate 2, and a wurtzite type thin film 5 as a (0001)-oriented film of a wurtzite crystal structure formed on the metal thin film 4, wherein: each of the two thin films is a polycrystalline film containing at least two kinds of crystal grains different in direction of crystal orientation in the plane; when the metal thin film 4 is a (111)-oriented film, <11-20> axes in the plane of the wurtzite type thin film 5 are parallel to <1-10> axes in the plane of the metal thin film 4; and when the metal thin film 4 is a (0001)-oriented film, <11-20> axes in the plane of the wurtzite type thin film 5 are parallel to <11-20> axes in the plane of the metal thin film 4.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: February 15, 2005
    Assignee: TDK Corporation
    Inventors: Takao Noguchi, Hisatoshi Saitou, Hidenori Abe, Yoshinari Yamashita
  • Patent number: 6849910
    Abstract: Microelectromechanical (MEMS) oscillatory devices are placed adjacent a face of a microelectronic sensor platform and configured to oscillate to improve transport to the sensor of substances to be detected. The MEMS oscillatory devices can be configured to oscillate to disrupt the boundary layer that is formed adjacent the face of the microelectronic sensor platform, which may improve sensor performance. MEMS oscillatory devices may be far less susceptible to wear and breakdown than MEMS rotary devices, such as fans.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: February 1, 2005
    Inventors: Bruce J Oberhardt, Stephen W. Smith, Jason Michael Zara
  • Patent number: 6848306
    Abstract: A semiconductor dynamic sensor such as an acceleration sensor is composed of a sensor chip having electrodes movable in response to acceleration applied thereto and a circuit chip having a circuit for processing signals fed from the sensor chip. The sensor chip and the circuit chip are contained and held in a packaging case. The sensor chip and the circuit chip are fixedly connected via an adhesive film. The sensor chip is correctly positioned on the circuit chip without creating misalignment relative to a sensing axis, because the adhesive film from which an adhesive material does not flow out under heat is used. A semiconductor wafer including plural sensor chips is first made and the adhesive film is stuck to one surface of the wafer, and then individual sensor chips are separated by dicing. The sensor chip is connected to the circuit chip via the adhesive film.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: February 1, 2005
    Assignee: Denso Corporation
    Inventor: Tomohito Kunda
  • Patent number: 6841840
    Abstract: A capacitive dynamic quantity sensor includes a substrate, a weight, a movable electrode, an anchor, a fixed electrode, a spring, and a strain buffer. The weight is displaced by a dynamic quantity. The movable electrode is integrated with the weight. The anchor is fixed to the substrate to suspend the weight and the movable electrode above the substrate. The fixed electrode is arranged to face the movable electrode. The displacement of the movable electrode caused in response to the dynamic quantity is detected as a capacitance variation between the electrodes. The spring is located between the anchor and the weight and resiliently deforms in response to the dynamic quantity such that the movable electrode is displaced by a distance corresponding to the dynamic quantity. The strain buffer is located between the anchor and the spring to reduce the influence of a strain generated in the substrate on the spring.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 11, 2005
    Assignee: Denso Corporation
    Inventor: Minekazu Sakai
  • Publication number: 20040256686
    Abstract: A method for manufacturing a micro-electro-mechanical device, which has supporting parts and operative parts, includes providing a first semiconductor wafer, having a first layer of semiconductor material and a second layer of semiconductor material arranged on top of the first layer, forming first supporting parts and first operative parts of the device in the second layer, forming temporary anchors in the first layer, and bonding the first wafer to a second wafer, with the second layer facing the second wafer. After bonding the first wafer and the second wafer together, second supporting parts and second operative parts of said device are formed in the first layer. The temporary anchors are removed from the first layer to free the operative parts formed therein.
    Type: Application
    Filed: April 8, 2004
    Publication date: December 23, 2004
    Applicant: STMicroelectronics S.r.l.
    Inventors: Simone Sassolini, Mauro Marchi, Marco Del Sarto, Lorenzo Baldo
  • Publication number: 20040245588
    Abstract: A method of forming a MEMS device includes providing a substructure including a base material and at least one conductive layer formed on a first side of the base material, forming a dielectric layer over the at least one conductive layer of the substructure, forming a protective layer over the dielectric layer, defining an electrical contact area for the MEMS device on the protective layer, and forming an opening within the electrical contact area through the protective layer and the dielectric layer to the at least one conductive layer of the substructure.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 9, 2004
    Inventors: Eric L. Nikkel, Mickey Szepesi, Sadiq Bengali, Michael G. Monroe, Stephen J. Potochnik
  • Patent number: 6828640
    Abstract: The integrated electromechanical microstructure comprises a base substrate and a cavity closed by a protective cover. Means for adjusting the pressure in the cavity after the protective cover has been sealed comprise at least one element made of pyrotechnic material combustion whereof releases gas into the cavity. The pressure in the cavity can thus be adjusted independently from the sealing process. Selective ignition of the elements made of pyrotechnic material can be achieved by heating electrical resistors or by laser beams coming from outside the microstructure and directed selectively towards the elements made of pyrotechnic material through a transparent zone of the protective cover.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: December 7, 2004
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Gilles Delapierre
  • Patent number: 6825539
    Abstract: An IC-integrated, flexible, shear-stress sensor skin is made by providing a wafer with integrated circuits and sensor elements which are fabricated in the wafer, disposing a first polymer layer on the wafer and sensor elements to provide mechanical support for the sensor elements, defining a cavity below the sensor elements to provide thermal isolation, while the sensor element remains supported by the first polymer layer, and isolating the sensor elements into a plurality of islands defined in the wafer, so that the islands, with at least one sensor element on at least one of the islands, and the integrated circuits form the IC-integrated, flexible, shear-stress sensor skin. The invention is an IC-integrated, flexible, sensor skin made according to the method.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: November 30, 2004
    Assignee: California Institute of Technology
    Inventors: Yu-Chong Tai, Yong Xu
  • Patent number: 6825512
    Abstract: An active part of a sensor is formed, for example, by micro-machined silicon wafers bearing electronic elements, electrical conductors, connection pads, and pins. The pads are electrically connected to the pin ends by conductive elements. Then the wafer and the pin ends are plunged into an electrolytic bath to make an electrolytic deposit of conductive metal on the pin ends, the pads, and the conductive elements that connect them. Finally, this metal is oxidized or nitrized to form an insulating coat on the pin ends, the pads, and the conductive elements that connect them. Such a sensor may find particular application as a sensor designed to work in harsh environments.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: November 30, 2004
    Assignee: Thales
    Inventors: Bertrand Leverrier, Marie-Dominique Bruni-Marchionni
  • Publication number: 20040232504
    Abstract: A suspended semiconductor film is anchored to a substrate at at least two opposed anchor positions, and film segments are deposited on the semiconductor film adjacent to one or more of the anchor positions to apply either tensile or compressive stress to the semiconductor film between the film segments. A crystalline silicon film may be anchored to the substrate and have tensile stress applied thereto to reduce the lattice mismatch between the silicon and a silicon-germanium layer deposited onto the silicon film. By controlling the level of stress in the silicon film, the size, density and distribution of quantum dots formed in a high germanium content silicon-germanium film deposited on the silicon film can be controlled.
    Type: Application
    Filed: June 24, 2004
    Publication date: November 25, 2004
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Amit Lal, Max G. Lagally, Chung Hoon Lee, Paul Powell Rugheimer
  • Patent number: 6815782
    Abstract: The invention relates to a miniature electrostatic actuation device (100) capable of generating movements along a determined direction (F), comprising pairs of electrodes (4) of which the mobile electrodes (8) may be pulled into contact with a fixed electrode (6) on a variable pull-in surface that varies as a function of the voltage applied between these pairs of electrodes. According to the invention, the device also comprises an actuation element (12) connected to the mobile electrodes (8), the element (12) being capable of occupying a rest position and of being guided along the determined direction (F) when the voltage applied between the electrodes in each pair (4) varies, the device comprising return arms (14) capable of pulling the actuation element (12) back towards its rest position, when the voltage applied between the two electrodes in each pair of electrodes is reduced. To be applied to actuation of continuously deformable micro-mirrors.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: November 9, 2004
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Eric Stadler, Julien Charton
  • Publication number: 20040207034
    Abstract: A capacitive dynamic quantity sensor includes a substrate, a weight, a movable electrode, an anchor, a fixed electrode, a spring, and a strain buffer. The weight is displaced by a dynamic quantity. The movable electrode is integrated with the weight. The anchor is fixed to the substrate to suspend the weight and the movable electrode above the substrate. The fixed electrode is arranged to face the movable electrode. The displacement of the movable electrode caused in response to the dynamic quantity is detected as a capacitance variation between the electrodes. The spring is located between the anchor and the weight and resiliently deforms in response to the dynamic quantity such that the movable electrode is displaced by a distance corresponding to the dynamic quantity. The strain buffer is located between the anchor and the spring to reduce the influence of a strain generated in the substrate on the spring.
    Type: Application
    Filed: July 10, 2003
    Publication date: October 21, 2004
    Inventor: Minekazu Sakai
  • Patent number: 6806545
    Abstract: A MEMS device having flexure elements with non-linear restoring force. The MEMS device has a substrate, support elements formed on the substrate, a moveable element positioned over the substrate by the support elements to move relative substrate, flexure elements for elastically suspending the moveable element on the support elements, a driving element for moving the moveable element, and repulsive elements for increasing the repulsive force of the flexure elements when the flexure elements supporting the moveable element are resiliently deformed during movement of the moveable element. In a MEMS device, the range of controlling the position of a moveable element is extended if flexure elements having non-linear repulsive force control the position of the moveable element. A restoring force is obtained by flexure elements having non-linear repulsive force and the moveable element is prevented from sticking. The MEMS device has much higher reliability than a general MEMS device.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: October 19, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-ha Shim
  • Patent number: 6800912
    Abstract: A monolithically integrated, electromechanical microwave switch, capable of handling signals from DC to millimeter-wave frequencies, and an integrated electromechanical tunable capacitor are described. Both electromechanical devices include movable beams actuated either by thermo-mechanical or by electrostatic forces. The devices are fabricated directly on finished silicon-based integrated circuit wafers, such as CMOS, BiCMOS or bipolar wafers. The movable beams are formed by selectively removing the supporting silicon underneath the thin films available in a silicon-based integrated circuit technology, which incorporates at least one polysilicon layer and two metallization layers. A cavity and a thick, low-loss metallization are used to form an electrode above the movable beam. A thick mechanical support layer is formed on regions where the cavity is located, or substrate is bulk-micro-machined, i.e., etched.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: October 5, 2004
    Assignee: Corporation for National Research Initiatives
    Inventor: Mehmet Ozgur
  • Patent number: 6787804
    Abstract: A semiconductor acceleration sensor includesa non-single-crystal-silicon-based substrate, an insulating beam structure having a movable section and a stationary section, at least one piezoresistor positioned on the beam structure, an insulating supporter positioned on the non-single-crystal-silicon-based substrate for fixing the stationary section of the beam structure and forming a distance between the beam structure and the non-single-crystal-silicon-based substrate, and a thin film transistor (TFT) control circuit positioned on the non-single-crystal-silicon-based substrate and electrically connected to the piezoresistor and the beam structure.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: September 7, 2004
    Assignee: AU Optronics Corp.
    Inventor: Chien-Sheng Yang
  • Patent number: 6774445
    Abstract: The invention aims at suppressing an amount of deformation of a central portion of a movable part in a micro-miniature semiconductor actuator. A boundary portion is provided between a central portion and an edge of a movable part which is axially supported in a rotatable manner by torsion bars of an actuator, the boundary portion suppressing transmission of a warp due to an influence of air resistance at the edge of the movable part or moment of inertia, or heat generated by a driving force generating portion at the edge of the movable part, to a central portion of the movable part, to suppress deformation of the central portion of the movable part.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: August 10, 2004
    Assignee: The Nippon Signal Co., Ltd.
    Inventors: Kiyotaka Mutoh, Yuzuru Ueda, Norihiro Asada
  • Publication number: 20040129078
    Abstract: A high strength, high frequency acceleration transducer is used for measuring the acceleration of an impacted machine or structure. The acceleration transducer includes a diaphragm, the diaphragm including one or more strain gages for producing an output signal indicative of the transducer flexure. The diaphragm is securely clamped or held over part of its surface, and is free to deflect over other parts, for example, the remainder of its surface—the diaphragm can be clamped or held along its circumference with its middle free to flex, or alternatively the diaphragm can be clamped or held along its center with the outside portion of the diaphragm free to flex.
    Type: Application
    Filed: December 18, 2003
    Publication date: July 8, 2004
    Inventors: Thomas P. Kicher, Paul T. Kicher
  • Publication number: 20040124483
    Abstract: A method for adjusting with high precision the width of gaps between micromachined structures or devices in an epitaxial reactor environment. Providing a partially formed micromechanical device, comprising a substrate layer, a sacrificial layer including silicon dioxide deposited or grown on the substrate and etched to create desired holes and/or trenches through to the substrate layer, and a function layer deposited on the sacrificial layer and the exposed portions of the substrate layer and then etched to define micromechanical structures or devices therein. The etching process exposes the sacrificial layer underlying the removed function layer material. Cleaning residues from the surface of the device, then epitaxially depositing a layer of gap narrowing material selectively on the surfaces of the device. The selection of deposition surfaces determined by choice of materials and the temperature and pressure of the epitaxy carrier gas.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: Aaron Partridge, Markus Lutz
  • Patent number: 6756248
    Abstract: A pressure transducer designed to transform static pressure or dynamic pressure applied to a diaphragm into a corresponding electrical signal and a method of manufacturing the same are provided. The transducer includes a fixed electrode formed in an upper surface of a substrate and a moving electrode provided in the diaphragm disposed above the fixed electrode through a cavity. The substrate has formed in the bottom thereof at least one hole which is used in a manufacturing process for removing a sacrificial layer formed between the diaphragm and the upper surface of the substrate in dry etching to form the cavity.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: June 29, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaharu Ikeda, Masayoshi Esashi
  • Patent number: 6750999
    Abstract: A quasi-optical system is provided. More specifically, a quasi-optical system is provided comprising various embodiments of quasi-optical grids (such as arrays or layers and the like) with reconfigurable quasi-optical unit cells. The quasi-optical system, grids and unit cells are configured to control an incident beam in a variety of ways.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 15, 2004
    Inventor: Jung-Chih Chiao
  • Publication number: 20040099918
    Abstract: An electronic device substrate structure including a substrate 2, a metal thin film 4 as a (111)-oriented film of a face-centered cubic structure or as a (0001)-oriented film of a hexagonal closest packed structure formed on the substrate 2, and a wurtzite type thin film 5 as a (0001)-oriented film of a wurtzite crystal structure formed on the metal thin film 4, wherein: each of the two thin films is a polycrystalline film containing at least two kinds of crystal grains different in direction of crystal orientation in the plane; when the metal thin film 4 is a (111)-oriented film, <11-20> axes in the plane of the wurtzite type thin film 5 are parallel to <1-10> axes in the plane of the metal thin film 4; and when the metal thin film 4 is a (0001)-oriented film, <11-20> axes in the plane of the wurtzite type thin film 5 are parallel to <11-20> axes in the plane of the metal thin film 4.
    Type: Application
    Filed: August 29, 2003
    Publication date: May 27, 2004
    Applicant: TDK CORPORATION
    Inventors: Takao Noguchi, Hisatoshi Saitou, Hidenori Abe, Yoshinari Yamashita
  • Patent number: 6727551
    Abstract: The object of the present invention is to suppress a short channel effect on a threshold voltage. A channel region 5, a pair of source-drain regions and an isolating film 2 having a trench isolation structure are selectively formed in a main surface of a semiconductor substrate 1. An upper surface of the isolating film 2 recedes to be lower than an upper surface of the channel region 5 in a trench portion adjacent to side surfaces of the channel region 5 and to be almost on a level with the upper surface of the channel region 5 in other regions. Consequently, a part of the side surfaces of the channel region 5 as well as the upper surface thereof are covered by a gate electrode 4 with a gate insulating film 3 interposed therebetween. A channel width W of the channel region 5 is set to have a value which is equal to or smaller than a double of a maximum channel depletion layer width Xdm.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: April 27, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shigeto Maegawa
  • Patent number: 6724023
    Abstract: A field effect transistor suited for use as a sensor element or in an acceleration sensor is described. For this purpose, the field effect transistor within a planar substrate has a drain area and a source area, which are separated from each other by a channel region. In addition, a gate electrode is provided which is arranged so as to be substantially self-supporting above the substrate over the channel region. The gate electrode is flexibly supported such that an external force acting upon it which has a component acting parallel to the surface of the substrate causes a deflection of the gate electrode parallel to the surface of the substrate. A method is also described in which, in a first method step, an integrated circuit having a drain area, a source area, and a channel region is manufactured or made available in a CMOS process, and thereafter, in a second method step, the substantially self-supporting gate electrode is produced on the integrated circuit using electroplating additive technology.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: April 20, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Heyers, Bernhard Elsner
  • Patent number: 6720634
    Abstract: A contactless acceleration switch detects a threshold acceleration value when a mass attached to a spring, moves towards a source, a drain, and a threshold adjustment channel implanted in a substrate layer. The threshold adjustment channel is located between the source and the drain. The implanted area is located between insulator posts. A spring is attached to the insulator posts. A mass is held above the implanted area by the spring. When the threshold acceleration value is detected, the mass moves towards the substrate layer. The threshold adjustment channel then inverts causing current to flow between the source and the drain, providing an electrical signal indicating that the threshold acceleration value has been reached.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: April 13, 2004
    Assignee: Honeywell International Inc.
    Inventor: Joon-Won Kang
  • Patent number: 6710417
    Abstract: A method of improving the robustness of microcomponents formed of silicon by armor coating the microcomponent with a ductile material, such as a metal. The armored coating may comprise either partial armored coating or total armored coating. Providing the microcomponent with an armored coating reduces chipping and breaking, and likewise reduces contamination problems which arise from chips and breaks.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: March 23, 2004
    Assignee: Seagate Technology LLC
    Inventors: Zine-Eddine Boutaghou, Roger L. Hipwell, Jr., Wayne A. Bonin
  • Patent number: 6707121
    Abstract: Structures and methods are disclosed to produce mechanical strength in Micro Electro Mechanical Systems by increasing the moment of inertia of some of the composing elements. In one aspect, a thermal sensor with improved mechanical strength, thermal insulation and time constant is achieved. Moreover, the current method and apparatus is advantageous in terms of process time and process cost, particularly in the area of lithographic patterning.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: March 16, 2004
    Assignee: Interuniversitair Microelektronica Centrum (IMEC VZW)
    Inventors: Piet De Moor, Chris Van Hoof
  • Publication number: 20040012061
    Abstract: A micro-electromechanical device is formed on a substrate. The device has sliding, abrading or impacting surfaces. At least one of these surfaces is covered with an anti-stiction material. The anti-stiction material is provided from a slicon compound precursor (e.g. silane, silanol) or multiple silicon compound precursors. Preferably the precursor(s) is fluorinated—more preferably perfluorinated, and is deposited with a solvent as a low molecular weight oligomer or in monomeric form. Examples include silanes (fluorinated or not) with aromatic or polycyclic ring sturctures, and/or silanes (fluorinated or not) having alkenyl, alkynyl, epoxy or acrylate groups. Mixtures either or both of these groups with alkyl chain silanes (preferably fluorinated) are also contemplated.
    Type: Application
    Filed: June 4, 2003
    Publication date: January 22, 2004
    Inventors: Jason S. Reid, Nungavram S. Viswanathan
  • Publication number: 20040012060
    Abstract: The invention relates to a miniature electrostatic actuation device (100) capable of generating movements along a determined direction (F), comprising pairs of electrodes (4) of which the mobile electrodes (8) may be pulled into contact with a fixed electrode (6) on a variable pull-in surface that varies as a function of the voltage applied between these pairs of electrodes. According to the invention, the device also comprises an actuation element (12) connected to the mobile electrodes (8), the element (12) being capable of occupying a rest position and of being guided along the determined direction (F) when the voltage applied between the electrodes in each pair (4) varies, the device comprising return arms (14) capable of pulling the actuation element (12) back towards its rest position, when the voltage applied between the two electrodes in each pair of electrodes is reduced.
    Type: Application
    Filed: May 22, 2003
    Publication date: January 22, 2004
    Inventors: Eric Stadler, Julien Charton
  • Publication number: 20040000696
    Abstract: A microelectromechanical system switch may include a relatively stiff cantilevered beam coupled, on its free end, to a more compliant or flexible extension. A contact may be positioned at the free end of the cantilevered beam. The extension reduces the actuation voltage that is needed and compensates for the relative stiffness of the cantilevered beam in closing the switch. In opening the switch, the stiffness of the cantilevered beam may advantageously enable quicker operation which may be desirable in higher frequency situations.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 1, 2004
    Inventors: Qing Ma, Tsung-Kuan Allen Chou, Valluri Rao
  • Patent number: 6665110
    Abstract: A method of mapping diagonal rows and columns of two-dimensional grid elements to rectangular rows and columns of two-dimensional grid elements. The method is of particular use with a spatial light modulator in optical equalization application.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: December 16, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Gregory S. Pettitt
  • Patent number: 6661070
    Abstract: The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilcon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: December 9, 2003
    Assignees: Microscan Systems, Inc., Xerox Corporation
    Inventors: Andrew J. Zosel, Joel A. Kubby, Peter M. Gulvin, Chuang-Chia Lin, Jingkuang Chen, Alex T. Tran